Multitarget Search Algorithm Using Swarm Robots in an Unknown 3D Mountain Environment
Abstract
:1. Introduction
2. Ground Target Search Modeling in an Unknown Mountain Environment
3. Robot Search Task Assignment Mechanism
3.1. Three Robot States
3.2. Robot Task Assignment Model
4. Multitarget Ground Search Algorithm for Swarm Robots in a 3D Mountain Environment
4.1. 3D Virtual Force Model Roaming Search
4.2. 3D Particle Swarm Cooperative Search Optimization with Motion Constraints
4.3. 3D Curved Obstacle Tracking Algorithm (3D-COTA)
4.3.1. Initial Obstacle Tracking
- (1)
- If the robot is in the roaming search state, it can be calculated as Equation (20):
- (2)
- If the robot is in the cooperative search state, it can be calculated as Equation (21):
4.3.2. Second-Obstacle Tracking
- (1)
- If
- (2)
- If
4.4. Robot Velocity and Position Iteration
5. Simulation Experiment and Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Senanayake, M.; Senthooran, I.; Barca, J.C.; Chung, H.; Kamruzzaman, J.; Murshed, M. Search and tracking algorithms for swarms of robots: A survey. Robot. Auton. Syst. 2016, 75, 422–434. [Google Scholar] [CrossRef]
- Xue, S.; Zhang, J.; Zeng, J. Parallel asynchronous control strategy for target search with swarm robots. Int. J. Bio-Inspired Comput. 2009, 1, 151–163. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, S.; Zeng, J. Cooperative and Competitive Coordination in Swarm Robotic Search for Multiple Targets. Robot 2015, 37, 142–151. [Google Scholar]
- Li, J.; Tan, Y. A probabilistic finite state machine based strategy for multi-target search using swarm robotics. Appl. Soft Comput. 2019, 77, 467–483. [Google Scholar] [CrossRef]
- He, X.; Zhou, S.; Zhang, H.; Wu, L.; Zhou, Y.; He, Y.; Wang, M. Multiobjective coordinated search algorithm for swarm of UAVs based on 3D-simplified virtual forced model. Int. J. Syst. Sci. 2020, 51, 2635–2652. [Google Scholar] [CrossRef]
- Phung, M.D.; Ha, Q.P. Motion-encoded particle swarm optimization for moving target search using UAVs. Appl. Soft Comput. 2020, 97, 106705. [Google Scholar] [CrossRef]
- Cao, X.; Sun, H.; Jan, G.E. Multi-AUV cooperative target search and tracking in unknown underwater environment. Ocean Eng. 2018, 150, 1–11. [Google Scholar] [CrossRef]
- Tang, Q.; Yu, F.; Zhang, Y.; Zhang, J. A stigmergetic method based on vector pheromone for target search with swarm robots. J. Exp. Theor. Artif. Intell. 2020, 32, 533–555. [Google Scholar] [CrossRef]
- Brown, D.; Sun, L. Exhaustive mobile target search and non-intrusive reconnaissance using cooperative unmanned aerial vehicles. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017; pp. 1425–1431. [Google Scholar]
- Brown, D.; Sun, L. Dynamic exhaustive mobile target search using unmanned aerial vehicles. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 3413–3423. [Google Scholar] [CrossRef]
- Pan, W.T. A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example. Knowl. Based Syst. 2012, 26, 69–74. [Google Scholar] [CrossRef]
- Yang, X.-S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1997, 1, 53–66. [Google Scholar] [CrossRef]
- Guastella, D.C.; Cavallaro, N.D.; Melita, C.D.; Savasta, M.; Muscato, G. 3D path planning for UAV swarm missions. In ICMSCE 2018: Proceedings of the 2018 2nd International Conference on Mechatronics Systems and Control Engineering; Association for Computing Machinery: New York, NY, USA, 2018. [Google Scholar]
- Xie, Y.; Han, L.; Dong, X.; Li, Q.; Ren, Z. Bio-inspired adaptive formation tracking control for swarm systems with application to UAV swarm systems. Neurocomputing 2021, 453, 272–285. [Google Scholar] [CrossRef]
- Wan, N.; Li, Z.; Liang, X.L.; Wang, Y.B. Cooperative region search of UAV swarm with limited communication distance. J. Systems Engineering and Electronics 2022, 44, 1615–1625. [Google Scholar]
- Qi, B.; Li, M.; Yang, Y.; Wang, X. Research on UAV path planning obstacle avoidance algorithm based on improved artificial potential field method. J. Phys. Conf. Ser. 2021, 1948, 012060. [Google Scholar] [CrossRef]
- Yu, W.; Lu, Y. UAV 3D environment obstacle avoidance trajectory planning based on improved artificial potential field method. J. Phys. Conf. Ser. 2021, 1885, 022020. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, A.; Zhang, H.; Zhang, X.; Zhou, S. Multitarget Search of Swarm Robots in Unknown Complex Environments. Complexity 2020, 2020, 8643120. [Google Scholar] [CrossRef]
- Zhou, S.W.; Zhang, X.; Zhang, H.Q.; Zhou, Y.; Li, C.Y. Coordinated Control of Swarm Robots for Multi-target Search Based on a Simplified Virtual-Force Model. Robots 2016, 11, 641–650. [Google Scholar]
- Zhou, Y.; Chen, A.; He, X.; Bian, X. Multi-Target Coordinated Search Algorithm for Swarm Robotics Considering Practical Constraints. Front. Neurorobotics 2021, 15, 753052. [Google Scholar] [CrossRef]
- Pugh, J.; Martinoli, A. Inspiring and modeling multi-robot search with particle swarm optimization. In Proceedings of the Swarm Intelligence Symposium, 2007, Honolulu, HI, USA, 1–5 April 2007; pp. 332–339. [Google Scholar]
- Viswanathan, G.M.; Buldyrev, S.V.; Havlin, S.; Da Luz, M.; Raposo, E.; Stanley, H.E. Optimizing the success of random searches. Nature 1999, 401, 911–914. [Google Scholar] [CrossRef]
- Bénichou, O.; Loverdo, C.; Moreau, M.; Voituriez, R. Two-dimensional intermittent search processes: An alternative to Lévy flight strategies. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2006, 74, 020102. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.Y.; Chen, X.B.; Xu, W.B.; Zhou, Z.W. A self-organizing cooperative hunting by swarm robotic systems based on loose-preference rule. Acta Autom. Sin. 2013, 39, 57–68. [Google Scholar] [CrossRef]
- He, X.J.; Zhou, S.W.; Zhang, H.Q.; Zhou, Y. A 3D Parallel Multi-target Search Coordination Control Strategy for Swarm UAVS. Inf. Control 2020, 49, 605–614. [Google Scholar]
- Zhang, H.Q. Research on Self-Organizing Cooperative Hunting by Swarm Robots Based on Simplified Virtual-Force Model. Ph.D. Thesis, Hunan University, Changsha, China, 2015. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Liang, J.J.; Suganthan, P.N. Dynamic multi-swarm particle swarm optimizer with local search. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; pp. 124–129. [Google Scholar]
- Sun, W.; Lin, A.; Yu, H.; Liang, Q.; Wu, G. All-dimension neighborhood based particle swarm optimization with randomly selected neighbors. Inf. Sci. 2017, 405, 141–156. [Google Scholar] [CrossRef]
Serial Number | Robot | Target Type | Intensity of the Response | Nearest Communication Robot | Distance from Communication Robot | Priority Sorting |
---|---|---|---|---|---|---|
1 | II | - | 213.2349341 | 11 | ||
2 | II | - | 209.3224293 | 9 | ||
3 | I | 2.099988287 | - | - | 2 | |
4 | II | - | 33.53008801 | 5 | ||
5 | II | - | 44.66655953 | 6 | ||
6 | I | 2.024188002 | - | - | 3 | |
7 | II | - | 171.3542868 | 8 | ||
8 | II | - | 232.4477832 | 12 | ||
9 | I | 6.13611151 | - | - | 1 | |
10 | II | - | 212.6859702 | 10 | ||
11 | II | - | 30.39406231 | 4 | ||
12 | II | - | 142.4618399 | 7 |
Parameter | Value | Parameter | Value |
---|---|---|---|
30~60 | 6 | ||
10 | 0.1 | ||
360 | 1 | ||
10 | 105 | ||
300 | 1 | ||
100 | 1.2 | ||
100 | 0.5 | ||
10 | 0.1 |
Step | ||||||||
---|---|---|---|---|---|---|---|---|
30 | 40 | 50 | 60 | 30 | 40 | 50 | 60 | |
Data from 30 experiments | 481 | 250 | 226 | 217 | 11.494 | 8.191 | 9.109 | 10.761 |
370 | 283 | 220 | 215 | 8.857 | 9.197 | 8.868 | 10.483 | |
332 | 343 | 271 | 211 | 8.277 | 10.653 | 10.668 | 10.429 | |
455 | 249 | 232 | 219 | 11.385 | 8.128 | 9.474 | 10.784 | |
354 | 247 | 234 | 230 | 8.729 | 7.799 | 9.483 | 11.259 | |
287 | 249 | 242 | 205 | 6.956 | 7.951 | 9.887 | 10.260 | |
356 | 267 | 253 | 216 | 8.492 | 8.515 | 10.152 | 10.685 | |
286 | 230 | 245 | 190 | 7.085 | 7.466 | 9.694 | 9.456 | |
282 | 237 | 260 | 217 | 7.008 | 7.487 | 10.235 | 10.699 | |
311 | 215 | 207 | 227 | 7.611 | 7.024 | 8.480 | 10.972 | |
367 | 297 | 235 | 209 | 9.088 | 9.579 | 9.434 | 10.453 | |
282 | 232 | 235 | 194 | 6.962 | 7.501 | 9.244 | 9.474 | |
316 | 260 | 222 | 230 | 7.767 | 8.350 | 8.954 | 11.185 | |
343 | 295 | 244 | 206 | 8.513 | 9.532 | 9.731 | 10.289 | |
272 | 277 | 225 | 200 | 6.736 | 8.732 | 8.992 | 9.941 | |
240 | 248 | 227 | 220 | 5.883 | 8.009 | 9.217 | 10.916 | |
360 | 262 | 207 | 227 | 9.011 | 8.231 | 8.460 | 11.091 | |
294 | 280 | 244 | 195 | 7.068 | 8.923 | 9.709 | 9.728 | |
379 | 299 | 230 | 216 | 9.444 | 9.568 | 9.310 | 10.643 | |
355 | 269 | 239 | 225 | 8.679 | 8.590 | 9.537 | 10.901 | |
336 | 218 | 236 | 196 | 8.364 | 6.932 | 9.666 | 9.756 | |
253 | 352 | 275 | 221 | 6.225 | 10.924 | 10.894 | 10.800 | |
358 | 255 | 203 | 175 | 8.912 | 8.152 | 8.373 | 8.802 | |
259 | 239 | 227 | 229 | 6.288 | 7.729 | 9.191 | 11.157 | |
336 | 244 | 219 | 217 | 8.295 | 7.646 | 8.863 | 10.754 | |
457 | 251 | 260 | 216 | 11.264 | 8.030 | 10.370 | 10.591 | |
328 | 259 | 243 | 190 | 8.016 | 8.419 | 9.658 | 9.565 | |
261 | 329 | 234 | 203 | 6.615 | 10.298 | 9.465 | 9.996 | |
305 | 263 | 218 | 222 | 7.376 | 8.497 | 8.877 | 11.051 | |
340 | 280 | 227 | 206 | 8.399 | 8.946 | 9.098 | 10.251 | |
Mean | 331.833 | 265.967 | 234.667 | 211.467 | 8.160 | 8.500 | 9.436 | 10.438 |
Step | ||||||||
---|---|---|---|---|---|---|---|---|
30 | 40 | 50 | 60 | 30 | 40 | 50 | 60 | |
Data from 30 experiments | 598 | 328 | 452 | 289 | 16.480 | 12.548 | 21.803 | 16.916 |
545 | 327 | 402 | 533 | 15.366 | 12.534 | 19.240 | 31.185 | |
464 | 401 | 397 | 370 | 12.544 | 15.245 | 19.237 | 21.520 | |
426 | 424 | 292 | 296 | 12.164 | 15.746 | 14.237 | 17.282 | |
496 | 311 | 461 | 544 | 13.248 | 11.843 | 22.182 | 31.659 | |
354 | 400 | 286 | 348 | 10.087 | 15.227 | 13.567 | 20.232 | |
430 | 334 | 456 | 336 | 12.090 | 12.779 | 21.769 | 19.447 | |
368 | 339 | 478 | 248 | 10.418 | 12.907 | 22.795 | 14.466 | |
425 | 508 | 385 | 311 | 11.934 | 19.194 | 18.640 | 18.117 | |
477 | 521 | 342 | 269 | 13.494 | 19.431 | 16.561 | 15.709 | |
436 | 376 | 366 | 310 | 12.268 | 14.428 | 17.494 | 18.032 | |
428 | 391 | 352 | 293 | 11.946 | 14.865 | 16.995 | 16.946 | |
377 | 515 | 650 | 307 | 10.343 | 19.732 | 30.874 | 17.752 | |
506 | 454 | 316 | 387 | 14.005 | 17.052 | 15.301 | 22.504 | |
528 | 452 | 310 | 313 | 14.284 | 17.315 | 15.036 | 18.232 | |
436 | 334 | 434 | 282 | 12.299 | 12.849 | 20.916 | 16.437 | |
502 | 366 | 306 | 393 | 13.941 | 13.977 | 14.680 | 22.798 | |
513 | 531 | 514 | 360 | 14.101 | 20.287 | 24.730 | 20.971 | |
425 | 353 | 269 | 291 | 11.521 | 13.482 | 12.969 | 16.984 | |
474 | 321 | 484 | 257 | 13.410 | 12.232 | 23.167 | 14.847 | |
520 | 586 | 403 | 379 | 14.135 | 21.730 | 19.310 | 21.910 | |
503 | 344 | 380 | 331 | 13.953 | 13.084 | 18.299 | 19.251 | |
346 | 323 | 421 | 410 | 9.752 | 12.457 | 20.163 | 23.883 | |
296 | 375 | 386 | 313 | 8.25 | 14.396 | 18.335 | 18.105 | |
638 | 376 | 342 | 399 | 17.944 | 14.457 | 16.606 | 23.201 | |
447 | 529 | 465 | 349 | 12.583 | 19.217 | 21.740 | 20.366 | |
428 | 321 | 369 | 383 | 11.826 | 12.105 | 17.919 | 22.415 | |
348 | 341 | 364 | 358 | 9.813 | 12.914 | 17.613 | 20.917 | |
509 | 531 | 308 | 538 | 14.502 | 20.242 | 14.828 | 30.778 | |
564 | 523 | 353 | 409 | 15.457 | 19.799 | 16.802 | 23.864 | |
Mean | 460.233 | 407.833 | 391.433 | 353.533 | 12.805 | 15.469 | 18.794 | 20.558 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zhou, S.; Wang, M.; Chen, A. Multitarget Search Algorithm Using Swarm Robots in an Unknown 3D Mountain Environment. Appl. Sci. 2023, 13, 1969. https://doi.org/10.3390/app13031969
Zhou Y, Zhou S, Wang M, Chen A. Multitarget Search Algorithm Using Swarm Robots in an Unknown 3D Mountain Environment. Applied Sciences. 2023; 13(3):1969. https://doi.org/10.3390/app13031969
Chicago/Turabian StyleZhou, You, Shaowu Zhou, Mao Wang, and Anhua Chen. 2023. "Multitarget Search Algorithm Using Swarm Robots in an Unknown 3D Mountain Environment" Applied Sciences 13, no. 3: 1969. https://doi.org/10.3390/app13031969
APA StyleZhou, Y., Zhou, S., Wang, M., & Chen, A. (2023). Multitarget Search Algorithm Using Swarm Robots in an Unknown 3D Mountain Environment. Applied Sciences, 13(3), 1969. https://doi.org/10.3390/app13031969