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Abstract: Reliable disruption prediction (DP) and disruption mitigation systems are considered
unavoidable during international thermonuclear experimental reactor (ITER) operations and in the
view of the next fusion reactors such as the DEMOnstration Power Plant (DEMO) and China Fusion
Engineering Test Reactor (CFETR). In the last two decades, a great number of DP systems have been
developed using data-driven methods. The performance of the DP models has been improved over
the years both for a more appropriate choice of diagnostics and input features and for the availability
of increasingly powerful data-driven modelling techniques. However, a direct comparison among
the proposals has not yet been conducted. Such a comparison is mandatory, at least for the same
device, to learn lessons from all these efforts and finally choose the best set of diagnostic signals and
the best modelling approach. A first effort towards this goal is made in this paper, where different
DP models will be compared using the same performance indices and the same device. In particular,
the performance of a conventional Multilayer Perceptron Neural Network (MLP-NN) model is
compared with those of two more sophisticated models, based on Generative Topographic Mapping
(GTM) and Convolutional Neural Networks (CNN), on the same real time diagnostic signals from
several experiments at the JET tokamak. The most common performance indices have been used to
compare the different DP models and the results are deeply discussed. The comparison confirms the
soundness of all the investigated machine learning approaches and the chosen diagnostics, enables
us to highlight the pros and cons of each model, and helps to consciously choose the approach that
best matches with the plasma protection needs.

Keywords: tokamak; disruption prediction; machine learning; deep learning; data analysis;
plasma diagnostics

1. Introduction

Tokamak nuclear fusion devices suffer from several instabilities that may interact
nonlinearly with each other, degenerating into the ultimate plasma destabilization and
possibly into a disruption [1]. During a disruption, the plasma current drops to within a few
milliseconds generating huge electromechanical and thermal forces, which may severely
damage the plasma-facing components (PFC). Therefore, a strict requirement to develop a
strategy for disruption prevention is needed, to control the plasma for the entire duration
of the discharge.

Many efforts have been made in the last decades to identify the precursors, causes, and
consequences of disruptions in tokamaks with the ultimate goal of developing automated
schemes and strategies to mitigate or avoid disruptions. Both physics-based and data-
driven disruption prediction (DP) models have been investigated. The physics-based
methods have the advantage of being directly interpretable and more scalable among
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different devices. However, the presently available first-principles DP models, even if they
are able to describe the relevant physics of disruptions in tokamaks in great detail [2], are
not sufficiently fast to be run in real-time. On the contrary, a lot of data-driven models have
been proposed as a viable solution to the DP problem, developed for several tokamaks all
over the world, such as the JET (EU) [3–9], AUG (DE) [10–12], DIIID, NSTX, and c-Mod
(USA) [13,14], EAST and J-TEXT (CN) [14,15], JT-60U (JP) [16], and ADITYA (IN) [17], many
of which have been implemented and are currently operating in the control systems of
the devices. This large number of proposals is due to the availability of both data from
a lot of experimental campaigns performed in the different experimental fusion devices
and of a lot of data-driven prediction approaches, such as statistical or machine learning
methods [18].

Due to much larger dimensions than existing tokamaks, next generation devices, such
as ITER and DEMO in Europe or CFTER in China, when operated at the full plasma current
will not be able to withstand the stresses coming from unmitigated disruptions. Even
if the performance of the proposed DP models seems quite good, no experimental data
will be available on which to build data-driven models. For this reason, an integrated
multi-machine approach is foreseen where existing facilities of different capabilities, sizes,
and diagnostics will be used to provide DP models for these future fusion energy plants.
Such an integrated approach needs to have different choices: (i) the choice of a common
set of diagnostic signals, which are available in all the machines and in real time, and
from which the best disruption prediction performance is obtained; (ii) the choice of the
data-driven approach, better suited to the nature of the available data and to the disruption
trigger to be provided; (iii) the choice of a common dataset, independent from the training
set used to build the DP model, for testing the prediction performance; and (iv) the choice of
common metrics to evaluate the model’s performance, depending on the task, (avoidance,
prevention, or mitigation).

As previously cited, in the literature quite a large plethora of data-driven methods have
been proposed: statistical [12,19,20], machine learning [10,21–23] or, more recently, deep
learning [24,25]. Among them, the most commonly used are traditional neural networks
such as MLP-NN [4,10,11,15,22] or support vector machines (SVM) [5,6,23,26–28]), those
belonging to manifold learning (self-organizing maps [29] and generative topographic
mapping (GTM) [8,9,30]), decision trees [13,21,31] and deep neural networks [24,32–35].
Unfortunately, an accurate comparison of the different proposals in order to ultimately
select the one that provides the best results for the specific application is prevented by the
choice of different sets of diagnostic signals, different datasets for testing, even if the same
device is considered, and different metrics to evaluate the performance of the models.

In this paper, a first step toward the implementation of this integrated approach is
presented. A common database of diagnostic signals from the ITER-like Wall (ILW) JET
campaigns is selected to build the training and validation sets with which three different
machine learning (ML) DP models have been built: an MLP-NN, a GTM manifold learning
model [9], and a convolutional deep learning neural network (CNN) model [33].

The performance of the three models has been compared using the same test experi-
ments and the same performance metrics, namely the recall, the specificity, the precision,
the confusion matrix, the receiver operating characteristics (ROC), and the area under the
ROC curve (AUC), which are the most used metrics in binary classification problems. How-
ever, in the disruption prediction literature, the accuracy, the warning time distribution,
and the assertion time provide a more immediate reading of the predictor’s result, and they
have been provided in the paper. An accurate analysis of the results of the comparison
between predictors has allowed the pros and cons of DP models to be highlighted and to
learn, from all the efforts of recent years, which of them are the most promising models for
future devices.

The paper is organized into the following. Material and Methods in Section 2 reports,
in Section 2.1, the background of the disruption prediction task. Section 2.2 reports the
database of the JET diagnostics used to train, validate, and test the ML models, the feature
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engineering performed to extract meaningful input information compatible with the ar-
chitectures of such models, and the labelling of the discharge samples to associate these
inputs to consistent outputs. In Section 2.3, the descriptions of the well-known machine
learning methods used to develop the different comparison methods are briefly summa-
rized whereas, in Section 2.4, the performance metrics used to perform the comparison
are recalled. Section 3 details the implemented architectures of the DP models and their
results, while Section 4 reports the results of the comparison and draws the conclusions,
providing initial guidance on which diagnostics and models are most promising for the
development of a cross-machine disruption prediction system and looking to the future for
its integration into next-generation devices.

2. Materials and Methods
2.1. Background

In this paper, the performance of three ML DP models, which implement three different
ML paradigms, have been compared using the Joint European Torus (JET) tokamak as the
test bed. The three ML paradigms are the MLP-NN, GTM, and CNN. All the proposed
ML methods perform a binary classification of an n − D vector of the plasma feature x,
measured at a given time t (time sample), into one class of a dependent variable y (y = 1,
i.e., disrupted), or into the other (y = 0, i.e., non-disrupted).

It is well-known that tokamaks are machines that operate in a pulsed way, where
each discharge presents different operational states during its evolution, depending on the
chain of events, which possibly leads to the discharge to disrupt. In Figure 1, the sketch
of the plasma current

(
Ip
)

in a disrupted discharge is shown. During the ramp-up phase,
the plasma current is increased until it reaches the flat-top value. In a disruption, the
stable phase is lost, and a chain of events follows, which will develop towards a thermal
quench leading to the plasma disruption. During this unstable phase, some disruption
precursors appear.
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To train an ML DP model, examples of both disrupted and non-disrupted plasma
states (discharge time samples) must be collected. To this end, for each disruption in the
training set, it is mandatory to identify, as precisely as possible, the so-called tpre−disr, which
determines the beginning of the precursors phase. This task, far from being easy, has been
solved in most of the literature, assuming the same value for all the disruptions on the basis
of statistics or heuristics, inevitably introducing contradictory information in the prediction
models. Only recently, some of these authors developed an algorithm to automatically
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determine a consistent value of tpre−disr (tpre−disr−AUT) for the different disruptions [9].
Once the value of tpre−disr−AUT is determined, the discharge sample, represented by the
feature vector x, in the time window from tpre−disr−AUT to the disruption time tD, is
associated to the output label = 1 (i.e., as disrupted). Note that for disruptions mitigated
by a massive gas injection (MGI), the time of the valve activation (tvalve) is considered in
place of tD. The samples of disrupted discharges, from the beginning of the flat-top to
tpre−disr−AUT , and all the flat-top samples in the regularly terminated discharges can be
labelled as non-disrupted (y = 0).

The ML DP model is built by using a training set constituted by two instances {x, y}.
Usually, a validation set, independent from training and test sets, has to be used to choose
the best free parameters of the DP model. Once a new feature vector x, not belonging to the
training set, is fed to the model, an output y in the range [0, 1] is returned, which represents
the likelihood of the vector belonging to a disrupted state. The time evolution of the
output gives information on the possible evolution of the discharge towards a disruption.
In Figure 2, the evolution of the disruptive likelihood (red) is reported for a disrupted
pulse. The DP triggers an alarm when the disrupted likelihood exceeds a fixed threshold
(horizontal dashed line) for at least an optimized assertion time tassertion. In the same
Figure 2, the vertical purple line and vertical black line indicate tpre−dirs−AUT and the alarm
time talarm, respectively.
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Depending on the alarm time, i.e., the resulting warning time (∆twarning), which is
the time interval between talarm and tD, several interventions can be put in place, such as
disruption active avoidance or mitigation (see Figure 1). In these cases, the DP answer
is assumed as a successful prediction (SP). If the warning time is not even sufficient for
mitigation, the prediction is classified as tardy detection (TD). At the JET, the minimum
warning time is 10 ms, which is the time required for the massive gas injection system
(MGS) to mitigate the discharge. A missed alarm (MA) occurs if the DP system does
not trigger any alarm. Moreover, if the alarm is triggered before the appearance of the
disruption precursors, the detection is considered premature (PRD). At the JET, a conclusive
definition of premature alarms has not yet been established, so in the following, premature
detections will not be counted.

Of course, the disrupted likelihood should remain below the threshold for the duration
of a regularly terminated pulse, otherwise the prediction is classified as a false alarm (FA).
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2.2. Database

The data from this study come from a database, created and maintained by the Univer-
sity of Cagliari, containing hundreds of disrupted and regularly terminated discharges from
some of the JET experimental campaigns performed after the installation of the ITER-Like
Wall (ILW) [9,33], from 2011 to 2020. Only the discharges with a flat-top plasma current
higher than 1.5 MA, and a flat-top length greater than 200 ms, where all the diagnostics
described in Table 1 were available and consistent, have been selected. Moreover, the
discharges caused by a vertical displacement event and those in limiter configurations were
excluded. Moreover, only disruptions occurring at the flat-top phase have been considered
here. In total, the database for this work contains 193 disrupted and 219 regularly termi-
nated discharges, which is the same as in [33]. The flat-top starting time has been assumed
as the first time instant where the plasma is in an X-point configuration. Both 0-D and 1-D
diagnostic signals have been collected to extract the feature vector x and are reported in
Table 1. The literature demonstrated the benefit impact of the recent introduction of these
1-D plasma profiles [8,9,28,30,33,36,37]. The temperature and density profiles come from
high-resolution Thompson scattering (HRTS), the radiated power profile comes from the
horizontal lines of sight of the bolometer, the internal inductance comes from the code Be-
taLi for the estimation of the poloidal beta and internal inductance, while the locked mode
amplitude comes from the saddle loops (LMS) and is normalized by the plasma current.

Table 1. Diagnostic signals, acronyms, and units.

Plasma Signal Acronym Diagnostics Dimension

Electron temperature Te HRTS 1-D
Electron density ne HRTS 1-D
Radiated power Prad Bolometer 1-D
Total radiated power Prad−TOT Bolometer 0-D
Total input power PTOT BetaLi 0-D
Internal inductance li BetaLi 0-D
Normalized locked mode LMnorm LMS 0-D

These diagnostic signals are, usually, preprocessed (data-reduced, filtered, sampled,
normalized, and windowed) and a feature engineering process can follow to extract the
features more suitable to the chosen DP architecture from the raw signals.

Table 2 reports the number of discharges and the originating campaigns for the
training, validation, and test sets. Note that, as highlighted in [33], the training set contains
experiments carried out in the early operation phase of the JET-ILW, and the operational
space of the JET has changed in the following experimental campaigns. In fact, more
recent JET-ILW experiments are run at a higher power and plasma current, causing higher
disruption rates. This change may affect the disruption patterns with respect to those
observed in the training set discharges [24,38]. This makes such test sets particularly
challenging to evaluate the robustness of the disruption predictors at the change of the
operating conditions as well as the aging effect, inherent in any data-driven predictor, and
to estimate the suitability of the selected set of diagnostics. The comparison of the three
ML DP models has been performed referring to the same diagnostic signals and the same
training, validation, and test pulses reported in Table 2. Note that this is the number of
experiments included in the dataset; each experiment consists of several multidimensional
samples sampled with a high frequency (2 ms). Considering the training and validation
data, the dataset is composed of more than 100,000 multidimensional samples, a sufficient
number to train the models.
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Table 2. Datasets for developing the models.

Sets Disrupted Non-Disrupted JET Campaigns

Training set 63 54 2011–2013
Validation set 22 16 2011–2013
Test set 108 149 2011–2020

2.3. Machine Learning Methods

As previously cited, in this paper the performance of three different ML paradigms
have been compared. In the following, the basics of the three approaches are summarized.
For training these models, a workstation with 8 CPU cores and with an NVIDIA RTX 3060
GPU was used, and the training time was in the order of hours for the CNN. However, the
inference time for the trained model is in the order of ms per sample and is compatible
with a real-time application.

2.3.1. Multi-Layer Perceptron Neural Networks (MLP-NN)

An MLP-NN consists of layers of units, where the units in a layer are connected
with all the units in the next layer. Referring to the binary classification of disrupted or
non-disrupted samples, an MLP can model the non-linear relationship among the input
feature vector x and the corresponding output y. Usually, a three-layer MLP-NN is used,
where the input–output relationship is described by the following algebraic system:

Input Layer
Hidden Layer
Output Layer


W1·x + b1 = g

h = f (g)
σ(W2·h + b2) = y

(1)

where W1, b1 and W2, b2 are the weights matrices and the biases of the input and output
layers, respectively, g and h are the input and output vectors of the hidden layer, and
f (·) and σ(·) are the hidden and output layer activation functions, respectively. For the
classification task, σ is generally a SoftMax function while f is a sigmoid function.

During the training, the weights and biases are adjusted in order to minimize the
prediction error, using a back-propagation algorithm [39]. In order to avoid overfitting, the
training is stopped when the validation error begins to rise. Any numerical optimization
algorithm could be used to optimize network performance, but the most applied use either
the gradient of the performance or the Jacobian of the network errors with respect to
the weights. Once the MLP-NN model is trained, the output related to a new discharge
provides its disruptive likelihood.

2.3.2. Generative Topographic Mapping (GTM)

GTM [40] is a probabilistic manifold learning method, which allows us to embed a
high-dimensional (n-D) space into a low-dimensional (typically 2-D), possibly nonlinear,
latent space. The latter is a grid of K prototype nodes that have coordinates in both the em-
bedded and input space. During the training, the algorithm performs mapping f (z, W, β)
from the set of training feature vectors X = {x1, x2, · · · , xI } ∈ <n into the prototypes
Z = {z1, z2, · · · , zK } ∈ <2 by linearly combining a radially symmetric Gaussian’s basis
function (RBF) Φ, where W and β are the adaptive parameters of the model. The model
parameters are optimized with the expectation maximization (EM) algorithm:

max
W,β
L =

I

∑
i=1

ln

(
1
K

K

∑
k=1

p(xi|zk, W, β)

)
(2)

where

p(xi|W, β) =
1
K

K

∑
k=1

(
β

2π

)− n
2
· exp

{
− β

2
f (zk, W)− xi

2
}
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Once the model has been optimized, the corresponding posterior distribution over the
latent space can be computed through the Bayes theorem referring to the prior distribution
of the latent variable, where the asterisks indicate the optimal parameter values.

p(Zk|xi) =
p(xi|Zk, W∗, β∗)·p(zk)

∑K
k′=1 p(xi|Zk, W∗, β∗)·p(Zk′)

(3)

To visualize the input space on the 2D map, statistic measures such as the mean or
the mode, can be used to visualize the posterior probability distribution over the latent
space. Note that the overfitting can be managed by setting the latent space properties, as
suggested in [40].

2.3.3. Convolutional Neural Networks (CNN)

A CNN is a deep neural network particularly suited to processing images and is able
to produce a high-accuracy performance without the need for handmade feature extraction
engineering [41]. Its architecture contains a cascade of blocks that filter the input data
to extract significant features and perform the classification task: (i) convolutional units
(CUk), each composed by the cascade of a convolutional layer (Ck), a batch normalization
layer (Nk), and a non-linear activation layer with rectified linear unit (ReLU) functions
(Ak); (ii) max-pooling Pmax and/or average-pooling Pavg layers; (iii) drop-out layers (D);
(iv) fully connected MLP (FC) layers; (v) soft-max layers (S); and (vi) the classification
output layer (CO). The main advantage of this architecture, for DP tasks, is that 1D profile
diagnostics can be directly used as network inputs without the necessity to synthesize
0D signals from them, such as peaking factors [8,36]. During the supervised training, the
network parameters are optimized with stochastic gradient descent algorithms. Once the
CNN model is trained, as in the case of the MLP-NN models, the output related to a new
discharge provides its disruptive likelihood, as in Figure 2.

2.4. Performance Metrics

In binary classification, a true positive (TP) is counted if a positive instance is predicted
as positive, whereas it is counted as a false negative (FN) if it is predicted as negative. A
negative instance predicted as negative is defined as a true negative (TN), whereas it is
counted as a false positive (FP) when predicted as positive. These four values can be
summarized in a 2× 2 confusion matrix, where each row contains the instances in the
actual class whereas each column contains the instances in the predicted class.

Note that such definitions do not take into account the warning time ∆twarning pro-
vided by the predictor to act on the plasma. However, they can be adapted to the disruption
prediction definitions, introduced in Section 2.1., including tardy detections (TD) and
missed alarms (MA) in the counting of a FN, and when evaluated, premature detections
(PRD) in a FP. Thus, a direct correspondence between the two approaches for the per-
formance evaluation can be found when the instance is the discharge. Note that a TP
corresponds to an SP, and TNs are evaluated as the difference between negative instances
N (number of non-disrupted discharges in the test set) and those counted as an FA. The
positive instances are indicated as P (number of disrupted discharges in the test set).

Therefore, some performance indices can be used, valid for both the previous definitions:

• PRECISION = TP
TP+FP

• RECALL = TP
TP+FN = TP

P

• SPECIFICITY = TN
TN+FP = TN

N

• ACCURACY = TP+TN
P+N

In addition, the F-score indicators, which encompass the information of PRECISION
and RECALL, can be defined as:

Fα =
(

1 + α2
)
· PRECISION·RECALL
α2·RECISION + RECALL



Appl. Sci. 2023, 13, 2006 8 of 20

F1 score is the harmonic mean between PRECISION and RECALL, whereas F2 assigns
a higher cost to the disrupted misclassifications.

For a binary classifier parametrized by a threshold, as in our case, the relative trade-off
between benefits and costs can be displayed by the ROC curve, which draws the true
positive rate TPR = TP

P as a function of the false negative rate FNR = FN
P by varying the

threshold. Moreover, the area under the ROC curve (AUC) can also be used to assess the
ability of the model to distinguish between the two classes.

However, in the disruption prediction literature, the most informative figure of merit
is defined by the accumulated fraction of detected disruptions as a function of ∆twarning. It
allows one to read, in a unique graph, the successful prediction and the tardy detections, as
well as a general overview of the premature detections and the alarm anticipation times.

All these metrics will be presented in the following to compare the performance of the
three DP models.

3. Models Implementation and Results

When training a data-driven algorithm, pre-processing of the input data is essential for
the successful development of the model. The data from the HRTS, the electron temperature,
and the density profiles have been pre-processed using a procedure based on the correlation
of the measurements of each line of sight to those of their neighbours, and also by exploiting
the estimated error measurement from the diagnostic [42]. The unreliable measurements
can then be replaced by the interpolated values between the two closest lines of sight.
Moreover, the outer nine lines of sight (major radius greater than 3.78 m) have been
discarded, as they do not provide reliable measurements in the analyzed dataset. For the
Bolometer 1D data, negative power values have been substituted with null values, whereas
unreliable positive ones are saturated to 1 MW/m2, which is a threshold empirically found.
All the diagnostic data are resampled causally, which means using only current and past
inputs, with a sampling time of 2 ms. Note that a causal resampling is necessary to develop
algorithms in a real-time framework.

A data reduction is performed as described in [8] in order to represent the two classes
(disrupted and non-disrupted) with the same percentage of training samples, and the
repetition of discharges with the same or similar settings is avoided. In this way, the
algorithm can be trained without up-weighting the errors on the disruptive samples.

Many ML models require to have, as an input, a plasma feature vector of n values
corresponding to the time series, sampled at the same time t. In order to encode the spatial
information contained in the 1-D plasma profiles, 0-D peaking factors of temperature(

Tep f

)
and plasma density (nep f ) were defined as the ratio between the mean values of

the measurements over the core region of the plasma cross-section divided by the mean
value of the measurements of the outer region of the plasma. Similarly, the radiated
power (Radp f−CVA) peaking factor is evaluated by dividing the mean values of the core
measurements by the mean values of the outer channels, excluding the divertor lines of
sight (channels 1–8), and instead Radp f−XDIV is defined by averaging the contribution
of the divertor channels and dividing it by the mean value of the remaining channels,
excluding the core ones (channel 13–16) [8,36]. They are used here as plasma features of the
MLP-NN and GTM models together with the corresponding samples of internal inductance
li, and the radiated fraction of the total input power Pf rac =

Prad−TOT
PTOT

. The normalized
locked mode amplitude LMnorm signal is used in the MLP-NN model as a further element
of the feature vector while it is used in the GTM-based prediction model as an external
signal in the multiple condition alarm scheme proposed in [8].

Conversely, CNNs have the ability to learn spatiotemporal features directly from
the plasma profiles, overcoming the limits of the previously cited 0-D peaking factors,
such as some heuristic choices in the definition and the inevitable loss of information.
Hence, in the CNN DP model [33], for each plasma profile, a spatiotemporal matrix is built,
whose elements assume the value of the measure in the corresponding line of sight of the
corresponding diagnostics and the corresponding time sample. The obtained images are
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vertically stacked, normalized with respect to the signal ranges in the training set, and
segmented using an overlapping sliding window of 200 ms, obtaining the corresponding
feature vector elements. The 0-D signals li, Pf rac, and LMnorm are also sampled in this
model at the same sample frequency as the 1-D data.

3.1. MLP-NN Disruption Prediction Model

In Table 3, the training parameters of a single hidden layer MLP-NN model are
reported. The parameter σ determines the change in the weight for the second derivative
approximation, and the parameter λ regulates the indefiniteness of the Hessian. In Figure 3a,
the input features are shown for a test disrupted discharge (#94218) belonging to a JET
campaign temporally far from those used in the model training. The disruptive likelihood is
reported in Figure 3b. An alarm is triggered when the disruptive likelihood remains above
the optimized threshold for at least a number of samples, corresponding to an assertion
time obtained by multiplying this number of samples by the sampling time equal to 2 ms.
The assertion time can be introduced to avoid wrong alarms due to spikes in the disruptive
likelihood. As reported in Table 3, the MLP-NN does not need an assertion time, which
is then equal to 0 ms. This means that optimizing the threshold of the model is sufficient
to make the MLP-NN response robust in terms of detecting the presence of disruption
precursors, while keeping the number of false alarms low. The vertical dashed line in
Figure 3b identifies the alarm time talarm, resulting in a warning time ∆twarning = 408 ms.

Table 3. MLP-NN training parameters.

Parameters Value

Optimizer Back Propagation and Scaled Conjugate
Gradient algorithm [43]

Number of input neurons 7
Number of hidden neurons 10
Number of output neurons 1
Weights initialization Random
Learning rate (σ, λ) (5 · 10−5, 5 · 10−7)
Best epoch 23
Validation stop (consecutive evaluations) 75
Assertion Time (ms) 0

In Table 4, the confusion matrix is reported (green: successful results; red: mistakes)
together with the prediction performance indices. All the indices have very good values
with an excellent balance between the correct predictions of the disrupted pulses and a
very limited number of false alarms in the regularly terminated pulses. All these numbers
overcome the results in the literature, e.g., [4], where an MLP was trained with only
0-D signals without the introduction of information, even if synthesized, from plasma
profiles. The use of plasma profiles information really introduces a big benefit on the
predictor performance.

Despite these very high-performance index values, and despite the extreme simplicity
of the model architecture, the MLP-NNs suffer to be ‘black boxes’ models, which provide a
good prediction but are very difficult to interpret. For this reason, other ML predictor archi-
tectures have been nominated in recent years to be those selected for future fusion devices.

Once the GTM model has been trained and successively colored, it can be used to track
the dynamics of a new discharge by projecting the temporal sequence of its samples on
the map. In Figure 4, the trajectory of the discharge is represented with a dashed line, the
color of which darkens during the time evolution up to the tip of the arrow representing
the end point.
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peaking factors, internal inductance li, radiated fraction of the total input power

(Pf rac), normalized locked mode amplitude (LMnorm) signal; (b) disruptive likelihood of the dis-
rupted discharge #94218 supplied by MLP-NN. The dashed black line identifies the alarm time.

Table 4. Confusion matrix and performance indices of the MLP-NN prediction model evaluated on
the test set.

Predicted

P + N = 257 P = 133 N = 124

A
ct

ua
l P = 108 TP = 103 FN = 5

N = 149 FP = 5 TN = 144

PRECISION = 0.954 RECALL = 0.954 SPECIFICITY = 0.966

ACCURACY = 0.961 F1 = 0.954 F2 = 0.954

Train SP% = 100% MA% = 0% FA% = 1.85%

Test SP% = 95.37% MA% = 2.78% FA% = 3.36%
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Figure 4. 2-D GTM map of a n-D space, colored on the basis of the unit composition, and trajectory
of a disrupted pulse. The color bar shows the time evolution of the discharge, and its color darkens
during the time up to the tip of the arrow representing the end point. All the synthesized features
except LMnorm, used to train the MLP-NN, have been used also to train the GTM model.

Usually, a disrupted discharge evolves in the green region until disruption precursors
appear, moving the trajectory towards the red disruptive region.

The disruptive likelihood of the discharge is obtained by evaluating the percentage of
the disrupted samples contained in the units visited by the trajectory.

In our implementation, the validation set has not been used to evaluate the possibility
of overfitting due to the huge computation time required. However, it has been instead
joined to the training set to create and color the map.

The free parameters of the GTM model, reported in Table 5, have been optimized
with a Tabu Search procedure [44]. In Table 5, the resulting GTM map composition is also
reported. The obtained GTM map of the JET operational space is reported in Figure 5a,
where the same disrupted pulse #94218 is tracked. The trajectory of the discharge firstly
evolves within the green “safe” region and then enters the red disruptive region. The
lighter points of the trajectory correspond to the beginning of the discharge, whereas the
darker one corresponds to the end at the disruption time tD. The corresponding disruptive
likelihood is reported in Figure 5b. The vertical dashed line identifies the alarm time talarm.

Table 5. GTM training parameters.

Parameters Value

Optimizer Expectation Maximization
Map dimension 50 × 50 grid
Type of RBF Radially symmetric
Number of RBF 400
Width σ of the RBF 0.8
Alarm threshold 100%
Log likelihood 9.85 × 105

Disrupted units 50.48%
Non-disrupted units 28.16%
Mixed units 18.52%
Empty clusters 5.48%
Mean assertion time (ms) 20
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Figure 5. (a) GTM map of JET operational space with trajectory of the disrupted discharge #94218;
(b) disruptive likelihood of the disrupted discharge #94218. The dashed black line identifies the
alarm time.

The disruptive likelihood usually has a discontinuous trend with numerous peaks
that could trigger incorrect alarms if an adequate threshold and assertion time were not
optimized. Moreover, the normalized locked mode signal, not used to train the GTM model,
is used in the multiple condition alarm scheme shown in Figure 6, as proposed in [8]. The
assertion time tassertion is defined here as the time that the predictor waits before activating
the alarm from the moment the disruptive likelihood exceeds the prefixed threshold. Note
that the assertion time tassertion dynamically varies during the discharge. As the sampling
time is assumed equal to 2 ms, a mean assertion time of 20 ms is obtained in the entire
dataset. For the disrupted discharge #94218 in Figure 5, the GTM correctly predicts the
disruption with a resulting warning time ∆twarning = 410 ms.
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Figure 6. Multiple conditions alarm scheme of the GTM disruption predictor (T0 is the starting time
of the flattop).

Table 6 reports the confusion matrix (green: successful results; red: mistakes) and the
values of the same prediction performance indices reported in Table 4. The recall is very
high, which means a very high percentage of successful disruption predictions (97.22% in
the test), but the specificity degrades compared to the MLP-NN due to the greater number
of false alarms.
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Table 6. Confusion matrix and performance indices of the GTM prediction model evaluated on the
test set.

Predicted
P + N = 257 P = 133 N = 124

A
ct

ua
l P = 108 TP = 105 FN = 3

N = 149 FP = 28 TN = 121
PRECISION = 0.789 RECALL = 0.972 SPECIFICITY = 0.812
ACCURACY = 0.879 F1 = 0.871 F2 = 0.929

Train SP% = 100% MA% = 0% FA% = 0%
Test SP% = 97.22% MA% =1.85% FA% = 18.79%

Despite the lower performance with respect to the MLP-NN, the GTM model has
had a considerable appreciation for its remarkable capabilities of visualizing the plasma
operational space and the trajectories of the discharges on the map. This allows one to
perform disruption prevention actions by monitoring the proximity of the discharge to the
safe operational boundary.

3.2. CNN Disruption Prediction Model

The architecture of the CNN disruption predictor is reported in Figure 7. Due to the
ability of the CNN to process images, the plasma profiles, which are 1-D signals, have been
treated as a single image, as previously described. The other 0-D signals are fed in the
CNN downstream of the first filter block. Note that the first filter block has been previously
trained only with the 1-D diagnostic data, and its weights have been frozen. Then, in a
second training phase, the CU2 and FC blocks were trained using all diagnostic signals.
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Figure 7. Architecture of the CNN disruption predictor.

The free parameters of the training process are reported in Table 7.

Table 7. CNN training parameters.

Parameters Value

Optimizer Stochastic gradient descent with momentum
Initial learning rate 1 × 10−4

Learning rate drop factor 0.1
Learning rate drop period (epochs) 20
Momentum 0.9
MiniBatch size 16
Validation frequency (iterations) 50
Validation stop (consecutive evaluations) 100
Weight decay (L2 regularization) 1 × 10−4

Assertion time (ms) 0
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Figure 8a reports the image of the plasma profiles of the disrupted discharge #94218. By
feeding the CNN with a sliding window of 200 ms on the test discharge, the corresponding
disruptive likelihood outcomes are as reported in Figure 8b. The vertical dashed line
identifies the alarm time talarm. The CNN is able to correctly predict the disruption with a
warning time ∆twarning = 372 ms.
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Table 8 reports the confusion matrix (green: successful results; red: mistakes) and
the values of the prediction performance indices of the CNN model. As in the case of the
MLP-NN model, all the indices have high values obtaining a tradeoff between successful
predictions and false alarms. Note that the plasma profiles have been directly used to feed
the CNN model without the feature engineering process implemented for the MLP-NN
and GTM.
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Table 8. Confusion matrix and performance indices of the MLP-NN prediction model evaluated on
the test set.

Predicted

P + N = 257 P = 110 N = 147

A
ct

ua
l P = 108 TP = 102 FN = 6

N = 149 FP = 8 TN = 141

PRECISION = 0.927 RECALL = 0.944 SPECIFICITY = 0.946

ACCURACY = 0.946 F1 = 0.936 F2 = 0.941

Train SP% = 100% MA% = 0% FA% = 1.852%

Test SP% = 94.44% MA% = 2.778% FA% = 5.369%

4. Discussion and Conclusions

An indicator of the performance of more immediate readings in the prediction of
disruptions is the accumulated fraction of detected disruption as a function of the warning
time ∆twarning. It provides the value, per unit, of successful alarms activated by at least the
corresponding ∆twarning in advance, giving also, in a unique graph, a general overview of
the premature detections and the alarm anticipation times. Moreover, it allows the reading
of the successful prediction fraction (SP), which corresponds to the intersection between
the accumulative curve and the minimum anticipation time (tD − tvalve = 10 ms at JET,
red dashed vertical line), and the TD fraction as 1-SP. This is also a powerful means for
comparing different models. Figure 9 reports such a comparison for the three proposed ML
DP models.
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Figure 9. Accumulated fraction of detected disruptions by the MLP-NN (blue line), the GTM (red
line), and the CNN (green line) models versus the warning time in the test set. The vertical red
dashed line allows us to identify tardy detections. The dashed black curve refers to the tpre−disr−AUT .

It is possible to see that the GTM (red line) has the earliest warning times, and its
cumulative distribution of alarms is often to the right of tpre−disr−AUT , which is our target.
These early alarms can be associated to the high number of false alarms of the GTM, which
have a less smooth disruptive likelihood and need an assertion time to trigger the alarm.
Then, the CNN and MLP-NN have similar cumulative distributions, with the MLP-NN
which triggers one alarm more just before the red dashed vertical line, and the CNN which
triggers some tardy alarms after it. The CNN follows the tpre−disr−AUT distribution until
300 before the disruption, while the MLP-NN tends to stay to the left of the tpre−disr−AUT
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curve. The discharges where the three models missed the alarms are different from each
other, but all except one pulse are characterized by a late mode-locking which causes the
disruption. In the case of the GTM and of the FC-NN, the mode-lock absolute value is too
low, and the predictors do not trigger an alarm, while in the CNN case, the mode-lock
signal rise is not steep enough to trigger the alarm.

Note that the statistical algorithm developed to automatically detect tpre−disr−AUT [9]
is non-causal and it cannot be used as a disruption predictor.

Despite the better results in terms of performances, the MLP-NN and the CNN are
mostly employed as black box algorithms and do not allow the extraction of significant
information on the disruption type and possible recovery strategies, while the GTM allows
the tracking of the position of the discharge and the instability mechanism to be associated
with the position of the point in the map. Among the MLP-NN and the CNN, the latter
provides an overall higher number of alarms and a generally higher warning time, keeping
a low number of false alarms.

Figure 10 reports, for the three predictors, the ROC curve. It is possible to see how the
CNN and the MLP have the best compromise between the detection of disruptions and
the number of false positives (false alarms), which is also visible in the AUC reported in
Table 9. Moreover, looking at the points of the ROC, it is possible to verify that the CNN
performance on the test is more robust than that on the MLP-NN. In fact, both models have
an optimal threshold above 0.9, but the CNN has an overall accuracy of 89% even with
the lower thresholds, up to 0.7. It is possible to also confirm this remark by comparing
the three disruptive likelihoods in Figures 3b, 4b and 6b. The CNN has a lower disruptive
likelihood in the stable phase of the disruption, and then rises abruptly in the last part of
the discharge, where it is possible to also see a clear variation in the images of the profiles.
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Table 9. AUC and assertion time for MLP-NN, GTM, and CNN models.

DP Model AUC Assertion Time (ms)

MLP-NN 0.98 0
GTM 0.89 20
CNN 0.98 0

In the same Table 9, the assertion time of the three models are reported.
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Note that the more recent campaigns at the JET contain a higher number of mitigated
discharges. The approach for the inclusion of mitigated discharges is the adoption of the
DMS activation time as the tD. This choice will unavoidably introduce an uncertainty in the
classification of the discharge. However, since these shots are present in the test set only,
we can notice that the predictors actually recognize the presence of disruption precursors
before the valve activation, with a limited number of false alarms.

Concluding, in recent years, a plethora of different machine learning models, plasma
features, and performance metrics have been proposed for the development of disruption
predictors. This work aims to provide a systematic comparison of some of the most adopted
models and to select common metrics for the results evaluation. Using the same training
and test set, an MLP-NN, a GTM, and a CNN have been trained as disruption predictors
starting from the same set of plasma parameters: the electron temperature, density and
radiation profiles, the locked mode signal, the radiated fraction of the total input power,
and the internal inductance. The GTM and the MLP-NN have been trained using a set of
processed signals developed from the plasma profiles, the peaking factors, while the CNN
is able to directly process the spatiotemporal images of the diagnostics. Every evaluated
method demonstrated the capability of producing early warning times and, in the case of
the MLP-NN and of the CNN, with a reduced number of false alarms. Despite the GTM
performances being a bit below the other two, its advantage is the interpretability of the
model output and the possibility to quantify the distance of the tracked discharge from the
non-disrupted area of the map. On the other hand, the CNN has the advantage of being
able to process the input images without the need of extracting physics-based features due
its capability to process image data. In the future, 1-D profiles or images coming from other
diagnostics can be exploited. As an example, in [45], the radiation profiles coming from
the vertical lines of sight of the bolometer have been used with very encouraging results.
The lower interpretability of neural network models could be addressed by exploiting
analysis algorithms such as class activation mapping [46] and by developing predictors
which identify specific events.

Nevertheless, the use of appropriate diagnostic signals, of a physics-based feature
extraction and of automatically detected tpre−disr−AUT , specific for each disruption, allowed
us to train the models on a reduced number of discharges, to enable the detection of
destabilization phenomena with a larger warning, and to maintain the performance on
more recent discharges (up to the 2020 campaign), with very limited aging of the predictors.

Several metrics were adopted in evaluating the predictors’ performance, from the
confusion matrix to the typical metrics adopted in the machine learning community, such
as recall, precision, etc. However, among all the proposed metrics, the accumulated fraction
of detected disruptions against the warning time, together with the corresponding false
alarms rate provided a clear and synthetic overview of the performances of the models,
suggesting the use of these metrics in the evaluation of the predictors.

Concerning the portability of data-driven models to different devices, even if in
the last 30 years many attempts have been made to implement data-driven disruption
predictors for single machines, few papers present cross-predictor approaches to this
problem [24,26,34,37,47–49]. The main result of these investigations is that, for machines
dominated by the same disruptive chains of events, there is a comparable ensemble of
physics mechanisms leading to the disruptions that can be described similarly in a uni-
fied framework of physics-based indicators [37]. Thus, the knowledge that data-driven
algorithms learn on existing devices can be re-used to explain the disruptive behaviour on
another device. This is an encouraging result in view of more extended studies to validate
the transferability of the data-driven predictors. Alternatively, the use of at least some data
or simulations from the new machine will be needed.
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