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Abstract: A multitarget search algorithm for swarm robot in an unknown 3D mountain environ-
ment is proposed. Most existing 3D environment obstacle avoidance algorithms are potential field
methods, which need to consider the location information of all obstacles around the robot, and
they easily fall into local optima, and their calculation is complex. Furthermore, they cannot well
meet the requirements of real-time obstacle avoidance characteristics of swarm robots in multiobject
searches. This paper first focuses on solving the obstacle avoidance problem of swarm robots in
mountain environments. A new 3D curved obstacle tracking algorithm (3D-COTA) is designed by
discretizing the mountains within the detection range of robot obstacles. Then, a task assignment
model and virtual force model in 2D space are extended to 3D, and a particle swarm search model
with kinematic constraints is constructed, which considers the kinematic constraints and the limi-
tations of the communication ability of the robots. Finally, a new multitarget search algorithm for
swarm robot in an unknown 3D mountain environment is proposed by means of the designed 3D
surface obstacle tracking algorithm. Numerical simulation results demonstrate the effectiveness of
the proposed algorithm.

Keywords: swarm robot; unknown complex environment; multitarget cooperative search; simplified
virtual force model; particle swarm optimization

1. Introduction

A large number of studies are devoted to swarm robot multitarget search, which
is widely used in postdisaster search and rescue, natural resources exploration, enemy
position detection, underwater fishing, and other application fields [1]. ZENG et al. mapped
particle swarm optimization (PSO) well with the target search process [2]. ZHANG et al.
deployed the cooperation and competition to solve the spatial conflicts of swarm robots [3].
LI et al. introduced a probability-constrained finite state machine to effectively resolve
individual resource conflicts and improve the efficiency of target search [4]. Taking UAV as
the carrier, HE proposed a 3D adaptive inertia weight extended particle swarm optimization
(IAEPSO) to realize the search of air targets in a mountain environment [5]. In order to
search for the lost object, PHUNG et al. transformed the problem of target search into
a probability problem based on the location of the last lost object and the creation of a
Bayesian map, and proposed motion-encoded particle swarm optimization (MPSO) [6].
Aiming at the target search of underwater vehicles, CAO et al. proposed a multi-AUV
collaborative team integration algorithm, which has the advantages of fewer parameters
and no speed jump [7]. In order to reduce the communication pressure of swarm robots,
TANG et al. realized the information interaction among swarm robots through indirect
communication [8]. Brown et al. assumed that the target was discovered when it was
within the detection range of individual UAV, and then proposed an ergodic target search
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method; under the background of this method, Brown et al. also proposed an approach to
increase or decrease the number of UAV individuals [9,10].

The above research shows that existing research on swarm robot multitarget search is
mainly aimed at 2D plane environments or a 3D environment with constant height [11–14].
However, in the practical application of environmental detection and postdisaster rescue,
swarm robots may face complex mountain environments. For multitarget searches in 3D
environments, many studies have implemented UAVs. For example, Dario [15] proposed
a task planning strategy of a UAV swarm in a 3D environment for landslide monitoring
and postdisaster search for survivors. Inspired by the gray wolf tracking strategy, Xie
Yuxin [16] proposed an adaptive formation tracking control method applied to a UAV
swarm system, which improved the system stability and accuracy of formation tracking.
Wang [17] customized a UAV interactive decision-making mechanism that could switch
the interaction method according to the distance between aircraft during a search for
a cooperative UAV swarm search task under the condition of limited communication
distance and realized search path planning in a dynamic environment. In view of the
realistic environment faced by swarm robots in a targeted search, the premise of their
search is to move safely in the task environment, so it is particularly important to consider
the obstacle avoidance problem. BinKai Qi [18] proposed UAV path planning based on
an improved 1artificial potential field to efficiently solve the UAV obstacle avoidance
problem. YuWenqiang [19], in view of the traditional artificial potential field method in a
complex environment and the problem of low efficiency of obstacle avoidance, proposed
a traditional artificial potential field method as an improved potential field function and
improved the traditional spherical potential field for the ellipsoid potential field. The
experimental simulation proves that the improved artificial potential field method provides
efficient and safe UAV obstacle avoidance path planning in a complex 3D environment.

A UAV has the advantages of information sharing, strong system survivability, and
cost performance, which can better meet the needs of a targeted search in 3D space. How-
ever, it has some problems for ground targeted search in complex mountain environments.
At present, there are few research results on swarm robot targeted ground search in 3D
mountain environments. In view of existing 3D environment potential field methods, ob-
stacle avoidance algorithms, the need to consider the obstacle position information around
the robot, the complex calculation and ease of falling into local optima, not satisfying
swarm robots well in the process of multirobot targeted ground search, and the insufficient
real-time obstacle avoidance requirements, this paper proposes a simple 3D curved obstacle
tracking algorithm that does not easily fall into local optima.

First, a task assignment model, particle swarm optimization algorithm with kinematic
constraints, and a simplified virtual force model in a 2D search environment were extended
to 3D space to solve the multiobjective search problem in a 3D scene [20–22]. Then, obstacle
tracking was considered in the process of swarm robot completing the task under the
condition of different robots according to the kinematic constraint using a particle swarm
optimization algorithm, and a virtual force model was simplified to calculate the expected
speed after the swarm robot 3D curved obstacle tracking algorithm to realize multitarget
search in an unknown complex 3D mountain environment. The simulation results show
that the proposed method is an effective method for swarm robots to search for multiple
targets in unknown 3D mountain environments.

2. Ground Target Search Modeling in an Unknown Mountain Environment

To better study swarm robot ground target search in an unknown mountain envi-
ronment, the corresponding environment hypothesis is made, and the corresponding
mathematical model is established.

The search task is located in an a× b× c mountain environment, which has a horizontal
area of a× b and a height of c. Among them, the mountain height difference is less than c,
and the mountain slope changes continuously and is always less than α degrees.
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The task object includes the robots, target, and mountain. Robots are represented as set
Rob = {Ri|i = 1, 2, . . . , nu; 30 ≤ nu ≤ 100}, where Ri represents a robot, and the target is
represented as set T =

{
tarj
∣∣j = 1, 2, . . . , nT ; nT ≥ 1

}
. The mountain is discretized in both

the horizontal x- and y-axes with ∆l as the unit distance, and the discrete points obtained
are called obstacles. Obstacles are represented as set S = {obsk|k = 1, 2, . . . , ns; ns ≥ 1}.
The time t and the locations of Ri, tarj, and obsk are represented as Ri(t), tarj, and obsk,
respectively, and the speed of Ri is Vi(t).

The Euclidean distance between each individual is expressed as follows: the dis-
tance between robots dri1,i2|t=‖Ri1(t)−Ri2(t)‖, the distance between a robot and the tar-
get drti,j|t = ‖Ri(t)−tarj‖, and the distance between a robot and obstacle drsi,k|t =
‖Ri(t)−obsk‖.

Within the task environment, the search task can be described as follows: considering
that the target reaches the threshold value d0, if there is a robot with a target distance
drti,j|t < d0, it indicates that the target is found. When all targets have been found, the
target search task is complete.

The robots involved in the search have certain characteristics. Assuming that each
robot is isomorphic and the robot velocity Vi(t) satisfies 0 ≤ Vi(t) ≤ Vm, each robot can
reach any position close to the ground in the task environment. Considering maximum
communication distance dcom, maximum obstacle sensing distance dobs, and maximum
target detection distance dtar, each robot has the following functions: when drti1,i2|t ≤ dcom,
it can communicate between robots; when drti,j|t ≤ dtar, it can detect the target signal; and
when drsi,k|t ≤ dobs, according to the slope sensor sense obstacles and a robot’s relative
slope, a robot can climb slopes less than or equal to β and can drive on slopes less than or
equal to α without rollover, and β < α.

The target being searched for is stationary on the mountain surface within the mission
mountain environment. When searching for a target, each robot can continuously detect the
target signal using a sensor. The target signal and drti,j|t meet an environmental interference
function and should describe the function of the target as a response function [23]. The
function can be set as Equation (1):

Ii,j(t) =

{ mQ
drt2

i,|t
+ η drti,j|t ≤ dtar

0 drti,j|t > dtar
(1)

where Ii,j(t) represents the target signal detected by Ri at time t; η is the environmental dis-
turbance satisfying the standard normal distribution; drti,j|t is the objective existence, which
is unknown to the robots; m is the attenuation coefficient of the environment (0 < m < 1);
and Q is the constant signal power of the target.

The mountain surface is separated into obstacle points with spacing ∆l, which are static,
and the position of each obstacle point can be specifically expressed as obsk=[xsk, ysk, zsk].

In a 3D search task environment, each robot can locate itself through its own sensor
position and speed information, can communicate through a communication device within
the scope of communication with other robots, and can sense obstacle slope information in
its detection scope. The robot pose and location information followed within the search
environment is as Equation (2):

Ri(t) =
[

xui|t, yui|t, zui|t

]
Vi(t) =

[ .
xui|t,

.
yui|t,

.
zui|t

]
.

xui|t =
d(xui|t)

d(t) = ‖Vi(t)‖ cos θ sin φ

.
yui|t =

d(yui|t)

d(t) = ‖Vi(t)‖ cos θ cos φ

.
zui|t =

d(zui|t)

d(t) = ‖Vi(t)‖ sin θ

. (2)
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where xui|t, yui|t and zui|t are the coordinate positions of the robot at time t in the Cartesian
global coordinate system xoyz. Vi(t) is the movement speed of the robot at time t, φ is the
angle between the projection vector of Vi(t) in the xoy plane and the forward direction of
the x-axis, and θ is the angle between Vi(t) and the forward direction of the z-axis. If the
time change ∆t is small enough, the relationship between the robot’s position and speed in
Equation (2) can be expressed as Equation (3):

Ri(t + ∆t) = Ri(t) + Vi(t + ∆t) (3)

To facilitate the planning of the trajectory of the robot, this study takes ∆t as unit time,
that is, ∆t = 1, and the iterative relationship between the position and velocity of the group
robot satisfies the following as Equation (4):

Ri(t + 1) = Ri(t) + Vi(t + 1) (4)

3. Robot Search Task Assignment Mechanism
3.1. Three Robot States

To make the robot swarm target search more coordinated and efficient, robots are
divided into three states as shown in Figure 1: roaming search state, cooperative search
state, and task completion state.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 18 
 

⎩⎪⎪
⎨⎪
⎪⎧ 𝑹𝒊(𝑡) = ൣ𝑥𝑢|௧, 𝑦𝑢|௧, 𝑧𝑢|௧൧              𝑽𝒊(𝑡) = ൣ𝑥𝑢ప|௧ሶ , 𝑦𝑢ప|௧ሶ , 𝑧𝑢ప|௧ሶ ൧               𝑥𝑢ప|௧ሶ = ௗ(௫௨|)ௗ(௧) = ‖𝑽𝒊(𝑡)‖cos𝜃sin𝜙𝑦𝑢ప|௧ሶ = ௗ(௬௨|)ௗ(௧) = ‖𝑽𝒊(𝑡)‖cos𝜃cos𝜙𝑧𝑢ప|௧ሶ = ௗ(௭௨|)ௗ(௧) = ‖𝑽𝒊(𝑡)‖sin𝜃          

  (2)

where 𝑥𝑢|௧, 𝑦𝑢|௧ and 𝑧𝑢|௧ are the coordinate positions of the robot at time 𝑡 in the Car-
tesian global coordinate system 𝑥𝑜𝑦𝑧. 𝑽𝒊(𝒕) is the movement speed of the robot at time 𝑡, 𝜙 is the angle between the projection vector of 𝑉(𝑡) in the 𝑥𝑜𝑦 plane and the forward 
direction of the 𝑥-axis, and 𝜃 is the angle between 𝑽𝒊(𝒕) and the forward direction of the 
z-axis. If the time change Δ𝑡 is small enough, the relationship between the robot’s posi-
tion and speed in Equation (2) can be expressed as Equation (3): 𝑹𝒊(𝑡 + Δ𝑡) = 𝑹𝒊(𝑡) + 𝑽𝒊(𝑡 + Δ𝑡)  (3)

To facilitate the planning of the trajectory of the robot, this study takes Δ𝑡 as unit 
time, that is, Δ𝑡 = 1, and the iterative relationship between the position and velocity of 
the group robot satisfies the following as Equation (4): 𝑹𝒊(𝑡 + 1) = 𝑹𝒊(𝑡) + 𝑽𝒊(𝑡 + 1) (4)

3. Robot Search Task Assignment Mechanism 
3.1. Three Robot States 

To make the robot swarm target search more coordinated and efficient, robots are 
divided into three states as shown in Figure 1: roaming search state, cooperative search 
state, and task completion state. 

 
Figure 1. Three robot states relationship. 

When the robots do not detect the target information, they are in a roaming search 
state; that is, the robots repel each other at the maximum speed to rapidly search the global 
environment [24,25]. When a robot detects the target signal, a multitarget task allocation 
model based on the response threshold is used to construct a suballiance. The robot mem-
bers in the same suballiance search for the target corresponding to the suballiance, and 
the state of the robots forming the suballiance changes to the cooperative search state. 
When the robot and a target distance are less than the target reached threshold, the robot 
and the distance of a target 𝑑𝑟𝑡,|௧ < 𝑑, the target is regarded as a search success, and the 
robot changes to the task completed state. When all targets are successfully found, all ro-
bots change to the mission completed state. 

  

Figure 1. Three robot states relationship.

When the robots do not detect the target information, they are in a roaming search
state; that is, the robots repel each other at the maximum speed to rapidly search the global
environment [24,25]. When a robot detects the target signal, a multitarget task allocation
model based on the response threshold is used to construct a suballiance. The robot
members in the same suballiance search for the target corresponding to the suballiance,
and the state of the robots forming the suballiance changes to the cooperative search state.
When the robot and a target distance are less than the target reached threshold, the robot
and the distance of a target drti,j|t < d0, the target is regarded as a search success, and
the robot changes to the task completed state. When all targets are successfully found, all
robots change to the mission completed state.

3.2. Robot Task Assignment Model

In the process of task search, each robot participates in a task search process through
self-organization and decides whether to choose task tar1 or task tar2 and whether to
change the task between task selection and task completion. The process is as follows: First,
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the sensor detects the target response value of a robot in the detection range. If the robot
detects multiple target signals in the detection range, the response probability of the robot
to each target is calculated according to a response probability evaluation model, and then
a roulette algorithm is used to make a decision regarding which target to search for [26].
The response probability assessment is expressed as Equation (5):

p(i, j) =
I2
i,j(t)

∑m
k=1 I2

i,k|t
, ∀j, k = {1, 2, 3, · · · , m} (5)

where I2
i,j(t) is the target tarj signal detected by robot Ri at time t. If the robot detects m

target signals within its detection range, the probability of robot Ri responding to target
tarj excitation is P(i, j), as Equation (6):

P(i, j) = ∑j
k=1 pik, j = 1, 2, · · · , m (6)

When P(i, j− 1) < ra < P(i, j), robot Ri selects target tarj as the target of collaborative
search, and ra ∈ (0, 1).

Robots can obtain target information in two ways during driving. On the one hand,
robots can directly detect target signals through their own sensors, which is called a class I
robot. On the other hand, a robot fails to detect a target signal within its detection range
but indirectly obtains the signal information of a target through communication with
other robots. This kind of robot is called a class II robot [27]. If a target signal detected
by two robots is the same target, they can participate in the target search process task
together. When multiple robots participate in the same search task, these robots can form a
suballiance to carry out a cooperative search for the target.

In the process of searching a 3D task environment, multiple robots will search for the
same target, or only a few robots will search for the same target; that is, in the process of
forming a suballiance, there will be an uneven distribution of robot resources. To avoid
this situation, closed-loop regulation is introduced; that is, the resource allocation of each
suballiance is re-evaluated after the first subtask assignment. When the number of members
of a suballiance reaches an upper limit Nm, the suballiance preferentially selects Nm robots,
and the remaining robots not selected will quit the suballiance and reselect other targets
as their search tasks or switch to the roaming search state. When the number of members
of a suballiance does not reach the upper limit Nm, suballiance members can be recruited
from the surrounding robots to participate in the target task search. The priority principle
of suballiance member selection is as follows: the priority of class I targets is greater than
that of class II targets; if the priority is the same, the robot is evaluated according to the
intensity of the target excitation signal; namely, the higher the intensity of the target signal
is, the higher the dominant position. If the number of class I targets is less than Nm, a robot
close to the class II communicating robot will be preferentially selected. If there is a robot
with the same distance as the communicating robot, the robot with a strong signal will be
preferentially selected. See Table 1 for details.
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Table 1. Group drones rank the suballiance U1 members at t = 36.

Serial
Number Robot Target Type Intensity of the

Response
Nearest

Communication Robot
Distance from

Communication Robot
Priority
Sorting

1 R2 II - R14 213.2349341 11
2 R3 II - R19 209.3224293 9
3 R5 I 2.099988287 - - 2
4 R9 II - R14 33.53008801 5
5 R11 II - R5 44.66655953 6
6 R14 I 2.024188002 - - 3
7 R17 II - R19 171.3542868 8
8 R18 II - R14 232.4477832 12
9 R19 I 6.13611151 - - 1
10 R21 II - R5 212.6859702 10
11 R22 II - R14 30.39406231 4
12 R23 II - R19 142.4618399 7

Swarm robots should not only avoid all obstacles but also complete all target searches
in the process of movement. To complete all target search tasks quickly and effectively,
the robots can form suballiances to search for the same target together according to the
detected target signals and communicate with the surrounding robots. As presented in
Table 1, the members of suballiances U1 are sorted. Robots R5, R14, and R19 detect the
signal of target tar1 during their driving. Robots R5, R14, and R19 are class I robots. At this
time, the number of class I robots is less than Nm, and a class I robot recruits the robots
within its communication range as a communication robot. R2, R3, R9, R11, R17, R18, R21,
R22, and R23 receive the recruitment information of class I robots and join one by one in the
target tar1 search task and form suballiance U1 for this target. According to the principle of
selecting members of suballiances, the priority of class I is higher than that of class II. Class
I is sorted according to the corresponding intensity of the target.

The higher the target response intensity is, the higher the priority is. The class II robots
are sorted according to the distance between them and communication robots. The closer
the distance is, the higher the priority is. Therefore, suballiance U1 is sorted by priority
as R19, R5, R14, R22, R9, R11, R23, R17, R3, R21, R2, and R18. According to the priority
order, R23, R17, R3, R21, R2, and R18 quit the suballiance, and finally, R19, R5, R14, R22, R9,
and R11 form a suballiance and participate in the target tar1 search task.

4. Multitarget Ground Search Algorithm for Swarm Robots in a 3D
Mountain Environment
4.1. 3D Virtual Force Model Roaming Search

When no target signal is obtained, each robot conducts roaming search to quickly
detect more areas. Here, a virtual force model is adopted [28]. When the distance between
robots is less than min(dcom, dtar), the robots repel each other, making the robots spread
quickly to quickly evaluate the search area. To simplify the calculation, a robot is repulsed
only by the nearest two robots.

Assuming that the robot nearest to robot Ri is Ri1 as shown in Figure 2, the positions of

the two robots are Ri(t) =
[

xui|t, yui|t, zui|t

]
and Ri1(t) =

[
xui1|t, yui1|t, zui1|t

]
. In addition,

dri,i2|t ≤ min(dcom, dtar). The repulsive force of Ri1 on Ri is calculated using Equation (7),
and the repulsive force direction is that the former points to the latter:

fi,i1
(t) =

c · l2
m

dvi,i1|t
3

[(
xui|t − xui1|t

)
,
(

yui|t − yui1|t

)
,
(

zui|t − zui1|t

)]
(7)

where fi,i1
(t) is the repulsion of Ri1 on Ri at time t. lm strengthens the obstacle avoidance

distance, and c optimizes the robot movement path.
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If the two robots closest to Ri satisfy dvi,|t ≤ min(dcom, 2dtar), then the virtual force on
Ri is as shown in Figure 2. In the figure, xui1|t > xui|t > xui2|t, yui1|t > yui|t > yui2|t, zui|t >
zui2|t > zui1|t, and the virtual forces fi,i1

(t) and fi,i2
(t) satisfy Equation (7). The virtual

forces applied to the robot satisfy the vector sum fi(t) = fi,i1
(t) + fi,i2

(t). The speed of the
robot in the roaming search state is the direction indicated by the virtual force; that is, the
next expected speed of the roaming search is as Equation (8):

Vei(t + 1) = Vm
fi(t)
‖fi(t)‖

(8)

4.2. 3D Particle Swarm Cooperative Search Optimization with Motion Constraints

Swarm robot system is a typical distributed system. Comparing swarm robots with
particle swarm optimization [29–31], a mapping relationship is found between the two. The
particle swarm optimization algorithm can be applied to robot movement. Considering the
movement constraints of a robot and the limitation of its communication ability, a particle
swarm optimization model with kinematic constraints can be constructed to calculate the
next expected velocity Vei(t + 1). The specific description is as Equation (9):{

Vpi(t + 1) = ωVi(t)+ c1r1(Ri
∗(t)−Ri(t))+ c2r2(gi

∗(t)−Ri(t))
Vei(t + 1) = Vi(t)+ (Vpi(t + 1)− Vi(t))·λ

(9)

where Ri(t) and Vi(t) represent the velocity and position vectors of robot Ri at time t, re-
spectively; Vpi(t + 1) is the velocity obtained by direct particle swarm iteration; Vei(t + 1)
is the expected velocity vector of robot Ri at the next moment; the introduction of λ is to
consider that the movement of the robot has a certain inertia; c1 and c2 are the individual
cognitive coefficient and social cognitive coefficient of the robot, respectively; r1 and r2 are
random variables in the interval (0,1); ω is the inertial weight; Ri

∗(t) represents the optimal
position experienced by robot Ri thus far after joining the current suballiance; and gi

∗(t) is
the optimal position traversed by the suballiance cutoff time t.

4.3. 3D Curved Obstacle Tracking Algorithm (3D-COTA)

The search for ground targets in a 3D mountain environment is similar to that in a
2D environment. Curving a 2D search environment can obtain a mountain surface. When
searching for a target, a robot needs to move along the mountain surface. The mountain
surface is curved; therefore, the velocity direction of the robot at any time is the tangent
direction of the surface corresponding to its position. Due to the limited climbing ability of
the robot, it is necessary to avoid areas with high slopes. After the velocity of the robot in the
roaming state or collaborative search is calculated according to the corresponding method,
the velocity direction may not meet the speed requirements in the search environment.
Therefore, further calculation is required after the expected velocity is obtained through
the calculation of robots in different states. To ensure that the next velocity direction is
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the tangent direction of the curve, the mountain slope in the velocity direction must meet
the requirements.

The robot discretizes the mountains within the detection range of obstacles and con-
siders the discrete point obstacles. For example, the mountain detected by a robot shown
in Figure 3a is discretized to obtain Figure 3b. The point set in the figure can be expressed
as the obstacle set. The Euclidean distance between the robot and the obstacle can be
expressed as Equation (10):

drsi,k|t = ‖Ri(t)−obsk‖ =
√(

xui|t − xsk

)2
+
(

yui|t − ysk

)2
+
(

zui|t − zsk

)2
(10)
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The slope of the obstacle relative to the robot can be expressed as Equation (11):

grdi,k|t = arctan
zsk − zui|t√(

xui|t − xsk

)2
+
(

yui|t − ysk

)2
(11)

4.3.1. Initial Obstacle Tracking

For robots in the roaming or collaborative search state, the expected velocity Vei(t + 1)
=
[ .

xei|(t+1),
.

yei|(t+1),
.

zei|(t+1)

]
is calculated according to the corresponding method. How-

ever, the expected velocity direction may not be tangent to the ground but may point to
the air or the ground. Therefore, it is necessary to further calculate the velocity tangent to
the ground.

Consider the nearest obstacle and two obstacle points not collinear to the nearest
obstacle. In Equation (12), the nearest obstacle point to robot Ri is described as obsk0 .

drsi,k0|t = min
obsk∈S

(
drsi,k|t

)
(12)

Based on obsk0 , two other obstacle points, obsk1 and obsk2 , are found to satisfy the
conditions described in Equation (13). According to Equation (13), points obsk0 , obsk1 , and
obsk2 are not collinear, so these three points can determine plane f li|t. For obstacle tracking
to search for ground targets, the robot will tend to move parallel to plane f li|t.
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obsk0 =
[
xsk0 , ysk0 , zsk0

]
obsk1 =

[
xsk1 , ysk1 , zsk1

]
obsk2 =

[
xsk2 , ysk2 , zsk2

]
xsk1 = xsk0 − ∆l. sign

(
xsk0 − xui|t

)
ysk1 = ysk0
xsk2 = xsk0

ysk2 = ysk0 − ∆l. sign
(

ysk0 − yui|t

)
(13)

At this time, plane f li|t is shifted so that the resulting plane f li|t ′ passes through Ri(t),
and the coordinate system Ritxyz is established with Ri(t) as the origin. In this coordinate
system, Ri(t) = [0, 0, 0], and obsk0 , obsk1 , and obsk2 are expressed as Equation (14):

obs′k0
=
[(

xsk0 − xui|t

)
,
(

ysk0 − yui|t

)
,
(

zsk0 − zui|t

)]
obs′k1

=
[(

xsk1 − xui|t

)
,
(

ysk1 − yui|t

)
,
(

zsk1 − zui|t

)]
obs′k2

=
[(

xsk2 − xui|t

)
,
(

ysk2 − yui|t

)
,
(

zsk2 − zui|t

)] (14)

Under the Ritxyz coordinate system, plane f li|t ′ is determined. Let Equation (15) of
the plane be:

ax + by + cz = 0 (15)

The vector normal to the plane for nli|t = [a, b, c] is a plane of two known vectors as
Equation (16): {

p1,i|t =
[(

xsk1 − xsk0

)
,
(
ysk1 − ysk0

)
,
(
zsk1 − zsk0

)]
p2,i|t =

[(
xsk2 − xsk0

)
,
(
ysk2 − ysk0

)
,
(
zsk2 − zsk0

)] (16)

The normal vector can be obtained as Equations (17) and (18):

nli|t = [a, b, c] =

 [1, 0, 0] [0, 1, 0] [0, 0, 1](
xsk1 − xsk0

) (
ysk1 − ysk0

) (
zsk1 − zsk0

)(
xsk2 − xsk0

) (
ysk2 − ysk0

) (
zsk2 − zsk0

)
 (17)


a =

(
ysk1 − ysk0

)(
zsk2 − zsk0

)
−
(
ysk2 − ysk0

)(
zsk1 − zsk0

)
b =

(
zsk1 − zsk0

)(
xsk2 − xsk0

)
−
(
zsk2 − zsk0

)(
xsk1 − xsk0

)
c =

(
xsk1 − xsk0

)(
ysk2 − ysk0

)
−
(
xsk2 − xsk0

)(
zsk1 − zsk0

) (18)

After the normal vector nli|t = [a, b, c] of the plane is calculated, the robot begins
to move in the direction parallel to plane f li|t, that is, motion tangential to the moun-

tain ground at Ri(t). Considering the obstacle tracking velocity Voi(t + 1) =
[ .

xoi|(t+1),
.

yoi|(t+1),
.

zoi|(t+1)

]
and expected velocity Vei(t + 1) =

[ .
xei|(t+1),

.
yei|(t+1),

.
zei|(t+1)

]
of the

3D curved obstacle tracking algorithm, the calculation process of the first obstacle tracking
velocity Voi(t + 1) of the 3D curved obstacle tracking algorithm is as Equation (19):

.
x =

.
xei|(t+1).

y =
.
yei|(t+1)

.
z = −

a
.
xe i|(t+1) + b

.
yei|(t+1)

c

(19)

(1) If the robot is in the roaming search state, it can be calculated as Equation (20):

Voi(t + 1) =
[ .
x,

.
y,

.
z
]
· Vm√

.
x2

+
.
y2

+
.
z2

(20)
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(2) If the robot is in the cooperative search state, it can be calculated as Equation (21):

Voi(t + 1) =


[ .
x,

.
y,

.
z
]
· Vm√

.
x2

+
.
y2

+
.
z2

,
√

.
x2

+
.
y2

+
.
z2

> Vm

[ .
x,

.
y,

.
z
]
,

√
.
x2

+
.
y2

+
.
z2 ≤ Vm

(21)

4.3.2. Second-Obstacle Tracking

After Voi(t + 1) is calculated using the corresponding method for the robot in the
roaming or cooperative search state, the speed direction is adjusted according to the slope
of the surrounding mountains, avoiding the movement direction of the mountain slope
beyond the robot climbing ability range.

It is assumed that, according to the perception of the slope sensor, the distance near
the robot is less than ‖Voi(t + 1)‖, and in the direction of angle set Θ, the slope exceeds the
climbing ability of the robot; that is, the slope is greater than β.

Within the set Φ =
{

2π
nφ

n
∣∣∣n ∈ [− nφ

2 , nφ

2

]⋂
Z
}

, the sensor can identify mountain

slopes in the nφ angle directions, where
[
− nφ

2 , nφ

2

]
represents the set of numbers between

− nφ

2 and nφ

2 , and Z is the set of integers.
Suppose that the function F(ϕ) has the following expression as Equation (22):

F(ϕ) = ϕ− 2π·sgn(ϕ) · δ(|ϕ| − π) − 2π < ϕ < 2π (22)

Among them:

sgn(ϕ) =


−1 ϕ < 0

0 ϕ = 0
1 ϕ > 0

(23)

δ(ϕ) =

{
0 ϕ ≤ 0
1 ϕ > 0

(24)

The second obstacle tracking velocity is denoted as Vti(t + 1) =
[ .

xti|(t+1),
.

yti|(t+1),
.

zti|(t+1)

]
, and Voi(t + 1) =

[ .
xoi|(t+1),

.
yoi|(t+1),

.
zoi|(t+1)

]
. Subsequently, Vti(t + 1) is calcu-

lated as:

(1) If arctan
( .

yoi|(t+1)
.

xoi|(t+1)

)
+ δ
(
− .

xoi|(t+1)

)
·sgn

( .
yoi|(t+1)

)
·π /∈ Θ

Vti(t + 1) = Voi(t + 1) (25)

(2) If arctan
( .

yoi|(t+1)
.

xoi|(t+1)

)
+ δ
(
− .

xoi|(t+1)

)
·sgn

( .
yoi|(t+1)

)
·π ∈ Θ

Calculation angle:
ϕ0 = min

ϕ∈Φ,ϕn∈(Φ−Θ)
|F(ϕ− ϕn)| (26)

To calculate Vti(t + 1):

.
xti|(t+1) =

(√
.

xo2
i|(t+1) +

.
xo2

i|(t+1)

)
cos(ϕ0)

.
yti|(t+1) =

(√
.

xo2
i|(t+1) +

.
xo2

i|(t+1)

)
sin(ϕ0)

.
zti|(t+1) = −

a
.

xti|(t+1) + b
.

yti|(t+1)

c

(27)

a, b, and c are shown in Equation (18).
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4.4. Robot Velocity and Position Iteration

When the robot moves on the mountain ground, the speed of the robot is along the
tangent direction of the mountain surface at all times. When planning the path of swarm
robots, there is a time interval between each iteration, and at the time between the two
iterations, the velocity is also along the tangent direction of the mountain surface. Therefore,
the position of the robot needs to be modified when updating its position. According to
Equation (4), the velocity is corrected as the average velocity vector before the position
is corrected.

It is assumed that the mapping relationship between coordinates obsk = (xsk, ysk, zsk),
zsk, xsk, and ysk of the mountain surface is expressed as zsk = Fs(xsk, ysk). The robot
calculates velocity Vi(t + 1) according to Vti(t + 1) =

[ .
xti|(t+1),

.
yti|(t+1),

.
zti|(t+1)

]
. For

robot Ri, the next velocity Vi(t + 1) is calculated as follows:

Vi(t + 1) =
[ .

xti|(t+1),
.

yti|(t+1), Fs
( .

xti|(t+1) + xui|t,
.

yti|(t+1) + yui|t

)
− zui|t

]
(28)

After calculating Vi(t + 1), the robot position is updated as follows:

Ri(t + 1) = Ri(t)+ Vi(t + 1) (29)

In summary, the multitarget ground search process in an unknown mountain environ-
ment is shown in Figure 4.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 18 
 

4.4. Robot Velocity and Position Iteration 
When the robot moves on the mountain ground, the speed of the robot is along the 

tangent direction of the mountain surface at all times. When planning the path of swarm 
robots, there is a time interval between each iteration, and at the time between the two 
iterations, the velocity is also along the tangent direction of the mountain surface. There-
fore, the position of the robot needs to be modified when updating its position. According 
to Equation (4), the velocity is corrected as the average velocity vector before the position 
is corrected. 

It is assumed that the mapping relationship between coordinates 𝑜𝑏𝑠 =(𝑥𝑠, 𝑦𝑠, 𝑧𝑠) , 𝑧𝑠 , 𝑥𝑠 , and 𝑦𝑠  of the mountain surface is expressed as 𝑧𝑠 =Fs(𝑥𝑠, 𝑦𝑠) . The robot calculates velocity 𝑽𝒊(𝒕 + 𝟏)  according to 𝑽𝒕𝒊(𝒕 + 𝟏) =[𝑥𝑡ሶ |(௧ାଵ), 𝑦𝑡ሶ |(௧ାଵ), 𝑧𝑡ሶ |(௧ାଵ)]. For robot 𝑅, the next velocity 𝑽𝒊(𝒕 + 𝟏) is calculated as fol-
lows: 𝑽𝒊(𝒕 + 𝟏) = [𝑥𝑡ሶ |(௧ାଵ), 𝑦𝑡ሶ |(௧ାଵ), Fs(𝑥𝑡ሶ |(௧ାଵ) + 𝑥𝑢|௧, 𝑦𝑡ሶ |(௧ାଵ) + 𝑦𝑢|௧) − 𝑧𝑢|௧] (28)

After calculating 𝑽𝒊(𝒕 + 𝟏), the robot position is updated as follows: 𝑹𝒊(𝒕 + 𝟏) = 𝑹𝒊(𝒕) + 𝑽𝒊(𝒕 + 𝟏) (29)

In summary, the multitarget ground search process in an unknown mountain envi-
ronment is shown in Figure 4. 

Start

Initialize

Search task 
assignment

Roaming 
search?

Flag that the target 
is searched

All targets have 
been searched

End

Y

Y

N N

3D particle swarm 
optimization with 
kinematic constraints

Virtual stress model

3D curved obstacle 
tracking-algorithm

YN

( ) ( ) ( )1 1t t t+ = + +i i iR R V

( ) 01,i jdrt t d+ <

Correction 
calculation

 
Figure 4. Target search process. 

5. Simulation Experiment and Results 
The parameters are set based on actual search requirements, as shown in Table 2. 
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5. Simulation Experiment and Results

The parameters are set based on actual search requirements, as shown in Table 2.
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Table 2. Parameter values.

Parameter Value Parameter Value

α 40◦ β 30◦

nu 30~60 Nm 6
nT 10 m 0.1
nφ 360 ∆l 1
Vm 10 Q 105

rcom 300 c1 1
robs 100 c2 1.2
rtar 100 ω 0.5
d0 10 λ 0.1

As an example, when nu = 40, assuming that slopes in the mountain environment
are all less than or equal to β, a schematic of the target search process is shown in Figure 5.
Figure 5a is a topographic map of the mountain area for target search. Figure 5b is the top
view of the search area when t = 1, the robot is in a 100× 100 area in the lower left corner,
and the target is in an 800× 800 area in the middle of the horizontal direction.
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Figure 5. 3D search simulation diagram. (a) Target search terrain, (b) When t = 1, the robot and the
target are located, (c) When t = 37, a robot detects a target signal and forms a suballiance. (d) When
t = 1~58, a robot searches the trajectory of target tar8. (e) When t = 127, the target is found. (f) When
t = 185, the trajectory of the robot. (g) When t = 255, all targets have been found. (h) When t = 1–255,
the trajectories of all the robots.

In Figure 5c, R2 detects the signal of target tar8, and robots R6, R15, R22, R23, and R27
join the suballiance. In Figure 5d, from t = 1 ∼ 58, R2, R6, R15, R22, R23, R27, R8, R10, R11,
and R17 in the suballiance participate in the search for tar8, and R10 searches for R10 at
t = 58.

In Figure 5e, when t = 127, the robots successfully complete the search for target tar1.
By this time, 5 targets (tar1, tar7, tar6 and tar8) have been found.

In Figure 5f, t = 1~185, 11 robots including, R5, R7, R11, R17, R18, R19, R20, R22, R24,
R28, and R32, participate in the collaborative search for target tar2, and before this, multiple
robots participated in the cooperative search for other targets.

In Figure 5g, t = 255, the robot swarm finally found all 10 targets. In Figure 5h, all
robot movement tracks of swarm robots in the search for targets are shown, and the robots
successfully found all ground targets.

Taking the number of robots nu = 30, 40, 50, or 60 and the number of targets nT = 10,
the experiment was repeated 30 times, and the following data as shown in Table 3.

After verifying the effectiveness of the swarm robot target search in a mountain
environment with a slope less than or equal to β, the existence of an environment with
a slope greater than β in a mountain environment is verified. Assuming nu = 40, the
mountain slope is less than or equal to α. A diagram of the target search process is shown
in Figure 6.

Figure 6a shows a mountain topographic map for the target search and the positions
of the targets and robots when t = 1. Figure 6b is a top view of the search area. The areas
marked in red indicate that each location within the region has a slope greater than β in
one direction.

Figure 6c shows the process of searching for target tar6. When t = 48, robot R37 detects
the target signal of tar6 and forms a suballiance with robots R27, R30, R40, R23, and R17. The
suballiance starts to search for target tar6. At t = 53, R21 also detects the target signal of
tar6, joins the suballiance, and pushes R23 out of the suballiance. Finally, when t = 62, the
target is found, and the suballiance is dissolved. It can be seen from the figure that when a
robot is searching for a target, it can move in a direction with a smaller slope according to
the 3D curved obstacle tracking algorithm and then smoothly search for a target in a region
with a higher slope.

Figure 6d shows the trajectory of robot R21 during the period from t = 1 to the robot
swarm finding all targets. As seen from the trajectory shown in the figure, when the upward
slope of the robot’s movement direction is too high for it to climb, the robot will adjust its
movement direction to the climbing slope according to the 3D curved obstacle tracking
algorithm and move as close to the original direction as possible.
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Figure 6e shows the positions of the robots and targets at t = 329. All targets have
been found by swarm robots at this point.

Figure 6f shows the trajectories of all robots in the swarm robot target search process.
The figure shows that according to the proposed method, the robots can successfully find
all targets in the task area. The robots will be more inclined to move in the region with a
slower slope, but they can also move in the direction with a lower slope in a region with a
higher slope.

Table 3. Target nT = 10 and mountain slope less than or equal to β: the number of steps and energy
consumption required for the robots to complete the task search.

nu
Step Energy Consumption (×104)

30 40 50 60 30 40 50 60

D
ata

from
30

experim
ents

481 250 226 217 11.494 8.191 9.109 10.761
370 283 220 215 8.857 9.197 8.868 10.483
332 343 271 211 8.277 10.653 10.668 10.429
455 249 232 219 11.385 8.128 9.474 10.784
354 247 234 230 8.729 7.799 9.483 11.259
287 249 242 205 6.956 7.951 9.887 10.260
356 267 253 216 8.492 8.515 10.152 10.685
286 230 245 190 7.085 7.466 9.694 9.456
282 237 260 217 7.008 7.487 10.235 10.699
311 215 207 227 7.611 7.024 8.480 10.972
367 297 235 209 9.088 9.579 9.434 10.453
282 232 235 194 6.962 7.501 9.244 9.474
316 260 222 230 7.767 8.350 8.954 11.185
343 295 244 206 8.513 9.532 9.731 10.289
272 277 225 200 6.736 8.732 8.992 9.941
240 248 227 220 5.883 8.009 9.217 10.916
360 262 207 227 9.011 8.231 8.460 11.091
294 280 244 195 7.068 8.923 9.709 9.728
379 299 230 216 9.444 9.568 9.310 10.643
355 269 239 225 8.679 8.590 9.537 10.901
336 218 236 196 8.364 6.932 9.666 9.756
253 352 275 221 6.225 10.924 10.894 10.800
358 255 203 175 8.912 8.152 8.373 8.802
259 239 227 229 6.288 7.729 9.191 11.157
336 244 219 217 8.295 7.646 8.863 10.754
457 251 260 216 11.264 8.030 10.370 10.591
328 259 243 190 8.016 8.419 9.658 9.565
261 329 234 203 6.615 10.298 9.465 9.996
305 263 218 222 7.376 8.497 8.877 11.051
340 280 227 206 8.399 8.946 9.098 10.251

Mean 331.833 265.967 234.667 211.467 8.160 8.500 9.436 10.438
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Figure 6. 3D simulation of a target search when the slope is greater than β. (a) Mountainous terrain,
initial target positions. (b) Diagram of the slope over the β zone. (c) The robots search for tar6.
(d) Trajectory of robot R21 (e) When t = 329, the swarm robots have found all targets. (f) The
trajectories of all the robots.

Taking the number of robots nu = 30, 40, 50, or 60 and the number of targets nT = 10,
the experiment was repeated 30 times, and the following data as shown in Table 4.
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Table 4. Target nT = 10 and mountain slope greater than β: the number of steps and energy consump-
tion required for the robots to complete the task search.

nu
Step Energy Consumption (×104)

30 40 50 60 30 40 50 60

D
ata

from
30

experim
ents

598 328 452 289 16.480 12.548 21.803 16.916
545 327 402 533 15.366 12.534 19.240 31.185
464 401 397 370 12.544 15.245 19.237 21.520
426 424 292 296 12.164 15.746 14.237 17.282
496 311 461 544 13.248 11.843 22.182 31.659
354 400 286 348 10.087 15.227 13.567 20.232
430 334 456 336 12.090 12.779 21.769 19.447
368 339 478 248 10.418 12.907 22.795 14.466
425 508 385 311 11.934 19.194 18.640 18.117
477 521 342 269 13.494 19.431 16.561 15.709
436 376 366 310 12.268 14.428 17.494 18.032
428 391 352 293 11.946 14.865 16.995 16.946
377 515 650 307 10.343 19.732 30.874 17.752
506 454 316 387 14.005 17.052 15.301 22.504
528 452 310 313 14.284 17.315 15.036 18.232
436 334 434 282 12.299 12.849 20.916 16.437
502 366 306 393 13.941 13.977 14.680 22.798
513 531 514 360 14.101 20.287 24.730 20.971
425 353 269 291 11.521 13.482 12.969 16.984
474 321 484 257 13.410 12.232 23.167 14.847
520 586 403 379 14.135 21.730 19.310 21.910
503 344 380 331 13.953 13.084 18.299 19.251
346 323 421 410 9.752 12.457 20.163 23.883
296 375 386 313 8.25 14.396 18.335 18.105
638 376 342 399 17.944 14.457 16.606 23.201
447 529 465 349 12.583 19.217 21.740 20.366
428 321 369 383 11.826 12.105 17.919 22.415
348 341 364 358 9.813 12.914 17.613 20.917
509 531 308 538 14.502 20.242 14.828 30.778
564 523 353 409 15.457 19.799 16.802 23.864

Mean 460.233 407.833 391.433 353.533 12.805 15.469 18.794 20.558

6. Conclusions

Aiming at the problem of robot swarm multitarget ground search in an unknown
3D mountain environment, this paper, based on unknown 2D environment robot swarm
multiobject search research, extends the multiobjective task assignment model, particle
swarm optimization algorithm, and virtual force model from a 2D environment to a 3D
environment. A new multiobject ground search algorithm for swarm robots in a 3D moun-
tain environment is proposed. Aiming at the problems of swarm robot’s speed direction
being tangent to the ground, each robot avoids a steep slope that cannot be climbed, and
a 3D curved obstacle tracking algorithm that can effectively avoid conflict between the
swarm robots and the mountain plans the speed based on the direction tangent to the 3D
surface so that a robot can find the ground targets in a mountain environment more quickly
and effectively. A 3D particle swarm optimization algorithm with kinematic constraints
and a multiobjective task assignment model is used to complete multitarget search in the
swarm robot system. A virtual force model is used to calculate the expected velocity during
roaming search. During collaborative search, a 3D particle swarm optimization algorithm
is used to calculate the expected velocity. After the expected velocity is calculated, the
final planned velocity is calculated according to the 3D curved obstacle tracking algorithm.
Simulation results show that the proposed method can not only find targets quickly but
also avoid conflict effectively. The simulation results demonstrate the effectiveness of the
proposed algorithm. However, the environment considered in this study is ideal, and prob-
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lems such as environmental interference, communication delay, and energy consumption
constraints in the swarm robot task execution are not considered. Therefore, in subsequent
work, the above problems will be studied.
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