Is the Slag Heap of a Former Ferrochromium Plant a Significant Environmental Hazard?
Abstract
:Highlights
- The sediments from all water bodies near the landfill are heavily polluted with Cr;
- Ecotoxicological studies on the sediments and water demonstrated the highest toxicity to tested species came from the nearest site to the slag heap;
- Noncancer and cancer risk calculations indicate possible adverse health effects for all sediments taken from the three water bodies;
- There is a high risk of possible health problems for fish consumers.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling (Water and Sediments)
2.3. Ecotoxicological Tests on Sediments
Ostracodtoxkit F
2.4. Ecotoxicological Tests on Surface Water
2.4.1. Algaltoxkit F™
2.4.2. Daphtoxkit F Magna
2.5. The Assessment of Metal Concentrations in the Sediments
2.6. The Health Risk Assessment of the Sediments
2.6.1. Exposure Dose
2.6.2. Hazard Quotient (HQ) and Hazard Index (HI)
2.6.3. Excessive Risk for Cancer (ECR)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Heavy Metal Concentrations in the Sediments
3.2. Ecotoxicological Studies
3.2.1. Ostracodtoxkit F-Sediments
3.2.2. Daphtoxkit F Magna–Surface Water
3.2.3. Algaltoxkit F-Surface Water
3.3. The Assessment of Health Risk–Sediments
3.3.1. Average Daily Dose (ADD)
3.3.2. Hazard Quotient (HQ) and Hazard Index (HI)
3.3.3. Excessive Risk for Cancer (ECR)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaza, S.; Yao, L.; Bhada-Tata, P.; van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- SLee, J.; Yu, Y.; Jung, H.; Naik, S.; Yeon, S.; Choi, M.Y. Efficient recovery of palladium nanoparticles from industrial wastewater and their catalytic activity toward reduction of 4-nitrophenol. Chemosphere 2021, 262, 128358. [Google Scholar] [CrossRef]
- Wu, T.-C.; Peng, C.-Y.; Hsieh, H.-M.; Pan, C.-H.; Wu, M.-T.; Lin, P.-C.; Wu, C.-F.; Hsieh, T.-J. Reduction of aldehyde emission and attribution of environment burden in cooking fumes from food stalls using a novel fume collector. Environ. Res. 2021, 195, 110815. [Google Scholar] [CrossRef] [PubMed]
- Choudri, B.; Al-Nasiri, N.; Charabi, Y.; Al-Awadhi, T. Ecological and human health risk assessment. Water Environ. Res. 2020, 92, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Dietz, R.; Desforges, J.-P.; Gustavson, K.; Rigét, F.F.; Born, E.W.; Letcher, R.J.; Sonne, C. Immunologic, reproductive, and carcinogenic risk assessment from POP exposure in East Greenland polar bears (Ursus maritimus) during 1983–2013. Environ. Int. 2018, 118, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Wanhong, L.; Fang, L.; Fan, W.; Maiqi, D.; Tiansen, L. Industrial water pollution and transboundary eco-compensation: Analyzing the case of Songhua River Basin, China. Environ. Sci. Pollut. Res. 2020, 27, 34746–34759. [Google Scholar] [CrossRef] [PubMed]
- Paolocci, G.; Bauleo, L.; Folletti, I.; Murgia, N.; Muzi, G.; Ancona, C. Industrial Air Pollution and Respiratory Health Status among Residents in an Industrial Area in Central Italy. Int. J. Environ. Res. Public Health 2020, 17, 3795. [Google Scholar] [CrossRef]
- Kolo, M.; Khandaker, M.; Amin, Y.; Abdullah, W.; Bradley, D.; Alzimami, K.S. Assessment of health risk due to the exposure of heavy metals in soil around mega coal-fired cement factory in Nigeria. Results Phys. 2018, 11, 755–762. [Google Scholar] [CrossRef]
- Jones, R.T.; Tusting, L.S.; Smith, H.M.; Segbaya, S.; Macdonald, M.B.; Bangs, M.J.; Logan, J.G. The impact of industrial activities on vector-borne disease transmission. Acta Trop. 2018, 188, 142–151. [Google Scholar] [CrossRef]
- Affandi, F.; Ishak, M. Impacts of suspended sediment and metal pollution from mining activities on riverine fish population—A review. Environ. Sci. Pollut. Res. 2019, 26, 16939–16951. [Google Scholar] [CrossRef]
- Kang, P.; Chen, W.; Hou, Y.; Li, Y. Linking ecosystem services and ecosystem health to ecological risk assessment: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Sci. Total Environ. 2018, 636, 1442–1454. [Google Scholar] [CrossRef]
- Li, Z. Health risk characterization of maximum legal exposures for persistent organic pollutant (POP) pesticides in residential soil: An analysis. J. Environ. Manag. 2018, 205, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Kondej, D. Odpady komunalne i przemysłowe—Charakterystyka, zagrożenia. Bezp. Pr. Nauka Prakt. Cent. Inst. Ochr. Pr. Państwowy Inst. Badaw. 2008, 1, 16–19. [Google Scholar]
- Neris, J.; Olivares, D.; Velasco, F.; Luzardo, F.; Correia, L.; González, L.N. HHRISK: A code for assessment of human health risk due to environmental chemical pollution. Ecotoxicol. Environ. Saf. 2019, 170, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Razo, I.; Carrizales, L.; Castro, J.; Díaz-Barriga, F.; Monroy, M. Arsenic and Heavy Metal Pollution of Soil, Water and Sediments in a Semi-Arid Climate Mining Area in Mexico. Water Air Soil Pollut. 2004, 152, 129–152. [Google Scholar] [CrossRef]
- Hołtra, A.; Zamorska-Wojdyła, D. The pollution indices of trace elements in soils and plants close to the copper and zinc smelting works in Poland’s Lower Silesia. Environ. Sci. Pollut. Res. 2020, 27, 16086–16099. [Google Scholar] [CrossRef]
- Twaróg, A.; Mamak, M.; Sechman, H.; Rusiniak, P.; Kasprzak, E.; Stanek, K. Impact of the landfill of ashes from the smelter on the soil environment: Case study from the South Poland, Europe. Environ. Geochem. Health 2020, 42, 1453–1467. [Google Scholar] [CrossRef]
- Navarro, A.; Cardellach, E.; Mendoza, J.; Corbella, M.; Domènech, L. Metal mobilization from base-metal smelting slag dumps in Sierra Almagrera (Almería, Spain). Appl. Geochem. 2008, 23, 895–913. [Google Scholar] [CrossRef]
- Kierczak, J.; Potysz, A.; Pietranik, A.; Tyszka, R.; Modelska, M.; Néel, C.; Ettler, V.; Mihaljevič, M. Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland). J. Geochem. Explor. 2013, 124, 183–194. [Google Scholar] [CrossRef]
- Wang, J.-P.; Erdenebold, U. A Study on Reduction of Copper Smelting Slag by Carbon for Recycling into Metal Values and Cement Raw Material. Sustainability 2020, 12, 1421. [Google Scholar] [CrossRef]
- Gorai, B.; Jana, R. Premchand Characteristics and utilisation of copper slag—A review. Resour. Conserv. Recycl. 2003, 39, 299–313. [Google Scholar] [CrossRef]
- Meinhardt, B.; Danielska, I.; Kubacka, L.; Hanula, P. Assessment of the Degree of Contamination of Soils in the Region of Lower Silesia in 2014. The Areas Directly Threatened by Pollution; Voivodship Inspectorate for Environmental Protection (Wojewódzki Inspektorat Ochrony Środowiska): Wrocław, Poland, 2015. (In Polish) [Google Scholar]
- Turzańska-Pietras, K.; Chachulska, J.; Polechońska, L.; Borowiec, M. Does heavy metal exposure affect the condition of Whitethroat (Sylvia communis) nestlings? Environ. Sci. Pollut. Res. 2018, 25, 7758–7766. [Google Scholar] [CrossRef]
- Biłyk, A.; Kowal, A. Ocena stopnia zagrożenia terenów wodonośnych we Wrocławiu związkami chromu. Ochr. Sr. 1993, 1–2, 48–49. [Google Scholar]
- Szpadt, R. Influence of the Production of Ferroalloys in the Conditions of the Siechnice Steelworks on Water-Bearing Areas and the Water Intake of the City of Wrocław; OEES: Wrocław, Poland, 1987. [Google Scholar]
- Gonda-Soroczyńska, E. Siechnice Rodowód Miasta; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu: Wrocław, Poland, 2007. [Google Scholar]
- Koszelnik, A.; Wall, Ł. Zawartość wybranych metali ciężkich w glebie i roślinach występujących na zwałowisku odpadów pohutniczych w Siechnicach. Obieg. Pierwiastków Przyr. 2005, 3, 298–304. [Google Scholar]
- Karczewska, A.; Bortniak, M. Chrom i inne metale ciężkie w glebach wrocławskich terenów wodonośnych w sąsiedztwie hałdy żużla żelazochromowego w Siechnicach. Rocz. Glebozn. 2008, 1, 106–111. [Google Scholar]
- Hołtra, A. Związki kompleksowe metali d-elektronowych z biologicznie aktywnymi pochodnymi tiofenu. Rap. Inst. Inż. Ochr. Śr. Pwroc. 2005, 23, 6. [Google Scholar]
- Łukasik, P.; Wróbel, M.; Stojanowska, A.; Zeynalli, F.; Rybak, J. Environmental Health Hazards of the Demolition of the ‘Siechnice’ Smelter Slag Heap. Ecol. Eng. Environ. Technol. 2021, 22, 74–85. [Google Scholar] [CrossRef]
- Karczewska, A.; Kabała, C. Gleby zanieczyszczone metalami ciężkimi i arsenem na Dolnym Śląsku—Potrzeby i metody rekultywacji. Zesz. Nauk. Uniw. Przyr. We Wrocławiu 2010, 576, 59–80. [Google Scholar]
- Samecka-Cymerman, A.; Kempers, A.J. Mercury and other heavy metals in macrophytes of selected reservoirs of Wroclaw and the surrounding area. Acta Univ. Wratislav. Bot. Works 1994, 1605, 161–174. [Google Scholar]
- Polechońska, L.; Samecka-Cymerman, A. Bioaccumulation of macro- and trace elements by European frogbit (Hydrocharis morsusranae L.) in relation to environmental pollution. Environ. Sci. Pollut. Res. 2016, 23, 3469–3480. [Google Scholar] [CrossRef]
- Town Council in Siechnice. Resolution NO. L/315/2013 on the Local Spatial Development Plan of the City of Siechnice for the Area Located in the North Western Part; Town Council in Siechnice: Siechnice, Poland, 2013. [Google Scholar]
- Mamyrbaev, A.; Dzharkenov, T.; Imangazina, Z.; Satybaldieva, U.A. Mutagenic and carcinogenic actions of chromium and its compounds. Environ. Health Prev. Med. 2015, 20, 159–167. [Google Scholar] [CrossRef]
- U.S. EPA. Policy Assessment for the Review of the Particulate Matter National Ambient Air Quality Standards; EPA 452/R; U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- Available online: https://www.pzw.org.pl/zacisze/wiadomosci/52783/60/staw_blekitna_laguna_udostepniony (accessed on 27 September 2022).
- Direct Contact’ Toxicity Test for Freshwater Sediments Standard Operating Procedure; Microbiotests: Gent, Belgium, 2019.
- Test No. 201; Alga, Growth Inhibition Test. OECD Publishing: Paris, France, 2006. [CrossRef]
- Griffiths, M.; Garcin, C.; Van Hille, P.; Harrison, S. Interference by pigment in the estimation of microalgal biomass concentration by optical density. J. Microbiol. Methods 2011, 85, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Test No. 202; Daphnia sp. Acute Immobilisation Test. OECD Publishing: Paris, France, 2004. [CrossRef]
- PN-ISO 11047:2001; Jakość Gleby—Oznaczanie Kadmu, Chromu, Kobaltu, Miedzi, Ołowiu, Man-Ganu, Niklu i Cynku w Ekstraktach Gleby Wodą Królewską—Metody Płomieniowej i Elektrotermicz-Nej Absorpcyjnej Spektrometrii Atomowej. Polish Committee for Standardization: Warsaw, Poland, 2001.
- Rudnick, R.L. Composition of the Continental Crust. In The Crust; Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Barbusiński, K.; Nocoń, W. Zawartość związków metali ciężkich w osadach dennych Kłodnicy. Ochr. Sr. 2011, 33, 13–17. [Google Scholar]
- Pawełczyk, A.; Božek, F.; Grabas, K. Impact of military metallurgical plant wastes on the population’s health risk. Chemosphere 2016, 152, 513–519. [Google Scholar] [CrossRef]
- Borowczak, M.; Hołtra, A. The content of heavy metals in soils and plants around the waste landfill in Siechnice (Poland). E3S Web Conf. 2017, 17, 00009. [Google Scholar] [CrossRef]
- Gwimbi, P.; Kotelo, T.; Selimo, M.J. Heavy metal concentrations in sediments and Cyprinus carpio from Maqalika Reservoir –Maseru, Lesotho: An analysis of potential health risks to Fish consumers. Toxicol. Rep. 2020, 7, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.; Maiti, S.K. Seasonal variation of heavy metals in water, sediment, and highly consumed cultured fish (Labeo rohita and Labeo bata) and potential health risk assessment in aquaculture pond of the coal city, Dhanbad (India). Environ. Sci. Pollut. Res. 2018, 25, 12464–12480. [Google Scholar] [CrossRef]
- Liu, P.; Zheng, C.; Wen, M.; Luo, X.; Wu, Z.; Liu, Y.; Chai, S.; Huang, L. Ecological Risk Assessment and Contamination History of Heavy Metals in the Sediments of Chagan Lake, Northeast China. Water 2021, 13, 894. [Google Scholar] [CrossRef]
- Kostka, A.; Leśniak, A. Natural and Anthropogenic Origin of Metals in Lacustrine Sediments; Assessment and Consequences—A Case Study of Wigry Lake (Poland). Minerals 2021, 11, 158. [Google Scholar] [CrossRef]
- Szara-Bąk, M.; Baran, A.; Klimkowicz-Pawlas, A.; Tkaczewska, J.; Wojtasik, B. Mobility, ecotoxicity, bioaccumulation and sources of trace elements in the bottom sediments of the Rożnów reservoir. Environ. Geochem. Health 2021, 43, 4701–4718. [Google Scholar] [CrossRef]
- Ristola, T.; Pellinen, J.; Leppänen, M.; Kukkonen, J. Characterization of Lake Ladoga sediments. I. Toxicity to Chironomus riparius and Daphnia magna. Chemosphere 1996, 32, 1165–1178. [Google Scholar] [CrossRef]
- Abrantes, N.; Pereira, R.; de Figueiredo, D.; Marques, C.; Pereira, M.; Gonçalves, F. A whole sample toxicity assessment to evaluate the sub-lethal toxicity of water and sediment elutriates from a lake exposed to diffuse pollution. Environ. Toxicol. 2009, 24, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Latif, M.; Licek, E. Toxicity assessment of wastewaters, river waters, and sediments in Austria using cost-effective microbiotests. Environ. Toxicol. 2004, 19, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Szczerbiñska, N.; Gałczyñska, M. Biological methods used to assess surface water quality. Arch. Pol. Fish. 2015, 23, 185–196. [Google Scholar] [CrossRef]
- Wróbel, M.; Trzyna, A.; Zeynalli, F.; Rybak, J. The Comprehensive Health Risk Assessment of Polish Smelters with Ecotoxicological Studies. Int. J. Environ. Res. Public Health 2022, 19, 12634. [Google Scholar] [CrossRef] [PubMed]
- Baruthio, F. Toxic effects of chromium and its compounds. Biol. Trace Elem. Res. 1992, 32, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, P.; Asok, M.; Ranjan, R.; Swain, S.K. Bioavailability and risk assessment of trace metals in sediments of a high-altitude eutrophic lake, Ooty, Tamil Nadu, India. Environ. Sci. Pollut. Res. 2021, 28, 18616–18631. [Google Scholar] [CrossRef]
- Varol, M.; Canpolat, Ö.; Eriş, K.; Çağlar, M. Trace metals in core sediments from a deep lake in eastern Turkey: Vertical concentration profiles, eco-environmental risks and possible sources. Ecotoxicol. Environ. Saf. 2020, 189, 110060. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, Y.; Qiu, Y.; Chen, D.; Zhu, Z.; Zhao, J.; Bergman, Ǻ. Occurrence and risk assessment of trace metals and metalloids in sediments and benthic invertebrates from Dianshan Lake, China. Environ. Sci. Pollut. Res. 2017, 24, 14847–14856. [Google Scholar] [CrossRef]
- Amankwaa, G.; Yin, X.; Zhang, L.; Huang, W.; Cao, Y.; Ni, X.; Gyimah, E. Spatial distribution and eco-environmental risk assessment of heavy metals in surface sediments from a crater lake (Bosomtwe/Bosumtwi). Environ. Sci. Pollut. Res. 2021, 28, 19367–19380. [Google Scholar] [CrossRef]
- Mrozińska, N.; Bąkowska, M. Effects of Heavy Metals in Lake Water and Sediments on Bottom Invertebrates Inhabiting the Brackish Coastal Lake Łebsko on the Southern Baltic Coast. Int. J. Environ. Res. Public Health 2020, 17, 6848. [Google Scholar] [CrossRef]
- Tsybekmitova, G.; Kuklin, A.; Tsyganok, V.I. Heavy Metals in Bottom Sediments of Lake Kenon (The Trans-Baikal Territory, Russia). Bull. Environ. Contam. Toxicol. 2019, 103, 286–291. [Google Scholar] [CrossRef] [PubMed]
No | Designation on the Map | Geographical Coordinates | Location | Description | Distance from the Middle of the Heap |
---|---|---|---|---|---|
S1 | 51°02′10.3″ N 17°09′35.7″ E | Bathing beach “Błękitna Laguna” | The bathing beach, which is an artificial reservoir, was created as a side-effect of the construction of the Wrocław motorway bypass, for which significant amounts of land were required. The bathing beach has been in operation since 2017 and serves as an entertainment area for residents and tourists. | 1.82 km depth: 0.5 m distance from the shore: 50 m | |
S2 | 51°02′24.9″ N 17°08′34.6″ E | Fishing pond “Huta” | Fishing in the area is only possible for persons with a valid permit issued by authorized persons. | 0.50 km depth: 0.5 m distance from the shore: 50 m | |
S3 | 51°03′19.8″ N 17°09′00.9″ E | Fishing pond “Mała Szwecja” | A fishery pond intended for holders of fishing cards, where fishing is possible after purchasing a license. | 1.75 km depth: 0.5 m distance from the shore: 50 m |
Parameters | Adults | Children |
---|---|---|
IngR | 200 | 100 |
EF | 180 | 180 |
ED | 70 | 6 |
AT | 25,550 | 2190 |
BW | 70 | 15 |
InhR | 20 | 7.6 |
PEF | 1.39 × 109 | 1.39 × 109 |
ABS | 0.001 | 0.001 |
SL | 0.7 | 0.2 |
SA | 5700 | 2800 |
Toxic Metals | Reference Doses [RfD] (ng/kg × d) | ||
---|---|---|---|
RfDing | RfDinh | RfDderm | |
Cr | 3 × 103 | 2.86 × 101 | 3 × 103 |
Pb | 1.4 × 103 | 3.52 × 103 | 5.24 × 104 |
Zn | 3 × 105 | 3 × 105 | 6 × 104 |
Fe | 7 × 105 | 7 × 105 | 7.38 × 105 |
Cu | 4 × 104 | 4 × 104 | 1.2 × 104 |
Sampling Site | ||||
---|---|---|---|---|
Concentration of Trace Elements [mg/kg] | S1 | S2 | S3 | UCC Values [43] |
Cr | 222.03 ± 3.56 | 705.3 ± 12.9 | 31.19 ± 1.5 | 35–112 |
Pb | 17.32 ± 4.37 | 44.3 ± 5.08 | 13.10 ± 1.88 | 17–18 |
Zn | 68.91 ± 5.88 | 84.84 ± 7.1 | 44.49 ± 6.21 | 52–71 |
Cu | 77.56 ± 6.61 | 88.48 ± 9.17 | 73.01 ± 6.25 | 14–32 |
Fe | 9971.4 ± 17.02 | 13442.4 ± 67.1 | 6411.3 ± 24.2 | 4.09–7.26 * in weight percent oxide |
Sampling Sites | The Average Length of the Body Day 0 | The Average Length of the Body Day 6 | Percentage Mortality [%] | Percentage Growth Inhibition [%] |
---|---|---|---|---|
Control | 195 | 532 | - | - |
S1 | 190 | 395 | - | 39 |
S2 | 185 | 227 | 30% | 88 |
S3 | 200 | 440 | - | 29 |
Sampling Sites | Dilution [%] | Mortality Rate [%] | |
---|---|---|---|
24 h | 48 h | ||
S1 | control | 0 | 0 |
6.25 | 5 | 5 | |
12.5 | 0 | 0 | |
25 | 0 | 0 | |
50 | 5 | 20 | |
100 | 0 | 35 | |
S2 | control | 0 | 0 |
6.25 | 5 | 15 | |
12.5 | 0 | 25 | |
25 | 0 | 35 | |
50 | 0 | 35 | |
100 | 0 | 40 | |
S3 | control | 0 | 0 |
6.25 | 0 | 0 | |
12.5 | 0 | 0 | |
25 | 0 | 0 | |
50 | 0 | 0 | |
100 | 0 | 0 |
LC50 [%] | 24 h | 48 h | 72 h |
---|---|---|---|
S1 | 33% | 25% | 16% |
S2 | 3% | 0.03% | - |
S3 | 30% | - | 29% |
Sampling Sites | Toxic Metals [mg/kg] | ADDing [mg/kg] | ADDinh [mg/kg] | ADDderm [mg/kg] | |||
---|---|---|---|---|---|---|---|
Children | Adults | Children | Adults | Children | Adults | ||
S1 | Cr | 7.30 × 102 | 3.13 × 102 | 5.25 × 10−1 | 2.25 × 10−1 | 4.09 × 100 | 6.24 × 100 |
Pb | 5.69 × 101 | 2.44 × 101 | 4.10 × 10−2 | 1.76 × 10−2 | 3.19 × 10−1 | 4.87 × 10−1 | |
Zn | 2.27 × 102 | 9.71 × 101 | 1.63 × 10−1 | 6.99 × 10−2 | 1.27 × 100 | 1.94 × 100 | |
Cu | 2.55 × 102 | 1.09 × 102 | 1.83 × 10−1 | 7.86 × 10−2 | 1.43 × 100 | 2.18 × 100 | |
Fe | 3.28 × 104 | 1.40 × 104 | 2.36 × 101 | 1.01 × 101 | 1.84 × 102 | 2.80 × 102 | |
S2 | Cr | 2.32 × 103 | 9.94 × 102 | 1.67 × 100 | 7.15 × 10−1 | 1.30 × 101 | 1.98 × 101 |
Pb | 1.46 × 102 | 6.24 × 101 | 1.05 × 10−1 | 4.49 × 10−2 | 8.16 × 10−1 | 1.25 × 100 | |
Zn | 2.79 × 102 | 1.20 × 102 | 2.01 × 10−1 | 8.60 × 10−2 | 1.56 × 100 | 2.38 × 100 | |
Cu | 2.91 × 102 | 1.25 × 102 | 2.09 × 10−1 | 8.97 × 10−2 | 1.63 × 100 | 2.49 × 100 | |
Fe | 4.42 × 104 | 1.89 × 104 | 3.18 × 101 | 1.36 × 101 | 2.47 × 102 | 3.78 × 102 | |
S3 | Cr | 1.03 × 102 | 4.39 × 101 | 7.38 × 10−2 | 3.16 × 10−2 | 5.74 × 10−1 | 8.77 × 10−1 |
Pb | 4.31 × 101 | 1.85 × 101 | 3.10 × 10−2 | 1.33 × 10−2 | 2.41 × 10−1 | 3.68 × 10−1 | |
Zn | 1.46 × 102 | 6.27 × 101 | 1.05 × 10−1 | 4.51 × 10−2 | 8.19 × 10−1 | 1.25 × 100 | |
Cu | 2.40 × 102 | 1.03 × 102 | 1.73 × 10−1 | 7.40 × 10−2 | 1.34 × 100 | 2.05 × 100 | |
Fe | 2.11 × 104 | 9.03 × 103 | 1.52 × 101 | 6.50 × 100 | 1.18 × 102 | 1.80 × 102 |
Sampling Sites | Toxic Metals [mg/kg] | HQing | HQinh | HQderm | |||
---|---|---|---|---|---|---|---|
Children | Adults | Children | Adults | Children | Adults | ||
S1 | Cr | 2.43 × 10−1 | 1.04 × 10−1 | 1.84 × 10−2 | 7.87 × 10−3 | 1.23 × 10−2 | 2.08 × 10−3 |
Pb | 4.07 × 10−2 | 1.74 × 10−2 | 1.16 × 10−5 | 4.99 × 10−6 | 6.09 × 10−4 | 9.29 × 10−4 | |
Zn | 7.55 × 10−4 | 3.24 × 10−4 | 5.43 × 10−7 | 2.33 × 10−7 | 2.11 × 10−5 | 3.23 × 10−5 | |
Cu | 3.64 × 10−4 | 1.56 × 10−4 | 2.62 × 10−8 | 1.12 × 10−8 | 1.93 × 10−6 | 2.95 × 10−6 | |
Fe | 8.19 × 10−1 | 3.51 × 10−1 | 5.90 × 10−4 | 2.53 × 10−4 | 1.53 × 10−2 | 2.34 × 10−2 | |
S2 | Cr | 7.73 × 10−1 | 3.31 × 10−1 | 5.83 × 10−2 | 2.50 × 10−2 | 3.90 × 10−2 | 6.61 × 10−3 |
Pb | 1.04 × 10−1 | 4.46 × 10−2 | 2.98 × 10−5 | 1.28 × 10−5 | 1.56 × 10−3 | 2.38 × 10−3 | |
Zn | 9.30 × 10−4 | 3.98 × 10−4 | 6.69 × 10−7 | 2.87 × 10−7 | 2.60 × 10−5 | 3.97 × 10−5 | |
Cu | 4.16 × 10−4 | 1.78 × 10−4 | 2.99 × 10−8 | 1.28 × 10−8 | 2.21 × 10−6 | 3.37 × 10−6 | |
Fe | 1.10 × 100 | 4.73 × 10−1 | 7.95 × 10−4 | 3.41 × 10−4 | 2.06 × 10−2 | 3.15 × 10−2 | |
S3 | Cr | 3.42 × 10−2 | 1.46 × 10−2 | 2.58 × 10−3 | 1.11 × 10−3 | 1.72 × 10−3 | 2.92 × 10−4 |
Pb | 3.08 × 10−2 | 1.32 × 10−2 | 8.80 × 10−6 | 3.77 × 10−6 | 4.60 × 10−4 | 7.03 × 10−4 | |
Zn | 4.88 × 10−4 | 2.09 × 10−4 | 3.51 × 10−7 | 1.50 × 10−7 | 1.37 × 10−5 | 2.08 × 10−5 | |
Cu | 3.43 × 10−4 | 1.47 × 10−4 | 2.47 × 10−8 | 1.06 × 10−8 | 1.82 × 10−6 | 2.78 × 10−6 | |
Fe | 5.27 × 10−1 | 2.26 × 10−1 | 3.79 × 10−4 | 1.62 × 10−4 | 9.83 × 10−3 | 1.50 × 10−2 |
Sampling Sites | Toxic Metals [mg/kg] | HI | |
---|---|---|---|
Children | Adults | ||
S1 | Cr | 1.14 × 10−1 | 2.74 × 10−1 |
Pb | 1.84 × 10−2 | 4.13 × 10−2 | |
Zn | 3.56 × 10−4 | 7.77 × 10−4 | |
Cu | 1.59 × 10−4 | 3.66 × 10−4 | |
Fe | 3.75 × 10−1 | 8.35 × 10−1 | |
S2 | Cr | 3.63 × 10−1 | 8.70 × 10−1 |
Pb | 4.70 × 10−2 | 1.06 × 10−1 | |
Zn | 4.38 × 10−4 | 9.56 × 10−4 | |
Cu | 1.81 × 10−4 | 4.18 × 10−4 | |
Fe | 5.05 × 10−1 | 1.13 × 100 | |
S3 | Cr | 1.60 × 10−2 | 3.85 × 10−2 |
Pb | 1.39 × 10−2 | 3.12 × 10−2 | |
Zn | 2.30 × 10−4 | 5.02 × 10−4 | |
Cu | 1.50 × 10−4 | 3.45 × 10−4 | |
Fe | 2.41 × 10−1 | 5.37 × 10−1 |
Site | Toxic Metals [mg/kg] | ECR | |
---|---|---|---|
Children | Adults | ||
S1 | Cr | 7 × 10−1 | 2.6 × 10−1 |
Pb | 3.6 × 10−4 | 1.36 × 10−4 | |
S2 | Cr | 2.23 × 10⁰ | 8.3 × 10−1 |
Pb | 9.3 × 10−4 | 3.5 × 10−4 | |
S3 | Cr | 1 × 10−1 | 4 × 10−2 |
Pb | 2.8 × 10−4 | 1.03 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróbel, M.; Pieśniewska, A.; Zeynalli, F.; Kapelko, K.; Hanus-Lorenz, B.; Rybak, J. Is the Slag Heap of a Former Ferrochromium Plant a Significant Environmental Hazard? Appl. Sci. 2023, 13, 2001. https://doi.org/10.3390/app13032001
Wróbel M, Pieśniewska A, Zeynalli F, Kapelko K, Hanus-Lorenz B, Rybak J. Is the Slag Heap of a Former Ferrochromium Plant a Significant Environmental Hazard? Applied Sciences. 2023; 13(3):2001. https://doi.org/10.3390/app13032001
Chicago/Turabian StyleWróbel, Magdalena, Angelika Pieśniewska, Farhad Zeynalli, Kacper Kapelko, Beata Hanus-Lorenz, and Justyna Rybak. 2023. "Is the Slag Heap of a Former Ferrochromium Plant a Significant Environmental Hazard?" Applied Sciences 13, no. 3: 2001. https://doi.org/10.3390/app13032001
APA StyleWróbel, M., Pieśniewska, A., Zeynalli, F., Kapelko, K., Hanus-Lorenz, B., & Rybak, J. (2023). Is the Slag Heap of a Former Ferrochromium Plant a Significant Environmental Hazard? Applied Sciences, 13(3), 2001. https://doi.org/10.3390/app13032001