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Abstract: The increasing urban traffic problems have made the transportation system require a large
amount of data. Aiming at the current problems of data types redundancy and low coordination rate
of intelligent transportation systems (ITS), this paper proposes an improved digital twin architecture
applicable to ITS. Based on the improved digital twin architecture, a framework for dynamic and static
data collaboration in ITS is constructed. For various collaboration methods, this paper specifically
describes the collaboration methods and scopes, and designs the framework and interfaces for
data mapping. Finally, the effectiveness of the framework is verified by case studies to mine the
spatiotemporal distribution characteristics of data, capture human travel characteristics, and visualize
intersections using digital twins. This paper provides a new data fusion idea for digital twin systems
in ITS, and the framework covers all data types in digital twin systems for cross-integration analysis.

Keywords: intelligent transportation system; digital twin; multi-source data; data collaboration;
spatiotemporal data

1. Introduction

With the continuous expansion of the urban scale, transportation is an important
issue for the development of the country and the improvement of people’s quality of life.
Intelligent systems model, analyze, and digitize traffic scenes, perform macro and micro
visual displays, propose intelligent travel suggestions, and apply them to traffic control
and services to achieve multiple benefits.

Digital twin is a large virtual data management system that uses three-dimensional
(3D) modelling, Internet of Things (IoT) [1], Artificial Intelligence (AI) and other technolo-
gies to connect and manage physical cities and virtual cities in digital space. Grieves first
proposed his concept in 2003 [2]. Researchers said that physical devices create and connect
virtual units in space. This connection is stable and accurate, so it is called model image
space. Grieves officially named it “Digital twin” in 2010 [3]. Grieves then proposed 3D
models based on physical units, virtual entities and connections [4]. These models have
become the most widely used models. With the increase in application requirements and
the improvement of theoretical technology, the development of digital twin models also
presents a new trend. In order to enable information exchange between simulation and
physical twins, A.J.H. Redelinghuys et al. [5] proposed a six-layer structure of digital twins.
F. Tao et al. extended the traditional “THREE-DIMENSIONAL” model in [6] and proposed
a “FIVE-DIMENSIONAL” model based on the physical entity (PE), the virtual entity (VE),
the services (Ss), the digital twin data (DD), and connection (CN), which meets the new
requirements of digital twin applications. Unlike A.J.H. Redelinghuys, Tao also took into
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account the users in the system. Based on the five-dimensional model, Wu proposed a
conceptual modelling method of digital twins, using the TRIZ function model to express the
complex relationship between digital twins and their attributes [7]. Digital twin technology
can help urban management and decision-making to coordinate and achieve intelligent,
accurate and safe transportation [8].

In the ITS, the four elements of human-vehicle-road-environment are interrelated and
coordinated. Due to its inherent structural characteristics, different data can be used to solve
different problems. Compared with traditional data systems, digital twinning technology
not only emphasizes information and physical data, but also emphasizes the integration
and interconnection between data [9], and achieves interactive real-time information space
and physical space through the relationship between data. In the study [10], Jiang et al.
elaborated the evolution mechanism of the digital twin workshop and proposed the digital
twin evolution model, which was combined with each stage of engineering application
to give it application scenarios. Cheng J et al. applied the digital twin technology to the
industrial Internet and proposed the self-reinforced digital twin technology of intelligent
in [11]. Because of the ability of digital twins to connect the information world and
the physical world, they have been used by many researchers in information physics
systems [12]. In [13], A.I. Levina et al. applied the IoT solution to intelligent transportation
systems, automated data collection and processing functions, and effectively improved
efficiency through standardized processes. Many scholars have also applied digital twin
technology to the field of architecture. Kaewunruen et al. [14] proposed a future model
to improve the energy consumption of buildings by using the combination of hierarchical
process and building information modeling (BIM) model, and apply renewable technologies
to buildings. Delbrugger T et al. [15] proposed a BIM-based digital twin factory navigation
framework to realize path searching of factory robots.

Some scholars make a simple fusion of traffic spatiotemporal data for analysis.
Pan et al. [16] has chosen to use the GPS data of taxis and tweets collected on Weibo for
three months to build a human detection system for traffic abnormalities, and identify
deviations according to the taxi drivers’ action routes. Guo et al. have studied
the data of floating cars and excavated the characteristics of the road network [17].
Magsino E.R. et al. used car floating data to study the travel dynamics of two different
types of public transportation in a city [18]. E. Felemban et al. introduced an interactive
platform that can detect the movement of a bus using large-scale GPS trajectories [19].
Wang et al. proposed a method inspired by data field theory and community detection
to mine spatiotemporal trajectory data [20]. Chen et al. combined data collection and
Internet data to study human travel behaviour and mobility [21]. However, there are
few studies on multiple data fusion modes.

Based on the above problems, this paper uses virtual simulation models to help make
decisions and monitor physical devices to solve data interaction and collaboration problems
in ITS based on digital compensation technology, where the details are shown in Figure 1.
The major contributions of this work are summarized below.

1. We proposed an improved digital twin architecture based on a new ITS to enrich the
data types of the digital twin.

2. We used the virtual–physical spatial relationship of digital twin technology to build a
data collaboration framework, and its collaboration relationship and input interface
were discussed.

3. We showed a case of collaborative analysis using digital twins spatiotemporal data,
UAV videos and BIM data.

The outline of the paper is as follows. The Section 1 is the enhanced digital twin
architecture and enriched data type for ITS. The Section 2 is to build the dynamic and
static data collaboration framework for ITS based on the enhanced digital twin architecture,
and specify the collaboration model. The Section 3 is a case study based on the above
framework. In Section 4 the limitations and future research of this paper are summarized.
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Figure 1. Physical information linkage of a digital twin system. The physical space with physical
entities provides data for the information space, and the information space with virtual models
simulates the information provided by the object space. The physical units mainly include vehicles,
buildings, traffic lights, sensors, etc. Virtual model mainly refers to environment model (environment
and weather modeling based on data provided by sensors), 3D traffic model (3D modeling based on
building and traffic light information), road network model (road network modeling based on lane
information and road information), etc.

2. Digital Twin-Based ITS Multi-Source Data Cooperation Framework

This chapter focuses on the data collaboration problem in ITS, improves the digital
twin data type and designs a new ITS framework.

2.1. Improved Digital Twin Data Based on ITS

Intelligent transportation systems rely on big data, the Internet of Things, cloud
computing, etc. Digital twins build physical entity models through digital means to connect
the physical world and information world to the “virtual-real integration” system [9],
connects the physical world and the information world with a system of “virtual-real
fusion”, based on the unique dynamic and static combination mode of digital twin data
systems. The twinning data are clearly defined in the five-dimensional model of digital
twinning [6], DD is the driver of the digital twin [9], including physical entity data (Dp),
virtual entity data (Dv), services data (Ds), knowledge data (Dk), and fusion-derived data
(D f ). Dp mainly include the specifications, functions and other data of physical entities,
such as environmental parameters, which are mainly collected through sensors. Dv mainly
includes the data of virtual entities, such as geometric size, material properties and data
obtained from process simulation based on the model. Ds mainly includes functional
service-related data (algorithms, processing methods, etc.) and business service data
(production management, market analysis, etc.). Dk mainly includes functional service-
related data (algorithms, processing methods, etc.) and business service data (production
management, market analysis, etc.). D f are derived from the above four kinds of data after
conversion, preprocessing, integration, fusion and other operations. The obtained fusion
data can reflect the information more comprehensively, and realize information sharing and
value-added. Due to the strong application of the transportation system, the above five data
types cannot meet the requirements of ITS. Therefore, the data collaboration framework
proposed in this paper added user data (Du) on the basis of the above five kinds of data as
Equation (1) and made multi-directional cooperation.

DD =
(

Dp, Dv, Ds, Dk, D f , Du

)
(1)

Compared with previous studies, the data collaboration framework provided by us
covers more twin data types as shown in Table 1.



Appl. Sci. 2023, 13, 1923 4 of 17

Table 1. Twin data type comparison.

CityNoise [22] T-Drive [23] U-Air [24] E. Felemban [19] Taos’ [6] Ours

Dp
√ √ √ √ √ √

Dv
√ √ √

Ds
√ √ √ √

Dk
√ √ √ √ √ √

D f
√ √

Du
√

2.2. Framework Design of ITS

Digital twin technology supports ITS development [25]. From the perspective of
module functional units, digital twinning technology based on ITS system can be divided
into infrastructure layer, data layer, simulation layer, and application layer (Figure 2),
simulation layer and application layer, corresponding to physical model, data model and
simulation model respectively. Redelinghuys’ [5] six-layer framework is relatively complex
and not suitable for the transportation network. In order to be more suitable for the
practical application of traffic networks, we added the application layer and combined the
multidimensional data into one layer to make it more concise and clear.

Static Modeling DataStatic Modeling Data

Infrastructure LayerInfrastructure Layer
Traffic LightsTraffic Lights IoT SensorIoT Sensor Road Measurement FacilitiesRoad Measurement Facilities

Data LayerData Layer

Simulation LayerSimulation Layer

 High Precision Map  Industry Standards

Visualized analysisVisualized analysis

BIMBIM

    

Dynamic Interactive DataDynamic Interactive Data

Real-time Access to Weather DataReal-time Access to Weather Data

GPSGPS

Real-time Video Acquisition by UAVReal-time Video Acquisition by UAV

Data miningData mining

Traffic flow forecastTraffic flow forecast

Hybrid travel recommendationHybrid travel recommendation

Application LayerApplication Layer
Remote Regulatory ControlDecision Control Multidimensional Display

Algorithmic Model

Figure 2. Digital twin technology based on ITS system. The infrastructure layer includes physical
entities such as signal lights, sensors, and road test facilities. The data layer is divided into static
modelling data and dynamic interactive data, which belong to physical entity data; the simulation
layer is based on the virtualization of physical entity data, mainly including visualization analysis,
traffic flow prediction, data mining, mixed travel recommendation and so on; application layer is the
application convenience provided by virtual entities for users, including decision control, remote
control, multi-dimensional display and so on.

The infrastructure layer, as the means and source of data acquisition, plays a support-
ing role in the entire architecture. The data layer includes static modelling data, dynamic
interactive data and service knowledge data as data modules in a digital twin system.
In this paper, multi-dimensional and multi-type data interactive combinations are used for
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fusion analysis to provide support for the simulation layer. The simulation layer provides a
reliable basis for the application layer through computational simulation. In the application
layer, according to the actual application requirements, information fusion and display of
the results are carried out. This paper focuses on the interaction between the data layer
and the simulation layer. The data layer is mainly divided into static data and dynamic
data. Static modelling data includes modelling of building materials and appearance of
intelligent transportation environment by using BIM [26] technology, industry standards
and algorithmic models. Dynamic perception data includes real-time acquisition of vehicle
information [27] and acquisition of weather information by means of IoT [28] technology
of meteorological sensors and UAVs video of fast communication.

3. Design of Data Collaboration Mode Based on Improved Framework
3.1. Data Collaboration Method Based on ITS

Based on the above framework, this chapter refined the digital twin data in ITS and
elaborated its multiple collaborative ways. In order to avoid data islands, this paper used
the data merge relationship shown in Figure 3 for integrated modeling, established the
connection between data and relational database, and returned it in JSON format through
network requests.

Figure 3. Data interaction between multiple physical entities. Building information data, UAV video
data and environmental sensor data belong to physical entity data. Expert knowledge, professional
standards, etc. belong to knowledge data. Algorithm models, processing methods and so on belong
to services data. Emulator data belongs to virtual entity data. Then the four kinds of data are
preprocessed and integrated to acquire the fusion-derived data. User feedback is used as the basis for
data structure adjustment. Efficient data transmission using 5G wireless networks.

3.1.1. Collaboration between BIM and IoT in Real-Time

With the rapid development of IoT technology, digital twins can play a role in the
field of intelligent transportation, and IoT devices can provide professional services for
cloud computing, cloud storage, etc. [29]. BIM is a digital expression of the physical and
functional characteristics of facilities [30]. The integrated application of BIM and the IoT
can more effectively manage and use a large amount of data, visualize heterogeneous data
from multiple sources, establish consistent links between data in real time, and improve
the practicability and interactivity of historical data.

Based on the above statement, this paper used the method of multiple BIM collabo-
ration to collect data, model the traffic system, and prepare for subsequent analysis. This
paper used the Unreal Engine4 (UE4) engine of Epic Games to create 3D visualization data
using BIM model. The main steps are as follows: First, data preprocessing, which calculates
the correlation between UE4 scene coordinates and actual space coordinates, and maps
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them to virtual space by rotating and scaling the coordinates of actual space, and converted
the relationship to:

(−R)(−T)

 x
y
z

 =

 x′

y′

z′

 (2)

where, o(x, y, z) is a point in real space, O′(x′, y′, z′) is a point in virtual space, x, y, z are the
coordinates of real space and x′, y′, z′ are the coordinates of virtual space. R is the rotation
matrix, and T is the translation and scaling matrix. Second, import the UE4 engine to
generate 3D scene models of traffic elements such as roads, terrain and buildings. Third,
obtain a new 3D interactive traffic model with strong fidelity and immersion.

3.1.2. Collaboration between BIM and UAV

The integration of IoT sensors and BIM makes real-time information exchange and
exchange possible. Object perception using unmanned aerial vehicle (UAV) image informa-
tion improves the fault-tolerance of eye-movement level BIM modeling, making it possible
to build high-precision and high-quality traffic models.

As a video sensor in the IoT [31], UAV is a convenient tool for video data acquisition.
After the first UAV was launched from the US Navy Research Office, it is mainly used
for boring and dangerous work [32]. Combined with cameras, UAVs can obtain high-
resolution images from different angles and transmit information to the ground through
routing. In order to solve the problems caused by bad weather and the existence of blind
spots, this paper combines the UAV technology with the BIM model to model the traffic
scene of the corresponding intersection, and imports the cooperation information into the
UE4 engine for modeling. The model includes the external information of the building, 3D
scene model of road condition information and macro traffic information, and carries out
feature extraction and visualization of intersection traffic flow information according to
algorithm model.

3.1.3. Collaboration between GPS Information and BIM

This paper aims to carry out a 3D visual display on the basis of establishing the data
coordination framework of the intelligent transportation system and using geographic
data to enhance the BIM model. Therefore, this paper used the interactive way of GPS
information and BIM technology to collect data. In this paper, through desensitization
of GPS terminal service providers, we obtained the activity data of personal vehicles
equipped with GPS tracking system in Wuxi, Jiangsu Province in 2020, including vehicle
identification, pick-up time, longitude and latitude of pick-up location, and vehicle speed.
This provides reliable support for follow-up interactive research. This paper carried out
the following processing for GPS information: First, data filtering. Delete irrelevant data,
low-sampling data, error data, etc. (such as unreal coordinate repeated timestamp, too
fast speed, too long waiting time, too small trajectory, etc.); Second, map matching; Third,
calculate the road speed; Fourth, coordinate change and eliminate error, applied in BIM
traffic model; Fifth, use algorithms to mine travel hotspots and peak times. However, as the
data are limited to private cars equipped with the supplier’s location system, the data are
still one-sided.

3.1.4. Collaboration between GPS Information and UAV

Considering the high resolution and real-time characteristics of UAV, this paper
adopted an image processing algorithm to conduct traffic flow statistics based on real-time
data collected by UAV, and comprehensively used GPS macro data and position micro-
data collected by UAV to detect flow rate and extract features. Finally, the road index is
measured and the road network is constructed based on the data of the traffic simulator.

The UAV video data can also be used to detect weather and air quality at the naked
eye level for collaborative analysis.
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3.2. Input Interface Design Based on Data Collaboration

Compared with model-based simulation, digital compensation simulation emphasizes
the combination of real-time data and simulation model. The interface that can transmit
data in real time can further activate the intelligent transportation system and convert
offline analysis to online analysis. The interface designed in this paper consists of three
parts (Figure 4): dynamic data interface, static data interface and subjective selection data
interface. These three parts of data serve as the input interface of the results. Through the
visual execution of the results evaluation process, the system has the ability of optimization
and perception, and improves the accuracy and timeliness of the evaluation.

Dynamic Data InterfaceDynamic Data Interface

IOT Device Interface 
UAV  Video Interface 

GPS Real-time  Interface

IOT Device Interface 
UAV  Video Interface 

GPS Real-time  Interface

Static Data InterfaceStatic Data Interface

BIM Interface
High Precision Map Interface

Vehicle Track Information Interface

BIM Interface
High Precision Map Interface

Vehicle Track Information Interface

Subjective Selection  InterfacesSubjective Selection  Interfaces
Screening Condition

Weight and Threshold
Evaluation  Criterion

Screening Condition
Weight and Threshold
Evaluation  Criterion

Subjective InputSubjective Input

Dynamic 
Sensing Input

Dynamic 
Sensing Input

Static Sensing 
Input

Static Sensing 
Input

Figure 4. Data input interface. The dynamic data interface is mainly for dynamic interactive data
in the data layer described in Figure 2, while the static data interface is for static modelling data;
the subjective selection data interface is an interface for designers to process data according to the
subjective conditions (such as threshold, filter conditions, etc.) required by practical applications.

4. Case Study of Data Collaboration

This paper is based on spatiotemporal data mining and an improved differential fusion
algorithm (DFA) to take the collaboration of UAV video data based on IoT, BIM data, GPS
trajectory data and algorithm model as an example (Figure 5) to explain the rationality of
the framework.

Firstly, the error data in the GPS trajectory data are deleted; Secondly, the GPS data
are processed, and their longitude and latitude are mapped to a high-precision map by
a matching algorithm (through track correction), and the speed of the road is calculated;
Then, the spatiotemporal distribution characteristics are mined to extract travel hotspots
and peak hours; Next, aiming at the hot intersections, the UAVs are used to capture the
traffic flow data in the peak hours, and the UAV video data are processed and analyzed to
mine the traffic flow and capture the behavioural characteristics. Finally, visual modelling
of the digital twin of target intersections was conducted using UE4 and BIM data.

4.1. Dataset Description

The case database of this paper consists of three parts, a GPS dataset, a UAV video
dataset, and a building model dataset. The GPS dataset is continuous data from 18 July 2020,
to 18 August 2020, and there are about 3 × 108 trajectory records per day. The main fields
are longitude, dimension, acquisition time, direction, velocity and acceleration. The UAV
dataset is video data of seven intersections- about 1680 min. The building model dataset
includes building material types and more.
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4.2. Space-Time Travel Data Mining
4.2.1. Abnormal Data Filtering

The GPS data in the framework described in this paper serves for traffic flow prediction
and travel recommendation, so it is necessary to filter according to application scenarios
before data collaboration, so as to reduce data processing capacity and improve processing
speed. First, we need to delete fields that do not contribute to the traffic flow rate, such as
acceleration. Then, we take a time interval of 1 s for sampling. In order to avoid accidental
deletion caused by shortstop or red light, we choose the average duration of red light
interval in China of 60 s as the time window length and consider the vehicle whose speed
is 0 for 60 consecutive seconds to be stopped and delete it. At the same time, the points
with excessive speed are considered error points and are deleted (Table 2 lists some filtered
data and deletion reasons). By processing abnormal data, we reduce the amount of GPS
data from 3 × 108 to 6 × 107.

GPS raw dataGPS raw data

Is an outlierIs an outlier

Calculate the Speed 

of  Car

Calculate the Speed 

of  Car
Delete DataDelete Data

NoNo

YesYes

Coordinate 

transformation

Coordinate 

transformation

Map RectificationMap Rectification

Map Speed Map Speed

UAV VedioUAV Vedio
ReviseRevise

Digital Twin Digital Twin 

BIM data

Figure 5. The process of data collaboration. Firstly, the original GPS data are judged to delete the
abnormal data and retain the normal data. Then, the spatiotemporal distribution features were mined
to extract travel hotspots and peak hours. Next, for hot intersections, UAV is used to collect traffic
flow data during peak hours, and the UAV video data are processed and analyzed to mine traffic
flow and capture behaviour characteristics. Finally, UE4 is used to visually model the digital twin of
the target intersection.

Table 2. Partial filtered data and reasons for deletion.

Id Longitude Latitude Time Direction Speed Reason for Deletion

... ... ... ... ... ... ...
60015 120.2799744 31.4841888 27 July 2020 13:48 121 1666 faster
68126 120.287168 31.4841248 27 July 2020 11:23 121 1666 faster
22314 119.8930333 31.4895033 27 July 2020 05:47 0 0
22314 120.8930333 32.4895033 27 July 2020 05:48 0 0
22314 121.8930333 33.4895033 27 July 2020 05:49 0 0
22314 122.8930333 34.4895033 27 July 2020 05:50 0 0
22314 123.8930333 35.4895033 27 July 2020 05:51 0 0

Long stillness

... ... ... ... ... ... ...
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4.2.2. GPS Data Process

Firstly, according to Haversine Formula as shown in Formula (3), the distance between
the two points is calculated from the latitude and longitude as the length of the target section.

hav
(

d
R

)
= hav(ϕ2 − ϕ1)

+ cos(ϕ1) cos(ϕ2) hav(∆λ)

(3)

where,
hav(θ) = sin2(θ/2) = (1− cos(θ))/2 (4)

Including, R is the radius of the earth, and the average value is 6371 km; ϕ1, ϕ1 are the
latitude of two points; ∆λ represents the difference in longitude between two points.

Then, the time difference of each vehicle passing through the two groups of longitude
and latitude points was obtained by looking for vehicle ID, and we take the maximum time
difference as the baseline and record the number of vehicles.

Finally, since GPS data are sampled at a time interval of 1 s, in order to obtain the
average speed on the whole road, we process the vehicles with the same ID after data
screening and calculate their average speed as the vehicle speed on the road based on the
longitude and latitude of the intersection at both ends of the road. Table 3 shows partial
calculation results.

Table 3. Partial data of car speed.

Id Time Car Speed Longitude Latitude

... ... ... ... ...
66899 27 July 2020 8:37 13.43901897 120.3296316 31.83989
22645 27 July 2020 10:33 42.3437493 120.39129 31.8879616
67063 27 July 2020 12:58 22.1819016 120.2446566 31.6393466
08605 27 July 2020 22:23 13.4394087 120.48094 31.4990583

... ... ... ... ...

4.2.3. Mapping

In this paper, the number and speed of cars on the whole road are calculated to
find the average travel speed of a road, and according to different values, it is marked in
different colours on the high-precision map. Since there are many abrupt changes in the
instantaneous speed in our dataset, but the position data are relatively accurate, we choose
the ratio of the total distance travelled by vehicles to the total time in the period to represent
the average speed of the road section. The average travel speed is calculated as follows:

v̄ =
nL

∑n
i=1 ti

(5)

where, L is the length of the regional road section, which was calculated by the Haversine
formula, ti is the time for vehicle i to pass through the regional road section, and n is the
number of vehicles measured.

According to the latest road traffic congestion evaluation method (GA/T 115-2020),
the specific marking colour is divided into four levels, and the range is determined ac-
cording to the road conditions. For example, on the urban main road with a speed limit
of 60 km/h, if the average road travel speed is 35–60 km/h, it is marked in green; if the
average road travel speed is 30–35 km/h, it is marked in yellow; 20–30 km/h, it is marked
in orange; and 0–20 km/h, it is marked in red.

Due to the unique coordinate marking method of GPS data, we first convert the WGS84
coordinate system to the GCJ02 coordinate system, and then correct the trajectory according
to the trajectory correction algorithm [33], and finally match the high-precision map.



Appl. Sci. 2023, 13, 1923 10 of 17

4.2.4. Time Travel Feature Mining

Based on the above GPS data, we calculated the travel data within each hour to mine
the travel characteristics. As shown in Figure 6, Both (a) and (b) show obvious peak
characteristics at 08 o’clock and 17 o’clock, which are the morning rush hour and evening
rush hour of working days. However, the duration of rush hour travel data in (c) and
(d) is significantly longer than that in (a) and (b), which proved the difference in travel
characteristics between weekdays and weekends.

(a) (b)

(c) (d)

Figure 6. Distribution of temporal travel characteristics on weekdays and weekends. (a) Hourly car
flow of Monday. (b) Hourly car flow of Thursday. (c) Hourly car flow of Saturday. (d) Hourly car
flow of Sunday.

4.2.5. Spatial Travel Hotspots Mining Based on Gaussian Kernel Density Estimation

In order to capture the spatial distribution characteristics of map-matching data more
intuitively, we used the kernel density estimation(KDE) method to mine the travel hotspots,
and the Gaussian function was selected as the kernel function. Generally, this paper
selects two working days and weekends a week for mining the hotspots. As shown in
Figure 7, the data presents obvious spatial distribution characteristics, and the weekday
and weekend have their own characteristics. By extracting high-density hotspots, it can be
seen that Sanyang Square (red area) in the Liangxi District of Wuxi City is the central area
of the city, which will be further excavated in the next chapter.

4.3. Visual Traffic Flow Detection Based on DFA

Based on the hotspots in Figure 7 and the peak hours in Figure 6, this section se-
lected seven intersections in Sanyang Square as core data sources for further rush hour
data mining.

In the case study described in this paper, UAV video data are used in conjunction
with GPS data as auxiliary data for traffic flow mining. This paper designed an improved
differential fusion algorithm (DFA), which extracts the moving target and reduces the
sensitivity of the target to light through the method of background difference and multi-
frame difference reduction, identifies and tracks the car in the UAV, calculates the traffic
flow of the moving target in the detection area, and uses the similarity deduplication
algorithm to cooperate with the GPS data, and the resulting data are used as a benchmark
for the visualization of digital twin technology.
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(a) (b)

(c) (d)

Figure 7. Heat map of spatial distribution of travel hotspots. (a) Hotspots of Monday. (b) Hotspots of
Thursday. (c) Hotspots of Saturday. (d) Hotspots of Sunday.

4.3.1. Differential Fusion Algorithm

The main acquisition area of UAV video is the intersection, and the vehicles at the
intersection move alternately. In order to avoid repeated detection, multi-frame difference
processing is performed first. The difference operation is performed between the (n + 1)th
frame and the nth frame image, and between the nth frame and the (n − 1)th frame image
and the moving target is selected by the difference operation between the next frame and
the selected frame, as shown in Figure 8a. In the figure, the white area is the moving target,
and the frame difference is defined as:{

D(n+1,n)(x, y) = | fn+1(x, y)− fn(x, y)|
D(n,n−1)(x, y) = | fn(x, y)− fn−1(x, y)| (6)

DMn(x, y) =
{

255 if |Dn(x, y) + Dn+1(x, y)| ≥ 255
|Dn(x, y) + Dn+1(x, y)| else

(7)

In the equation, fn(x, y) is the image of this frame, fn−1(x, y) is the image of the
previous frame, fn−1(x, y) is the image of the next frame, and DMn(x, y) is the image
after multi-frame differential processing. Then, the image DMn(x, y) after the multi-frame
difference processing is processed by thresholding, as shown in Figure 8b. Thresholding is
also a process of noise reduction. The pixels are binarized using T as a threshold, filtering
out the non-connected white noise in the background. Then, the current background model
is extracted, and the foreground binarized image is shown as Equation (8). Since the image
has been processed previously, the extracted foreground is the foreground object of the
moving target output.

Bn(x, y) =
{

255 | fn(x, y)− fbn(x, y)| > T
0 else

(8)

Due to the high shooting Angle of UAVs, some distant vehicles are blurred, so the
images after thresholding are expanded to obtain a clearer binarized target image as shown
in Figure 8c. Image expansion is defined as:

A⊕ B = {x | (B)x ∩A 6= Θ} (9)
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where B is a convolution kernel with a circular shape. We used template B to convolve with
image A, scan every pixel in the image, and do “and” operation with the kernel element
and the binary image element. If both are 0, then the target pixel is 0, otherwise, it is 1.
Thus, the maximum value of the pixel in the coverage area of B is calculated, and the pixel
value of the reference point is replaced by this value to realize image dilation.

Figure 8. UAV video process. (a) Frame difference processing. (b) Thresholding. (c) Image dilation.
(d) Select the detection area and draw the outline.

4.3.2. Boundary Detection

For the dilated binary image, we performed contour extraction based on boundary
detection [34]. Its contour is drawn in Figure 8d, and the number of contours of the region
of interest (ROI) is counted as the original data of the traffic flow at the intersection.

4.3.3. Duplicate Removal Based on Similarity

For the frame-by-frame images in the above detection area, we compared the similarity
of the images based on the hash perception algorithm, removed the images whose similarity
is greater than the threshold, compressed data, and cleaned the data to form a new image
dataset. Its specific content is: First, reduce the image size, the high-frequency details
are removed, and the light and dark information is retained. Second, the discrete cosine
transform (DCT) is performed on the binarized image after the above image expansion
processing, and the influence of noise on the image is ignored. Third, convert the DCT
value to a hash value. Next, images are paired to generate Hamming distance. Then,
images are filtered according to the threshold calculated by Hamming distance, and the
images with high similarity were eliminated. Finally, data cleaning, retrieving the original
data according to the image number and updating it.

4.3.4. Traffic Flow Mining

Based on contour detection, our above-deduplicated image collection is mined and
extended to real intersections.

In this paper, we selected seven intersections in Wuxi commercial centre to mine the
travel traffic flow from 8:00 to 9:00 in the morning and 17:30–18:30 in the evening. As shown
in the box plot in Figure 9, the traffic flow variance between intersections A and B during
the morning rush hour and intersections A, B, and D during the evening rush hour is large,
so they are marked as key mining intersections.
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(a) (b)

Figure 9. Box figure of car flow. (a) Box figure of car flow in morning rush hour. (b) Box figure of car
flow in evening rush hour.

Based on the above analysis, the traffic flow data mining based on DFA is further
carried out at key intersections. As can be seen in Figure 10a, intersection A and intersection
B show obvious morning peak characteristics, and the traffic flow continues to show a
congestion trend from 8:00 to 8:44, and then drops sharply from 8:45. As can be seen from
Figure 10b, intersections A, B and D show an obvious evening peak trend, with a sharp
increase in traffic flow from 17:45 and continued congestion thereafter.

(a) (b)

Figure 10. Traffic flow at seven real intersections. (a) Morning rush hour: 8:00 to 9:00; (b) Evening
rush hour: 17:30–18:30.

4.3.5. Target Detection Effect Comparison

Due to the small number of pixels occupied by vehicles in the high-altitude video
captured by UAV, the effect of using yolov2 for object detection is not good. We used
the number of real vehicles manually counted frame-by-frame as a baseline to calculate
the accuracy. The yolov2 algorithm was selected to compare with the differential fusion
algorithm designed in this paper for small target identification, and the accuracy of this
paper was higher than that of yolov2. Without loss of generality, we randomly selected
two frames for comparison. In Figure 11, the blue is the target object recognized by yolov2,
and the green is the target object recognized by the fusion algorithm designed in this paper.
Since the target object is a moving object, the proposed algorithm is obviously better than
yolov2 in the small target environment as shown in Table 4.

Table 4. Accuracy and time consumption comparison.

Method Accuracy Time

DFA 95.26% 0.55 s
yolov2 78.43% 0.41 s
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(a) (b)

(c) (d)

Figure 11. Comparison of DFA and yolov2. (a) DFA of frame3. (b) yolov2 of frame3. (c) DFA of
frame47. (d) yolov2 of frame3.

4.4. Digital Twin Visualization

In this paper, UE4 software is used to construct a digital twin scene for the real
intersection as the twin of traffic flow data. The BPCounterTB blueprint class is constructed
to count the inflow and outflow of vehicles at intersections. The BPTotalTB blueprint
class, placed in the centre of the digital twin intersection, is used to count the total number
of vehicles in the electronic fence of the intersection. Build the MyHUD blueprint class,
and visualize its car flow using the Echarts HTML chart file. The constructed digital twin
intersection and vehicle data logic are shown in Figure 12.

Figure 12. Digital twin intersection. (a) The overall display of digital twin intersection. (b) Vehicle
data display logic.
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5. Conclusions

Aiming at digital twin technology and intelligent traffic control, this paper proposed
a digital twin data collaboration framework based on ITS. This framework improves the
data type of the traditional digital twin system, integrates multi-dimensional and multi-
state data into the data collaboration framework, and maps the physical world and the
information world to virtual and real, and represents specific use cases.

The focus of this paper is to put forward a collaborative framework of multi-dimensional
and multi-source data of intelligent transportation based on a digital twin system, improve
the data type and show an application example. Later, we will conduct simulation analysis at
the algorithm level based on the above data collaboration framework. We will use the average
speed indicator, the number and length of traffic congestion signal lamp timing, travel cost
and other factors to improve the entire digital twin system. At the same time, we will provide
data support for road visualization, traffic and passenger flow modelling and traffic light
control services.
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