
Citation: Prados, A.; Mora, A.; López,

B.; Muñoz, J.; Garrido. S.; Barber, R.

Kinesthetic Learning Based on Fast

Marching Square Method for

Manipulation. Appl. Sci. 2023, 13,

2028. https://doi.org/10.3390/

app13042028

Academic Editors: Eloy Irigoyen,

Javier Sanchís and Pedro Cabrera

Received: 21 December 2022

Revised: 31 January 2023

Accepted: 2 February 2023

Published: 4 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Kinesthetic Learning Based on Fast Marching Square Method
for Manipulation
Adrián Prados * , Alicia Mora , Blanca López , Javier Muñoz , Santiago Garrido and Ramón Barber

Robotics Lab, Universidad Carlos III de Madrid, 28911 Leganes, Spain
* Correspondence: aprados@pa.uc3m.es

Abstract: The advancement of robotics in recent years has driven the growth of robotic applications
for more complex tasks requiring manipulation capabilities. Recent works have focused on adapting
learning methods to manipulation applications which are stochastic and may not converge. In this
paper, a kinesthetic learning method based on fast marching square is presented. This method poses
great advantages such as ensuring convergence and is based on learning from the experience of a
human demonstrator. For this purpose, the demonstrator teaches paths by physically guiding one
of the UR3 arms of a mobile manipulator. After this first phase, the fast marching Learning method
is used to make the robot learn from this experience. As a novelty, an auto-learning functionality
is presented, which provides the kinesthetic learning algorithm with an exploration capacity. The
base of this algorithm is not only using the information provided by the taught trajectories, but also
expanding its ability in order to explore unknown states of the environment. The effectiveness of
the proposed method has been evaluated through simulations in 2D and 3D environments and in
a real mobile manipulator. The learning process is analyzed with other 2D learning approaches
using the LASA dataset and it is tested in complex 3D scenarios with different obstacles, proving its
effectiveness.

Keywords: fast marching; kinesthetic teaching; motion learning; path planning; robotic application;
simulation

1. Introduction

In today’s robotics, the need for precise manipulation has encouraged the development
of human-like robots. This has led to the emergence of manipulator arms of all kinds of
shapes and configurations in order to achieve a system capable of reproducing natural
human-inspired movements. To guarantee this similarity, robotic arms have a large number
of degrees of freedom (DoF). For this reason, path planning and control for these platforms
have become a very difficult task [1]. The most common way to solve this kind of problem
in robotics is to use inverse kinematics. However, redundant manipulators carrying out
complex tasks hinder classical methods from successfully solving this problem.

The most common way to overcome this is based on the use of different learning
methods. Learning algorithms would obtain a policy that works in a similar way as
a human does. The main objective of these strategies is to identify patterns and then
try to generalize the more relevant features for the given data. With that information,
the algorithm tries to reproduce new behaviors resembling previous learned experiences,
even if there is a change in the environment of the study or if it is unknown. When applying
these methods to manipulation, the concept of learning in complex manipulating tasks
lies in the use of knowledge taught by a human who shows how to solve a task and the
generalization of that information for similar tasks [2,3].

Traditional learning methods have shown good performance for the resolution of
manipulation problems [4,5]. However, the process needed in those methods to obtain
the learning policy generates a mathematical model which usually relies on probabilistic

Appl. Sci. 2023, 13, 2028. https://doi.org/10.3390/app13042028 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13042028
https://doi.org/10.3390/app13042028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4703-7858
https://orcid.org/0000-0002-3984-381X
https://orcid.org/0000-0001-6066-4923
https://orcid.org/0000-0001-5068-3303
https://orcid.org/0000-0002-3838-8421
https://orcid.org/0000-0003-2800-2457
https://doi.org/10.3390/app13042028
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13042028?type=check_update&version=2

Appl. Sci. 2023, 13, 2028 2 of 29

terms, which makes these learning methods stochastic. Depending on what would need
to be solved, this characteristic may not be a desirable property, since even with the same
demonstrations, different solutions could be obtained in each test. This stochastic behavior
may cause algorithms to end up obtaining a solution that does not converge.

In this paper, we propose a learning-based solution that overcomes typical problems
from both traditional planners and learning methods. It is an extension of a previous work
proposed in [6,7], which focuses on the generation of trajectories for a robotic manipulator
for tasks in two dimensions and without the use of imitation learning techniques. We
present the fast marching learning (FML) method, which is a deterministic and asymptoti-
cally globally stable learning algorithm created for learning point-to-point 2D and 3D tasks
based on the fast marching square (FM2) method [8,9]. The proposed learning approach is
either referred to in this work as fast marching learning or as learning based on the fast
marching square.

Initially, paths are kinesthetically taught to the robot by guiding its robotic manipu-
lator. Then, these trajectories are represented by FM2, which is a path planner based on
how the light propagates. This treats the environment where it is applied in a continuous
way, deriving multiple benefits which will be discussed later. FML applies FM2 on every
learned path to parameterize experience, which is later merged for obtaining a global
knowledge representation. Additionally, some relevant optimizations are made with
respect to our previous publications and a new concept of auto-learning is presented
herein. A direct relation between the proposed method and common learning techniques,
such as reinforcement learning (RL), is also carried out. Finally, a large amount of testing
trials on a real robotic manipulator are performed to fully validate the functioning of the
proposed strategy in 3D complex indoor environments. Regarding the state-of-the-art
techniques and the previous work presented in [6,7], the following advantages were
obtained:

• The generated trajectories are ensured to be smooth and local minima-free, which
means that these always converge.

• The path planner method is complete. If there is any solution, it is always found.
• The proposed approach can handle high-dimensional data and it can learn from one

or more demonstrations.
• The method presents an ability to explore unknown environments even if it has not

been taught beforehand, searching for the fastest paths. In addition, this exploration
allows one to work on dynamic environments where objects that were not accounted
for during data acquisition are present.

• It can guarantee a correct performance regardless of the variation of starting points
even in the case of high-dimensional complex motions.

• It is robust against erroneous paths learned during data acquisition.
• The method overcomes state-of-the-art methods in terms of similarity with respect to

demonstrations.
• The method improves on previous works because it can be applied to a real robot,

makes use of kinesthetic learning techniques and can be applied in both 2D and 3D.

The work presented in this paper is focused on the use of a specific learning method
known as learning by imitation [10], which is also referred to as programming by
demonstration (PbD) [11]. In this type of learning, the robot is provided with a set
of demonstrations as input. These demonstrations can be given in different ways,
including by observing human demonstrators doing a task, collecting data by haptic
devices and physically guiding the robot to emulate the task that must be learned (i.e.,
kinesthetic teaching). When dealing with learning by human demonstration, motion
capture (MOCAP) suits are usually the preferable option, as highlighted in [12]. This
methodology is based on marker point measurements from a 3D motion capture system.
However, it requires the system to deal with the re-targeting problem, since robotic arm
joints do not necessarily have the same structure as the human arm. Regarding haptic
learning, there are different options that can be developed. One of the most common

Appl. Sci. 2023, 13, 2028 3 of 29

ways consists in the use of some haptic device which may be similar to a joystick [13]
that the user controls to generate training data. Other common ways to work with the
haptic method are based on the use of a twin master to capture data [14]. Typically,
that twin master is a simplified version of the robotic arm, which is provided with a
sufficient amount of sensors to capture the required data and to report the user through
haptic information on any problem that may occur. Another important detail is that
those devices normally have the same structure as the real arm, which eliminates the re-
targeting problem. However, these haptic-based method have some drawbacks. Given
the great amount of DoF of manipulator arms, it may not be intuitive to operate these
devices through just a joystick. In case of using a twin master, possible delays between
the twin and the real arm movements could also occur, which could lead to delays in data
collection or even potential collisions when performing complex trajectories. Kinesthetic
teaching solves all these problems.

First of all, as for the demonstration (data collection) and reproduction of the learned
movements, the same embodiment is used: the real robot. Hence, the re-targeting problem
does not appear and furthermore, no delays in the data acquisition process exist. Second
of all, data collection is performed in an very intuitive way by moving the robotic arm
through the desired positions. This process generates point-to-point trajectories, which
will be used as input for the learning algorithm. When performing kinesthetic teaching,
two different types of tasks can be identified. Firstly, there are tasks where the path does
not necessarily require critical accuracy. In those kind of tasks, the main objective is not
to move to a specific point but to perform a certain controlled dynamic in the movement.
This type of task focuses on teaching the robot how to complete a given task without any
data about the initial or goal position. Examples of these kinds of missions include ability
games taught to the robot, like the ball in a cup game [15,16] or the work in [17], where a
robot learns how to play table tennis using a variety of simple motor tasks which represent
just elementary actions. The most common way to solve these learning tasks is by using
dynamic motion primitives (DMP) [18,19]. The main idea is to teach simple functional
movements that can be combined and adapted to solve new and more complex tasks.
Based on this idea, reinforcement learning techniques are found in the literature to carry
out this learning process of primitives [20,21]. Even though these methods are helpful
for the above-mentioned applications, this paper is focused on manipulating objects in a
certain location. Hence, the followed trajectories are not initially optimized with respect to
distance, requiring additional steps.

The second type of task that can be performed for motion learning are known as
point-to-point tasks. In this case, a specific goal state is given while the initial state may
vary. The aim for this type of motion learning is to teach the robot how a discrete motion
is performed. Hence, this is the learning type in which our work is focused. In order
to face this problem, different approaches in the literature are found and reviewed.
Some works propose the use of gradient techniques for point-to-point task learning.
The authors in [22] defined an extension of the Maximum Margin Planning (MMP) [23].
The algorithm, called LEARCH (Learning to Search), uses gradient descent techniques
to learn the cost map given the training paths, which were generated by an expert.
The strategy tries to imitate the expert policy by performing regression upon features
from paths using support vector regression (SVR) and iteratively updates the map with
that knowledge. This map is then used to plan the needed path for the task through
any path planning algorithm. The Unified Motion and Variable Impedance Control
(UMIC) technique was presented in [24]. It defines a control policy to regulate both
the robot movement and its dynamic interactions with the environment. The main
objective is to encapsulate the potential function gradient and the curvature in the
same model so that motions resemble the learned path while respecting the velocity
profile taught in the demonstration. It is time-invariant and the learning process can be
carried out based on a few demonstrations by solving just two constrained quadratic
optimization problems. However, the main issue of using gradients is that there is a

Appl. Sci. 2023, 13, 2028 4 of 29

risk of deriving into local minima. The authors in [25] proposed the stable estimator of
dynamical systems (SEDS), which constraints the Gaussian mixture regression model
parameters to learn globally stable motions. One of the main issues from this method
is that strict constraints limit the learning accuracy from taught data. In [26], the al-
gorithm named control Lyapunov function-based dynamics movement (CLF-DMs) is
presented. Initially, a roughly consistent Lyapunov function is learned with respect to
taught data, which is used for deriving estimated motions using regression techniques.
Stability is then ensured solving a constrained convex optimization problem. The work
presented in [27] proposes the FSM-DM method based on extreme learning machine
to consider three factors when learning: stability, accuracy and learning speed. Even
though results from the three methodologies are promising, there are two main draw-
backs: none of them are applicable to high-dimensional spaces and they do not work
with a single demonstration.

Other techniques are better-suited for three-dimensional spaces. The authors in [28]
proposed a kinesthetic teaching approach based on Motion Primitives (MP) and Gaussian
Process Latent Variable Models (GPLVM). Initially, the paths are kinesthetically taught to a
robot with the help of an operator. In order to model these learned paths, MP group motion
trajectories that present time-dependent variances over time and their dimensionality is
reduced with GPLVM. The resulting latent space is finally mapped into a reward for the
learning algorithm. In [29], a neuronal network is proposed for the learning procedure,
obtaining a better reproduction performance while guaranteeing the generalization ability.
This method (modified DS) has several limitations derived from the use of neural networks
as can be the great amount of parameters that need to be controlled for the training time.
Overall, the main issue of all these presented kinesthetic learning methods is that they are
highly dependent on taught trajectories. New paths calculated using acquired knowledge
strictly follow learned data. There might be cases in which it could be useful for learning
methods to have the ability to explore new trajectories. This is key in situations such
as having corrupted learned data or having a single demonstration. The Fast Marching
Learning method proposes an auto-learning factor to combine the usage of learned data
and the exploration of unknown regions.

The rest of the paper is organized as follows. In Section 2, the Fast Marching Square
method is explained, with special emphasis on its implementation in the path planning
problem. In Section 3, the FML method is presented by giving an in-depth account of
kinesthetic data collection explaining the auto-learning process developed, explaining the
ability to add obstacles and making a direct comparison with the RL structure. Section 4
presents a series of experiments in both two and three dimensions performed to test the
benefits of the developed method. For this purpose, a handwriting human motion dataset
created by LASA has been used for the empirical comparison of the method developed
for two dimensions. In the case of three dimensions, a series of tests were carried out
in an indoor environment, both in simulation and in a real environment using a robotic
manipulator. Section 5 presents the final conclusions and proposes future work.

2. Fast Marching Applied to Path Planning

The Fast Marching Square (FM2) method [30] is a path planning algorithm which is a
variation of the original Fast Marching Method [31]. It is based on the idea of guiding the
desired path by following light propagation. Mathematically, light propagation is defined
by the Eikonal equation, which states that the speed of light is determined by the substance
in which it is travelling [32]. This equation is solved by the solution of wave propagation,
as stated in Equation (1):

φ = φ0eik0(ηx−c0t) (1)

where φ and φ0 represent the wave value and initial wave value, respectively, η is the
refraction index and c0 is the light speed. According to this definition, some properties of
the proposed method can be derived:

Appl. Sci. 2023, 13, 2028 5 of 29

• The path that light follows is always the fastest feasible one, so the proposed planning
method ensures the calculation of the path of least possible time.

• Given the characteristics of Equation (1), if η(x) is C ∞, then φ is also C ∞, and so are
the calculated trajectories using the gradient method over this potential. This turns
into smooth paths that avoid the need for extra refinement steps.

• Since the method is based on wave propagation, if there is a feasible solution, it is
always found, so it is complete.

Following its original definition, fast marching solves the Eikonal equation applied
on a rectangular orthogonal mesh, deriving into a O(n) algorithm where n is the total
number of grid points. The discrete formulation of the Eikonal function can be seen in
Equation (2):

max
(

T − T1

∆x
, 0
)2

+ max
(

T − T2

∆y
, 0
)2

=
1

F2
i,j

(2)

where ∆x and ∆y are the grid spacing in the x and y directions, Fi,j is the wave propagation
speed for the grid cell (i,j) and T represents the arrival time of the Eikonal equation for
each position. If this time T is represented for the different values T1 and T2, it is obtained
that:

T = Ti,j

T1 = min(Ti−1,j, Ti+1,j)

T2 = min(Ti,j−1, Ti,j+1)

(3)

where T sets the time in the current cell (i, j) and the values of T1 and T2 set the minimum
values of the time in the neighboring cells previously visited to the current cell by the
expansion of the Eikonal equation. Iterations of the propagation procedure on a grid can
be visually observed in Figure 1.

(a) (b)

Figure 1. Fast Marching propagation on a grid. Colors from blue to red indicate cells solved in the
same iteration [32]. (a) Iteration of FM with one wave in 2D and (b) time of arrival potential D(x)
(third axis) represented by a color map.

The final outcome is a matrix where each cell indicates the arrival time of the wave
with respect to the propagation point. As a modification of FM, FM2 applies this procedure
twice, deriving in safer and smoother paths. This path planning method (FM2) can be
applied to binary maps by propagating a wavefront that consider all obstacles as source
points. The final matrix is considered as a velocity map F. To better show the differences
between FM and FM2, the paths are calculated on a sample binary map and shown in
Figures 2 and 3. Both figures show that the path obtained with the FM2 method is smoother
and reproducible by a robot.

The velocity map values range from 0 to 1, representing the maximum speed allowed
for the vehicle at each point of the map. Obstacles imply speeds equal to zero, whilst points
in space far enough from obstacles will allow maximum speeds. When computing a path
for the vehicles to follow, the FM2 method will obtain the shortest path from the initial

Appl. Sci. 2023, 13, 2028 6 of 29

position to the goal position that lets the vehicles navigate at greater speeds. On the other
hand, the original FM method will compute the shortest path, not taking into account the
safety of the vehicle. Assuming that F contains relative velocities between 0 and 1, it is
possible to trim (saturate) this velocity map. With this small modification, the safety and
smoothness of the computed paths is still ensured (except for saturation values close to 0),
while obtaining trajectories closer to the optimal one in terms of distance. Examples are
shown in Figure 4. It is also possible to saturate the map based on a safety distance from
obstacles. That is, instead of using an index between 0 and 1 to saturate the map, we can
directly set a distance in cells from where the velocity will be 1 (safe for the vehicle). We
call this parameter the area of influence (aoi). If each cell corresponds to a square meter,
an aoi of five cells corresponds to a security distance from obstacles of 5 m. Examples are
shown in Figure 5.

(a) (b)

Figure 2. (a) Initial binary map; and (b) time of arrival of the propagating wavefront. The path
obtained with the Fast Marching method (FM) is shown as a magenta line. Cooler colors represent
points closer to the source while warmer ones stand for distant points.

(a) (b)

Figure 3. (a) Velocity map; and (b) time of arrival of the wavefront. The path obtained with the Fast
Marching Square method (FM2) is shown as a magenta line. Cooler colors represent points closer to
the source while warmer ones stand for distant points.

(a) saturation = 0.75 (b) saturation = 0.5 (c) saturation = 0.25 (d) saturation = 0

Figure 4. FM2 saturated variation: modification of the path depending on the saturation value.

Appl. Sci. 2023, 13, 2028 7 of 29

(a) aoi = 25 (b) aoi = 15 (c) aoi = 5 (d) aoi = 1

Figure 5. FM2 saturated variation: modification of the path depending on the aoi value.

3. Learning Manipulation Trajectories via Fast Marching Square

The main idea of using Fast Marching Square (FM2) for learning is to take advantage
of the benefits of this path planner. One of its greatest advantages is its capacity to guide
planned paths through places of the environment in which the propagation velocity is
higher. This generates that the total path can be covered in less time. Consequently, one
of the main ideas in the use of this method for learning is to force generated paths to take
a similar direction as learned paths. Following this concept, the method tries to exploit
learned data to generate similar paths. To do that, the method amends the F matrix so that
learned data obtained via kinesthetic teaching will have faster values in the matrix. Other
advantages that arise from the use of FM2 are its smoothness and being local minima-free.

In this paper, we are focused on point-to-point tasks in which we teach the robot differ-
ent trajectories for the manipulation of elements of the environment. Once these trajectories
are available, they are codified as point sequences in the workspace. By generalizing these
paths, similar paths can be generated for any specific task. Therefore, the application of
FM2 generates more efficient results that the ones generated by just applying kinesthetic
teaching, making faster and smoother paths. Figure 6 shows the three proposed steps for
performing learning based on Fast Marching Square. First, data are kinesthetically collected.
Then, Fast Marching Learning is applied to acquire knowledge from provided data. Finally,
new paths are generated considering an additional auto-learning process, which includes
the capacity of finding new unexplored paths. These processes are hereunder described in
more detail.

Figure 6. Procedure of our proposed method. Each box corresponds to a different algorithm step.

3.1. Kinesthetic Data Collection

The FML algorithm needs learning data generated by a user as input. To prevent the
problems presented in Section 1, such as re-targeting, data collection is directly performed
with the robot itself. The data acquisition process, therefore, is based on kinesthetic learning,
where the user moves the ADAM robotic arms generating the trajectories required for the
task to be performed. This robotic platform is presented in Figure 7.

The arms used for this project are UR3 from the Universal Robots company. This
arm is an ultra-light and compact collaborative industrial robot, with a weight of 11 kg,
a payload of 3 kg and a rotation of ±360◦ for the first five joints and infinite rotation at
the end-effector. To facilitate the process of taking data with the arm, two grips have been
designed at the critical control points of the arm, namely the end-effector and the elbow,
as shown in Figure 8. These grips allow the user to have greater control of the six joints,
thus allowing the generation of trajectories to be much more natural and similar to those
that a human would perform.

Appl. Sci. 2023, 13, 2028 8 of 29

Figure 7. ADAM robotic platform: (a) full view of the robot; (b) 3D LiDAR sensor; and (c) robotic
base with 2D laser.

Figure 8. Grips for kinesthetic learning control (yellow and gray handles): (a) lateral view; and
(b) frontal view.

These elements can be easily removed from the robot after kinesthetic teaching has
been carried out and they can be used on both arms. With these grips, the user can handle
the arm in a simple and controlled way, as shown in Figure 9, where the person can handle
the last three joints through the end-effector grip (gray), and the first three joints through
the elbow grip (green).

Figure 9. Example of path teaching guiding the robotic arm with grips: (a) initial point; and
(b) final point.

For path generation, an algorithm with a constant time cycle T has been designed.
This algorithm allows to store the position in Cartesian coordinates of the end-effector.
Therefore, each of the paths P that are taught will contain a set of N points in the three-
dimensional space conformed by p(x,y,z). Since this method has been created for its use in
real environments, it has been established that more than one path can be taken to teach the

Appl. Sci. 2023, 13, 2028 9 of 29

robot. Therefore, K different paths can be made, which will make up the robot’s experience
E that can be codified as

E = [P1, P2, . . . , PK] (4)

where each path consists of
Pi = [pi,1, pi,2, . . . , pi,Ni] (5)

Although data collection may seem trivial, it is a very important step and must be
performed correctly in order not to generate errors that can be accumulated during the
learning step. Empirically, it has been found that there are two preferable ways to collect
data. The first one is to perform a movement at a very low speed, having full control of all
the joints of the robot. The second one is to perform a path at a high speed, in which, due to
the inertia of the movement, the transmission of any possible disturbance from the person
teaching the trajectory is avoided. Figure 10 shows results from gathering data in three
different ways, where the same path has been taught using different strategies depending
on the velocity and stability.

x

x x

y

y
y

z

z z

(c)

Figure 10. Path taught using different strategies. (a) low velocity; (b) medium velocity; and (c) high
velocity.

As shown in Figure 10, results are clearly better in cases where the user has full control
of the robotic arm. When using low velocity and a full control of the 6DoF of the arm,
correct paths are generated but with a greater amount of points than in other cases. If the
user decides to use a high velocity demonstration, the path generated has less points than
in the previous case, but the path precision is reduced compared with the low-velocity
case. Therefore, there is no single way to solve the kinesthetic learning task. It has been
empirically proven that, for precise tasks, it is better to perform a teaching process at low
speed and have control of all the DoF, and for more general tasks, it is better to use a
teaching process at high speeds. In addition to this, a combination of both forms of data
acquisition can be carried out, performing a high-speed data acquisition for approaching
the end point and then performing a low-speed control to increase the accuracy of the task.

Regarding data acquisition, a code was developed with which, by using ROS, the val-
ues of the joints are read and stored in a path. Subsequently, a filtering process is performed,
where we avoid possible repeated points due to the sampling rate and perform the relevant
transformations to go from a reference point at the base of the arm to a reference point at
the base of the robot. As such, we can apply FML and directly send movement commands
to the real robot.

It is important to emphasize that, although filtering for duplicate point removal is
necessary, small perturbation removal is not required. This is because the paths will be
used as a basis for learning, but applying the FM2 method will provide the method with
some of its advantages, directly obtaining smooth paths as an advantage with respect to
those paths used for traditional learning.

3.2. Fast Marching Learning Algorithm

Fast Marching Square, as mentioned previously, creates a velocity map F in which
a path is optimal when the propagation velocity is higher. Hence, by modifying these

Appl. Sci. 2023, 13, 2028 10 of 29

velocities, the final calculated path can be reshaped. This fact is very useful for the learning
step. Given a set of experiences, the main objective of Fast Marching Learning is to encode
this information into the velocity map. As such, the final path would be biased by learned
experiences without losing the main properties of Fast Marching Square, such as avoiding
local minima and being smooth.

The proposed algorithm takes as inputs the point-to-point paths from the robot’s end
effector learned with kinesthetic teaching, defined with Equations (4) and (5). As an output,
it is intended to replicate the shape of learned paths when a similar task is commanded.
Given that the outcome is based on learned experience, the final path is expected to be
efficient, smooth and faster.

The first step is labeling all the points contained in E as 1 in an empty workspace, that
is to say, filled with 0. The resulting workspace is denoted as Fp. Then, a dilation operation
is applied on Fp. The dilation size is defined by the area of influence (aoi), specified in voxels
in the case of 3D environments. After the dilation process is applied, the workspace is
divided into regions filled with 1, where previous knowledge is found, and other zones
with 0, where no information is available. For the latter ones, the algorithm works as FM2

normally does.
When the workspace is ready, Fast Marching is applied in the same way as in the first

step for FM2, turning the workspace Fp into a velocity map. Fp is linearly rescaled to be
within the established bounds [sat, 1], where sat stands for saturation, which is in charge of
weighting the importance of new data with respect to the rest of the environment. With this,
the final velocity map F is obtained. This leads into a generalization in F of the provided
demonstrations. Finally, Fast Marching is applied on the entire workspace considering a
unique wave source defined by the centroid of all final trajectory points Pi ∈ E and the
velocity map F. A detailed description of the algorithm coding is shown in Algorithm 1.

Algorithm 1 Fast Marching Learning Algorithm.

Require: Experience E = 〈P1, P2, . . . , PK〉
Ensure: Modi f ied velocity map F, reproduction f ield T

Fp ← {0};
for i = 1 to K do

for j = 1 to Ni do
x ← Pi,j;
Fp(x) := 1;

end for
end for
Fp ← DILATE(Fp, aoi)
xs ← {∀x ∈ Fp | Fp(x) = 0};
Fp ← FASTMARCHING(Fp, xs)
F← RESCALE(Fp, sat, 1);
xs ← CENTROID(E);
T← FASTMARCHING(F, xs);
return F, T

3.3. Auto-Learning Process

The use of kinesthetic learning generates a series of advantages over other learning
methods, such as computation speed, since it is based on a series of data taken by an expert,
or the generation of paths or movement orders in which there are no collision problems.
These ideas are based on the use of the exploitation of known information as a means to
generate optimal and fast results. When working with learning methods in robotics, it is
very important to find a balance between the use of already learned data (exploitation)
and the acquisition of new data autonomously (exploration) [33]. Without exploration,
the FML method will always return to the first learned path, and better paths will never be

Appl. Sci. 2023, 13, 2028 11 of 29

found. On the other hand, if the FML method explores too much, it cannot stick to a path,
performing different paths each time, which does not generate real learning.

There are different strategies for balancing exploration and exploitation, which allow a
choice to be made between a process of exploitation of prior knowledge and the generation
of new data through exploration. One of the most commonly used forms is the ε-greedy
method, in which a small ε probability is responsible for selecting the best action or
generating a random option to encourage exploration. Another form to work with this is
the use of Boltzmann selection, where the probability that an action will be selected depends
on how it is compared with other action values. In order to obtain such a balance in FML,
the FM2 applies its characteristic of always obtaining the fastest path. When kinesthetic
learning is carried out, a modification of the F matrix is forced, thus generating a series
of tunnels or routes which the method will use for the estimation of ideal paths. It may
happen that, when FM2 is applied, it estimates that to go from one point to another, there is
a faster path than the learned one. If only the exploitation of the obtained learning is used,
it will be forced to obtain a similar path to those learned, which in this case will generate
a non-optimal path. Therefore, in order to encourage exploration, an extension of FML
has been generated. An estimation of the obtained path is made and a learning process
is carried out so that the new obtained path, which is better than previous knowledge, is
also learned. As such, an auto-learning process is generated with which the robot, through
exploration, increases its knowledge of the environment. In order to be able to control
when auto-learning takes place or when FML makes use of the exploitation of learned
information, it is necessary to establish similar criteria to those explained above. For this
purpose, a selection strategy has been created based on the coincidence of the generated
path with the kinesthetically learned paths. Given a new path, the velocity values on the
F matrix for each of its points are checked. In zones where the new path is outside the
kinesthetic learned paths, very low velocity values close to 0 are found, whereas for those
zones within the learned paths, high velocities close to 1 are present. Following these facts,
the selection strategy is defined according to Equation (6).

κ =
∑l

i=1 F(Pi)

l
(6)

where κ is the auto-learning factor, F(Pi) is the value of the velocity matrix for a point of the
path and l is the length of the evaluated path. Based on the value of κ, auto-learning will
be applied or not. This threshold was empirically obtained by calculating the mean values
for different trajectories using only the kinesthetically learned values, so that through
various tests, it was established that if the value of κ < 0.6, it can be estimated as a new
learned path, and therefore, it will be added to the previously taught paths. An example
of the application of the auto-learning method with respect to the κ value is presented in
Figure 11.

As in the ε-greedy method, the value obtained as the optimal threshold is not manda-
tory for the implementation. Depending on the strategy to follow, the user can decide to
work more conservatively, encouraging the use of learned data (decreasing the value of the
threshold) or encouraging the addition of new paths obtained (increasing the threshold).

The application of auto-learning is highly beneficial in FML oriented to manipulation
for two cases in particular. The first is that, by having the ability to learn and add such
automatic learning to previous data, it is not necessary to teach all possible cases of a
workspace. As such, by teaching the robot the most common cases so that it can generalize
and by having the auto-learning method to be able to learn more specific cases, almost all
the activities to be carried out in a given workspace can be covered. This also ensures that
no segregation of data arises. This means that there is a possibility that the robot is only
taught to perform one type of movement (e.g., downward movements). With auto-learning,
the robot can learn other types of movements, such as lateral movements, thus generating
a series of new paths that have not been taught in a kinesthetic way.

Appl. Sci. 2023, 13, 2028 12 of 29

x

x

x x

y

y

y

y

z

z

z z

(c)

(d) (e)

(b)(a)

Figure 11. Example of auto-learned and non-auto-learned process for different paths. Red point indi-
cates the initial point and red star indicates final point. (a) Kinesthetically captured data; (b) dilation
of the learned data using aoi value; (c) path (green line) with κ = 0.732 is not auto-learned; (d) path
(green line) with κ = 0.157 is auto-learned; AND (e) dilation of the new auto-learned path including
it in the previous learned space.

Secondly, the use of auto-learning allows the correction of possible errors in data collec-
tion. If incorrect data acquisition is performed, in which movements that are impossible for
the robot to perform are generated, auto-learning will avoid carrying out those erroneous
paths and it will permit to learn correct paths to perform the required task. An example of
both cases can be seen in Section 4.2.

3.4. Important Parameters: Saturation and Area of Influence

In the FML method, there are two parameters derived from Fast Marching that are es-
sential for the correct behavior of the algorithm, which are saturation and area of influence.

Saturation (sat) represents the propagation velocity of FM2. Saturation in FML is used
to indicate the places with previous experience or auto-learned experience. Therefore,
places that have previous experience will be reached earlier. If the saturation value is
really low, the method will only use the experience provided for the kinesthetic data.
On the contrary, if the value is very high, the method will encourage the exploration of the
environment by not following exactly learned values.

The area of influence (aoi) allows to estimate the dilation of the path points in order to
give connectivity to the demonstrations and its spatial surroundings. In two-dimensional
environments, the area of influence is in pixels (px) and in three dimensions it is measured
in voxels (vx). This parameter affects the learning generalization. When an excessively
low value is given, the algorithm will not generalize and it will strictly follow the taught
trajectories. In the opposite case, the reproductions will excessively generalize and the
demonstrations shapes will be lost. Normally, this parameter usually follows a morpholog-
ically flat structural element based on a disc, which allows the dilatation processes to be
carried out according to the value of the selected aoi, as shown in Figure 12.

Appl. Sci. 2023, 13, 2028 13 of 29

Figure 12. Example of a typical disc structure (SE), with the origin at the central matrix element and
a radius of 3 elements.

In the proposed case, where we are working in three dimensions, both for the FML
process and for the cases where auto-learning is necessary, a multidimensional structure
has to be applied (in this case in three dimensions). When working with 2-dimensional
elements, as shown in Figure 12, it may happen that areas that have been auto-learned do
not appear as traversable areas for the algorithm. This is due to path orientation changes.
If the path is totally parallel to the base where we are taking data, the disc will be dilating
parallel to the ground. Therefore, non-passable areas between auto-learned zones are
created due to the lack of the third dimension (height) of the structure, obtaining a result in
which a totally unconnected path is obtained. An example of this can be seen in Figure 13
where the result of the same auto-learning is compared using a typical 2-dimensional
structure (disc) and a 3-dimensional structure (sphere).

x x

y y

z z

(a) (b)

Figure 13. Comparison between a 2-dimensional structure and a 3-dimensional structure for dilation.
The gray color represents the dilatation of the information collected by the arm. (a) Auto-learning
dilated data obtained using disc structure (2D) with aoi = 5 px; (b) auto-learning dilated data
obtained using sphere structure (3D) with aoi = 5 vx.

It can also be seen that the use of 3D structures does not only improve the regions
that are parallel to the ground, but also that a positive influence is achieved for the curved
paths, as shown in Figure 13.

Appl. Sci. 2023, 13, 2028 14 of 29

3.5. Addition of Obstacles in the Workspace

Real environments are rarely completely free and are usually dynamic. This is why
obstacle inclusion is necessary. Obstacles can belong to the environment from the beginning,
which allows the robot to be taught to take them into account, or they can be added later
once kinesthetic learning has already taken place. Due to the advantages of FML and FM2,
both cases can be solved in a simple way.

If the obstacles in the environment are initially known, the solution is trivial because
the kinesthetic teaching will take these obstacles into account, thus generating paths that
allow the obstacles to be circumvented. An example of this case in 2 dimensions is shown
in Figure 14.

(a) Initial environment (b) Demonstrations

(c) Result of FML in 2D (d) Velocity matrix (F)

Figure 14. Environment with the initial obstacle. Demonstrations (red dotted lines) initially take into
account the object, so the velocity matrix is created accordingly.

In the case of initially having a free environment (Wo), the learning process will be
carried out without taking into account any obstacle, generating a certain experience E,
which will have a velocity map F associated with it. As soon as any obstacle appears
dynamically, it will be necessary to create a new velocity map Fo,sat, which will be saturated.
For this work, we considered a dynamic object as one that, after having learned a series
of trajectories, appears and interferes with previously learned data. In other types of
algorithms, where only the information that has been learned is used and there is no
exploration, this type of situation requires either a new learning procedure of the modified
environment, or systems for detecting and processing this type of situation. In the presented
algorithm, the auto-learning process through the use of exploration determines a new path
that is able to avoid the dynamic object. After verifying its feasibility, the new plan is
added as a learned path, thus extending the knowledge of the environment as well as
accelerating the process in case the object remains in that position. As such, to obtain the
final velocity map, it will be necessary to apply Equation (7) to all the points in which Fo,sat
is not saturated.

F := min(Fo,sat, F) ∀i ∈ Fo,sat|Fo,sat(i) < sat (7)

That process has to be repeated any time a new obstacle appears in the environment.
The method is the same for 2D and 3D. An example in two dimensions of the dynamic
appearance of an object in a free environment can be seen in Figure 15 with sat = 0.1 and
aoi = 25 px.

An example of the process in three dimensions is represented in Section 4.2.

Appl. Sci. 2023, 13, 2028 15 of 29

(a) Demonstrations in
free environment (b) Velocity matrix (F) (c) Fo,sat

(d) Updated F
(e) Result of the FML in 2D with

dynamic obstacle

Figure 15. Environment with dynamic obstacle [7]. Demonstrations (red dotted lines) are learned
without taking into account the obstacle. After adding it, the method can correct the path and solve
the trajectory while avoiding collisions.

3.6. Fast Marching Learning Characteristics

Due to the characteristics derived from FM2, there are a number of advantages which
make it possible for the FML to solve problems that may arise when it comes to learning.

3.6.1. Deterministic Behavior

Since FM2 is a deterministic method, FML is also deterministic. This means that, when
using FML, we will obtain the same output (path) as long as the input is invariant. This
factor can be important because it allows the behavior of the generated trajectories to be
known and therefore avoids erratic behavior that could cause damage to the robot, which
is common in probabilistic methods.

3.6.2. Bi-Directional Behavior

Other learning methods are designed in such way that they can only generate solutions
in one direction, i.e., from the start point to the end point. In case of needing a trajectory
going in the opposite direction, from the end point to the start point, a totally new and
unexpected behavior would be generated. In the case of FML, the same movement learned
to go in one direction is applied to return in the opposite direction. Although it can be
assumed as a limitation, it allows the method to predict the robot’s behavior, thus increasing
the safety when working in environments with humans, as well as ensuring that, in both
cases, the fastest path is obtained.

3.6.3. Behavior with No Previous Experience

In other learning algorithms, having a point away from learned experience generates
erratic and unpredictable behavior. In cases where there is no prior information, the FML
method will obtain the fastest path from the starting point to the end point, always accord-
ing to the metric obtained from the velocity matrix. Due to the use of a constant saturation
(sat) value at points far from previous experience or where there is no previous experience,
the fastest path also means the shortest path in terms of distance and time. An example of
the application of such behavior is represented in Figure 16, where a path without previous

Appl. Sci. 2023, 13, 2028 16 of 29

experience (no kinesthetic data) and a path with previous experience (kinesthetic) have
been created.

x x

y
y

z
z

(b)(a)

Figure 16. Comparison between an empty workspace without experience and the addition of
kinesthetic data. Red point indicates initial point and red stars indicate final points. (a) Demonstration
without any previous experience (no kinesthetic data were collected); and (b) demonstration of the
same path but adding some kinesthetically collected experience.

3.6.4. One-Shot Learning

As described in [34,35], one-shot learning refers to the characteristics that some learn-
ing methods have to be able to successfully reproduce and generalize certain tasks with
a single taught demonstration. This is a relevant and important feature, as it allows a
reduction in the amount of data to be collected, which can reduce to a certain extent the
errors derived from the difficulty that this sometimes entails.

When a large number of kinesthetic demonstrations are applied in the FML method,
in the dilation stage, the algorithm tends to generate a single area of influence, where,
depending on the aoi set, more or less demonstrations can be grouped together. There-
fore, what the method establishes is a single demonstration derived from the union of
many demonstrations. The union of several learned tasks makes it possible to generate
a single area of interest larger than with a single learned path, but which behaves as a
one-shot learning. An example of the application of one-shot learning in two dimensions is
represented in Figure 17.

3.6.5. Stable Behavior

Fast Marching Learning has been proven to be stable according to an analysis based
on the Lyapunov Stability Theorem adapted to non-dynamical systems [7]. Equation (2),
defining wave propagation, is considered as the Lyapunov function T(x). It starts at the
specified goal xg for the robot, where T(xg) = 0. Given that the propagation values are
based on the wave arrival times, no negative values can be found. Additionally, as distance
increases from the initial point, the values of T(x) also increase. Finally, since no local
minima are found in T(x) and given the increasing value of the wave, the derivative of the
function is always positive.

Added to the above facts, when the gradient is applied on the function, it descends
following the direction in which time decreases the most. Hence, the Lyapunov conditions
are met, proving that the system is asymptotically stable. This means that every motion
calculated with FML converges to the same point, since only a single minimum exists
in T(x).

Appl. Sci. 2023, 13, 2028 17 of 29

(a) One-shot demonstration (b) Velocity matrix of one shot

(c) Many shots demonstration (d) Velocity matrix of many shots

Figure 17. Comparison between demonstrations with one shot and many shots. The use of many
shots generates a merging of all those shots in a single shot velocity matrix.

3.6.6. Limitations of the Method

The main disadvantage of FML derives directly form the disadvantages of FM2.
The main problem is given by the high dimensionality of the working environment. Work-
ing in environments where the search space is very high or the resolution is very small
results in an excessively large working matrix, which makes the FM2 method unable to
obtain a solution in a reasonable time because the equation must check a large number of
points. This problem is often encountered when working in outdoor environments where
large navigation areas have to be covered for trajectory planning with mobile robots or
UAVs [36]. To avoid this problem in robotic manipulation, a constant environment matrix
value is set. This matrix will have as maximum and minimum range the values of the
manipulator workspace and the minimum resolution possible. In our case, a working
matrix of 150× 150× 150 cells with a resolution of 1 cm is established.

3.7. Fast Marching Learning as a Reinforcement Learning Problem

As explained in previous sections, robotic arm control for environmental elements
manipulation needs to have a balance between tasks that we give to the robot and tasks
that it can learn autonomously. The generation and use of the FML method is based on the
application of the general characteristics of reinforcement learning algorithms [37], where
the robot is supposed to take different actions in an environment so as to maximize the
value of a specific cumulative reward, but obtaining the advantages of the FM2 method
for the generation of the trajectories. Specifically, the developed algorithm establishes a
direct relationship of its structure with Markov Decision Processes (MDPs) [38]. In MDPs,
the robot selects an action a in a given state st according to a specific policy created π,
which tries to maximize a reward function r provided that there is a transition probability
of being in state st+1 after selecting an action at when in state st, p(st+1|st, at). MDPs are
generated using the idea that the actions and states are finite. Thus, the task to be solved
can be easily defined as a sequence of different behaviors given descriptive state variables.
A schematic of the MDPs is represented in Figure 18.

Appl. Sci. 2023, 13, 2028 18 of 29

Figure 18. Schematic of MDP.

Despite the advantages of MDP, working with this method in manipulation with a
large number of DoF is not trivial. Due to high dimensionality, a large number of actions
can exist as a function of states, which leads to an infinite number of state–action pairs.
The FML algorithm manages to solve this problem due to the direct application of FM2, that
allows working in a discretized space obtaining results in a continuous space. As such, FML
allows working in a priory environment with infinite actions (continuous), simplifying the
positions of the end-effector to a discrete space and subsequently obtaining a sequence
of actions for each state. If we relate the elements established for the MDPs to the direct
application using FML on the robotic arms, we obtain that the actions are denoted by the
actions to be performed by each motor. States allow us to represent each of the joint and
end-effector positions. The control policy, when working with FM2, will be denoted by the
potential matrix which represents the arrival times at the specified points. As this policy
will always seek to minimize the distance and time to perform a task, which entails seeking
the maximum combination of velocities, it can be assumed that the reward for the FML is
represented by the velocity matrix. Positive reinforcement is obtained for going through
the fastest and more favorable areas (without obstacles). Negative reinforcement will be
given for the slower and less favorable areas (areas closed to obstacles). This control policy
therefore allows the position commands to each motor to be estimated on a state-by-state
basis. In this case, the obtained policy is deterministic.

Unlike in FM2, where a direct estimation is made between the initial and final points,
thus obtaining the path to follow, in FML, this process is carried out for each of the points
that make up the path between the initial and final points. As such, the action of the next
state is obtained only taking into account the previous state as well as the decisions taken
in it.

4. Experimental Evaluation of FML Algorithm

To evaluate the performance of the proposed method, different experiments have
been made. The first experiment is based on the replication of different handwriting paths
generated by the user. For that experiment, the LASA human handwriting dataset [39]
is used. It contains thirty recorded handwriting motions that were generated using a
Tablet-PC, and is commonly used as a benchmark to evaluate different algorithms and its
performances, as explained in [24,40]. With this experiment, the algorithm capability to
solve complex motions in two-dimensional environments is shown.

The second experiment is based on different three-dimensional tasks developed for
the six DoF UR3 arm in a real environment. This experiment is divided in multiple tasks to
prove the ability of the method to solve real daily assignments that can be performed in an
indoor environment with and without obstacles (that can be static and dynamic). Through
this experiment, it is demonstrated how the method allows the safe execution of a task
while being able to precisely dodge the different elements of the environment.

4.1. Experiments Based on Human Handwriting Paths

Recorded motions in the LASA human handwriting library are two-dimensional,
i.e., ξ = [x; y] ∈ R2. For each generated pattern, seven demonstrations are provided,
where the starting motion point is represented by different initial positions and the ending
position is the same point in all cases. All the provided demonstrations have the same
number of data points and may intersect with each other. Among the 30 handwriting
motions in the library, 26 of them include one single pattern that represents one-shot-

Appl. Sci. 2023, 13, 2028 19 of 29

learning examples. Three of them are formed by two patterns and one by three patterns,
representing multiple-shot-learning examples. For this experiment, it has been decided
to make use of some predetermined and constant values for all the tests. As such, it is
possible to see how the method works without being affected by a variable change. For this
experiment, a sat = 0.1 and aoi = 25 px were taken as starting data. The experiment in
two dimensions is divided into two different cases. The first case is used to compare the
developed method (FML) against a group of methods from state of the art without taking
into account the auto-learning process. This will allow verifying how well the generated
paths fit learned data. The second case will compare the results, taking into account the
auto-learning process, which allows one to evaluate the advantages of the algorithm in
terms of trajectory optimization and speed. Figures 19 and 20 show the result of using
FML in the LASA dataset. In Figure 19, the result of using the method without using
the auto-learning process can be seen. In this case, there is no environment exploration
so the method perfectly follows the data learned by demonstration. Figure 20 shows the
method using the auto-learning process. As it is shown in this sub-figure, the method
generates an optimization in path length and the time to solve the different cases. Overall,
the figures show how reproductions (blue lines) closely match demonstrations (red points)
when the auto-learning is not working, and when this process is working, the method has
the ability to obtain correct paths in which the execution time is shorter. This promotes the
developed algorithm having a balance between the exploration of the environment and
the exploitation of learned data. In addition to the obtained values, several tests have been
performed with variations in both the saturation and size of the area of influence, obtaining
always satisfactory results for saturation values between sat = (0.05, 1].

Figure 19. Qualitative results of FML applied on the LARSA dataset only considering data exploita-
tion. Fast Marching Learning is applied without including the auto-learning process. No exploration
capabilities are available, only exploitation. Arrows correspond to the velocity map, blue lines are
FML results and red points are taught data. Paths start in black dots and end in black stars.

Appl. Sci. 2023, 13, 2028 20 of 29

Figure 20. Qualitative results of FML applied on the LARSA dataset considering that exploration
and exploitation are merged using the auto-learning process. Fast Marching Learning is applied
considering the auto-learning process. Exploration capabilities are combined with exploitation, so
new paths can be found. Arrows correspond to the velocity map, blue lines are FML results and red
points are taught data. Paths start in black dots and end in black stars.

Once results have been presented qualitatively with the LASA dataset, a quantitative
comparison has been made with some of the most widely used algorithms in the state of
the art for the trajectory generation using learning methods (presented in Section 1). Those
algorithms are SEDS, CLF-DM, FSM-DM, UMIC and Modified DS, whose source codes are
all available online. Their characteristics are presented in Table 1.

Table 1. Characteristics of the different algorithms compared.

Global
Stability

Multiple
Demonstrations

Single-Step
Learning

Direct Application to
Higher Dimension

SEDS Yes Yes No No
CLF-DM Yes Yes No No
FSM-DM Yes Yes No No

UMIC Yes Yes Yes No
Modified DS Yes Yes Yes Yes
Out method

(FML) Yes Yes Yes Yes

For this process, a quantitative comparison was made using two error functions: swept
error area (SEA) [26] and velocity mean square error Vrmse [41]. The SEA equation is defined
as follows:

SEA =
N

∑
k=0

A(pte(k), pte(k + 1), ptd(k), ptd(k + 1)) (8)

where A(pte(k), pte(k + 1), ptd(k), ptd(k + 1)) corresponds to the area of the tetragon gen-
erated by the four points represented as pte(k), pte(k + 1), ptd(k), ptd(k + 1), where pte and
ptd indicate the sampled points in the trajectory reproduced by the method and the demon-
strated trajectories, respectively. To visually understand the equation, an explanation using
schematics is shown in Figure 21. Vrmse can be computed following the next equation:

Appl. Sci. 2023, 13, 2028 21 of 29

Vrmse =

√√√√ 1
T

T

∑
t=0
‖ẋt

d − ẋt
m‖

2 (9)

where ẋt
m represents the velocity of the trajectory generated by the learned method and

ẋt
d represents the velocity of the trajectories in demonstrations, where 0 means that the

velocity of the method generates a response as fast as learned data.

Figure 21. Visual explanation of the swept error area (SEA) [26].

Therefore, the SEA score can be understood as the error in the reproduction of a learned
path, comparing the shapes between learned demonstrations and the generated path for
each method, while Vrmse measures the preservation of the velocities of the demonstrated
motions. A comparison of between the results of the FML method and the other selected
methods is presented in Table 2.

Table 2. Reproduction error of different methods on the LASA dataset.

Method Mean SEA (mm2) Mean Vrmse (mm/s)

SEDS 8.18× 105 142.9
CLF-DM 5.72× 105 71.8
FSM-DM 8.37× 105 172.6

UMIC 8.79× 105 143.2
Modified DS 4.07× 105 56.9

Out method (FML) 1.23× 105 12.48
Out method (FML)
using auto-learning − 9.17

As expressed in Table 2, FML has clear advantages over the other methods. The mean
SEA has a lower value, which means that it has a better reproduction when keeping the
same starting points. FML also has a lower Vrmse value, which means that reproductions
are as smooth as demonstrations, which is one of the previously presented advantages.
When FML used auto-learning, the SEA error cannot be used because, due to the path
optimization of the FML, a shorter path length is obtained, which does not allow a point-to-
point comparison with the kinesthetically acquired data. Therefore, only Vrmse can be used.
FML with auto-learning achieves a lower velocity due to the resulting path length reduction,
as previously represented in Figure 20. Thus, it can be observed that shorter paths generate
faster responses. FML achieves higher accuracy in terms of similarity based on the two error
functions. In the case of SEA, the proposed method improves by approximately 69.78%

Appl. Sci. 2023, 13, 2028 22 of 29

and Vrmse promotes approximately 78.06% without the auto-learning process and 83.85%
with the auto-learning process compared with the most restrictive method (modified DS).

4.2. Experiments in a Real Indoor Environment

Once the algorithm has been tested in 2-dimensional environments, it has been de-
cided to test it in a 3-dimensional indoor scenario. The bimanipulator robot described
in Section 3.1 is deployed on the test environment, where there is a fixed obstacle (the
table) and dynamic obstacles (boxes) which can vary in the environment. For the correct
association between the real environment and the validation of the method, a simulated
environment was created with the same shape and size as the real one. It was modeled
using collisionable objects provided by MATLAB. This environment additionally allows us
to check the robotic arm configurations, thus avoiding collisions with the rest of the arm,
since even if the end effector correctly follows the calculated path, the rest of the arm may
collide with obstacles in the environment or with itself. Both environments can be seen in
Figure 22.

xy

z

(a) (b)

Figure 22. Experimental environment for FML method in 3 dimensions: (a) real environment; and
(b) simulated environment. Obstacles are represented with convex collision object (brown) and the
UR3 arm is represented with the same pose as the real one.

To test the algorithm, different experiments were carried out. First, an experiment was
performed in an environment with no obstacles other than the table. The second experiment
takes into account one obstacle (box) during data acquisition. The third experiment uses
data from the first experiment and adds an object dynamically. The fourth experiment
consists of testing the algorithm performance against segregated data. Finally, a fifth test
was carried out in which the method has been confronted with a series of incorrect and
unconnected data. As an additional resource, in the following link, a video with all the
performed experiments can be found: https://youtu.be/_sklRg0NCM8 (accessed on 1
February 2023).

For all experiments, tests were performed with different values of saturation and areas
of influence. For the representation in the paper, a series of fixed values were selected for
the tests, which are the following: aoi = 5 vx, sat = 0.25 and κ = 0.6 as the auto-learning
limit. It is important to emphasize that the method does not generate any type of position
error when working in the simulated environment because the algorithm is complete and
always generates a possible solution if it exists. In contrast, when the paths are sent to the
real robot, there is a small error due to the minimum resolution for each of the robot’s joints.
The value of this resolution is 0.1◦ which generates an approximate error in the position of
±0.05 cm in each of the coordinates. Since the resolution we are working with is 1 cm, this
error is assumed and does not generate any type of inconvenience in the generation of the
solution trajectories.

https://youtu.be/_sklRg0NCM8

Appl. Sci. 2023, 13, 2028 23 of 29

4.2.1. First Experiment: Empty Environment

For the realization of this experiment, a free workspace, other than the table was
been selected. Data acquisition was kinesthetically performed, as explained in Section 3.1,
obtaining learned data in Figure 23a (blue lines). A goal destination is sent to FML, which
computes the green path shown in Figure 23a. The initial point in this experiment is
P0 = [30, 130, 110] cm and the endpoint is Pf = [40, 78, 87] cm with a position error of
Perror = 0 cm. It can be observed that the generated path takes advantage of most of
the learned paths, so that a result, where no auto-learning step is required, is generated,
as a κ = 0.635 is obtained. The velocity field generated in three dimensions is shown in
Figure 23b, where the cells of the matrix in gray represent the points where the velocity
is 0 (robot body and table) and the red lines represent the fastest velocities. The path is
then sent to the collision checking algorithm, in which a simulation is performed prior to
sending the values to the real robot. The result is represented in Figure 23c. The robotic
arm successfully moves in the real scenario.

xy

z

(a) Learned data (blue) and generated
path (green). Red point indicates the ini-
tial point.

xy

z

(b) Velocity field representing possible
estimated paths.

xy

z

(c) Generated path (green) in the simu-
lated environment.

Figure 23. Fast Marching Learning results for experiment 1.

4.2.2. Second Experiment: Environment with Static Objects

In the second experiment, a static object (box) is added to the workspace and it is
considered during data acquisition, as shown in Figure 24.

x
y

z

Figure 24. Data collected taking into account the obstacle. Learned data (blue) avoids the box (gray).

Appl. Sci. 2023, 13, 2028 24 of 29

This fact implies that taught paths indicate to the robot where the obstacle is located,
encouraging newly generated paths to avoid the box. Figure 25a shows learned kines-
thetic data (blue) taking into account the box in the data acquisition and the resulting
planned path (green) when a new target is indicated. The initial point in this experiment
is P0 = [30, 130, 110] cm and the endpoint is Pf = [40, 78, 87] cm with a position error of
Perror = 0 cm. This endpoint has been placed behind the box to test the performance of the
algorithm when dodging objects. Again, a large part of the resulting path coincides with
taught data, so no auto-learning is performed (κ = 0.7894). If we visualize the velocity field
corresponding to this case, (Figure 25b), we can see how it generates maximum velocity
lines (red) avoiding the box and including learned data (blue) as part of the maximum
velocity regions. Figure 25c shows the generated path in the simulated environment, which
correctly avoids the box without collisions.

Version January 31, 2023 submitted to Journal Not Specified 24 of 28

x

y

z

(a) Learned data (blue) and generated
path (green). Red point indicates the
initial point.

y x

z

(b) Velocity field representing possible esti-
mated paths.

xy

z

(c) Path generated in the simulated envi-
ronment taking into account the box.

Figure 25. Fast Marching Learning results for experiment 2.

4.2.3. Third experiment: Environment with dynamic objects 701

For this experiment, we proceeded in the same way as in the first experiment, taking 702

data with the robot in a kinesthetic way without considering any object apart from the table. 703

Subsequently, in the real environment, in the simulated environment and in the velocity 704

matrix, a box is added coinciding with learned paths. This is shown in Fig.26. 705

x

y

z

Figure 26. Data collected without considering the box. Learned data (blue) goes trough the box
(gray).

Collected data (blue) and the resulting calculated path (green) is shown in Fig.27a. 706

The initial point in this experiment is P0 = [28, 130, 100] cm and the endpoint is Pf = 707

[25, 87, 89] cm with a position error of Perror = 0 cm. The path avoids the newly detected 708

object, so it does not coincide with previous knowledge. Given that κ = 0.2096, the path 709

is auto-learned and added to previous knowledge. It can be observed in Fig.27b how 710

the velocity matrix is modified, eliminating velocity lines wchich intersect the obstacle. 711

In this way, although the path has been learned, the algorithm prevents the search for 712

solutions that cross the obstacle by eliminating them from the matrix. Fig.27c shows the 713

result of sending the path to the simulated robot. It can be seen that the path gives correct 714

configurations and that the arm is able to avoid the box without needing to repeat the 715

whole learning procedure. 716

Figure 25. Fast Marching Learning results for experiment 2.

4.2.3. Third Experiment: Environment with Dynamic Objects

For this experiment, we proceeded in the same way as in the first experiment, taking
data with the robot in a kinesthetic way without considering any object apart from the table.
Subsequently, in the real environment, in the simulated environment and in the velocity
matrix, a box is added coinciding with learned paths. This is shown in Figure 26.

Version January 31, 2023 submitted to Journal Not Specified 24 of 28

x

y

z

(a) Learned data (blue) and generated
path (green). Red point indicates the
initial point.

y x

z

(b) Velocity field representing possible esti-
mated paths.

xy

z

(c) Path generated in the simulated envi-
ronment taking into account the box.

Figure 25. Fast Marching Learning results for experiment 2.

4.2.3. Third experiment: Environment with dynamic objects 701

For this experiment, we proceeded in the same way as in the first experiment, taking 702

data with the robot in a kinesthetic way without considering any object apart from the table. 703

Subsequently, in the real environment, in the simulated environment and in the velocity 704

matrix, a box is added coinciding with learned paths. This is shown in Fig.26. 705

x

y

z

Figure 26. Data collected without considering the box. Learned data (blue) goes trough the box
(gray).

Collected data (blue) and the resulting calculated path (green) is shown in Fig.27a. 706

The initial point in this experiment is P0 = [28, 130, 100] cm and the endpoint is Pf = 707

[25, 87, 89] cm with a position error of Perror = 0 cm. The path avoids the newly detected 708

object, so it does not coincide with previous knowledge. Given that κ = 0.2096, the path 709

is auto-learned and added to previous knowledge. It can be observed in Fig.27b how 710

the velocity matrix is modified, eliminating velocity lines wchich intersect the obstacle. 711

In this way, although the path has been learned, the algorithm prevents the search for 712

solutions that cross the obstacle by eliminating them from the matrix. Fig.27c shows the 713

result of sending the path to the simulated robot. It can be seen that the path gives correct 714

configurations and that the arm is able to avoid the box without needing to repeat the 715

whole learning procedure. 716

Figure 26. Data collected without considering the box. Learned data (blue) goes through the
box (gray).

Collected data (blue) and the resulting calculated path (green) are shown in Figure 27a.
The initial point in this experiment is P0 = [28, 130, 100] cm and the endpoint is
Pf = [25, 87, 89] cm with a position error of Perror = 0 cm. The path avoids the newly
detected object, so it does not coincide with previous knowledge. Given that κ = 0.2096,
the path is auto-learned and added to previous knowledge. It can be observed in Figure 27b

Appl. Sci. 2023, 13, 2028 25 of 29

how the velocity matrix is modified, eliminating the velocity lines which intersect with the
obstacle. As such, although the path has been learned, the algorithm prevents the search
for solutions that cross the obstacle by eliminating them from the matrix. Figure 27c shows
the result of sending the path to the simulated robot. It can be seen that the path gives
correct configurations and that the arm is able to avoid the box without needing to repeat
the whole learning procedure.Version January 31, 2023 submitted to Journal Not Specified 25 of 28

x
y

z

(a) Learned data (blue) and generated
path (green). Red point indicates the
initial point.

y
x

z

(b) Velocity field representing possible esti-
mated paths.

y
x

z

(c) Path generated in the simulated envi-
ronment taking into account the box.

Figure 27. Fast Marching Learning results for experiment 3.

4.2.4. Fourth experiment: Segregated data 717

For the fourth experiment, a learning process with segregated data has been carried 718

out.This means that there is not complete information given in the workspace. For instance, 719

if we only teach the robot to make vertical movements (raising and lowering the arm) 720

we will be segregating learned information, as we are not showing movements with all 721

possible characteristics. Fig.28 shows an example of that, in which only vertical movements 722

have been taught to the arm (blue lines), and it is asked to perform a path that also needs 723

horizontal information. A path with a horizontal component is successfully obtained 724

using Fast Marching Learning (green path). The initial point in this experiment is P0 = 725

[140, 5, 120] cm and the endpoint is Pf = [100, 55, 70] cm with a position error of Perror = 726

0 cm. The process also performs auto-learning on generated path since κ = 0.105. Then, 727

for subsequent path planning procedures, this path is already available. It can be stated 728

that data segregation does not affect the developed method due to the ability to merge 729

exploitation of the learned information and exploration of the environment. 730

x

y

z

Figure 28. Path (green) generated using segregated data (blue) for the fourth experiment. Red point
indicates the initial point of the path.

4.2.5. Fifth experiment: Incorrect data 731

The fifth performed experiment aims to prove the correctness of the method when 732

generating a path using incorrect learned data. Incorrect data are considered to be those 733

that are unrelated to each other, unrealistic and impractical for an everyday task. In this 734

case, paths give random turns at different points of the workspace and are also unrealistic, 735

since they are useless data for a normal manipulation task. This is represented by blue lines 736

in Fig.29. Learned data does not make logical sense for the realization of trajectories for 737

normal handling tasks in indoor environments, which is why they are considered to be 738

incorrect. If a trajectory is computed aiming to connect a starting and an end point close to 739

Figure 27. Fast Marching Learning results for experiment 3.

4.2.4. Fourth Experiment: Segregated Data

For the fourth experiment, a learning process with segregated data was carried out.
This means that there is not complete information given in the workspace. For instance,
if we only teach the robot to make vertical movements (raising and lowering the arm),
we will be segregating learned information, as we are not showing movements with
all possible characteristics. Figure 28 shows an example of that, in which only vertical
movements have been taught to the arm (blue lines), and it is asked to perform a path that
also needs horizontal information. A path with a horizontal component is successfully
obtained using Fast Marching Learning (green path). The initial point in this experiment
is P0 = [140, 5, 120] cm and the endpoint is Pf = [100, 55, 70] cm with a position error
of Perror = 0 cm. The process also performs auto-learning on the generated path since
κ = 0.105. Then, for subsequent path planning procedures, this path is already available. It
can be stated that data segregation does not affect the developed method due to the ability
to merge the exploitation of the learned information and the exploration of the environment.

Version January 31, 2023 submitted to Journal Not Specified 25 of 28

x
y

z

(a) Learned data (blue) and generated
path (green). Red point indicates the
initial point.

y
x

z

(b) Velocity field representing possible esti-
mated paths.

y
x

z

(c) Path generated in the simulated envi-
ronment taking into account the box.

Figure 27. Fast Marching Learning results for experiment 3.

4.2.4. Fourth experiment: Segregated data 717

For the fourth experiment, a learning process with segregated data has been carried 718

out.This means that there is not complete information given in the workspace. For instance, 719

if we only teach the robot to make vertical movements (raising and lowering the arm) 720

we will be segregating learned information, as we are not showing movements with all 721

possible characteristics. Fig.28 shows an example of that, in which only vertical movements 722

have been taught to the arm (blue lines), and it is asked to perform a path that also needs 723

horizontal information. A path with a horizontal component is successfully obtained 724

using Fast Marching Learning (green path). The initial point in this experiment is P0 = 725

[140, 5, 120] cm and the endpoint is Pf = [100, 55, 70] cm with a position error of Perror = 726

0 cm. The process also performs auto-learning on generated path since κ = 0.105. Then, 727

for subsequent path planning procedures, this path is already available. It can be stated 728

that data segregation does not affect the developed method due to the ability to merge 729

exploitation of the learned information and exploration of the environment. 730

x

y

z

Figure 28. Path (green) generated using segregated data (blue) for the fourth experiment. Red point
indicates the initial point of the path.

4.2.5. Fifth experiment: Incorrect data 731

The fifth performed experiment aims to prove the correctness of the method when 732

generating a path using incorrect learned data. Incorrect data are considered to be those 733

that are unrelated to each other, unrealistic and impractical for an everyday task. In this 734

case, paths give random turns at different points of the workspace and are also unrealistic, 735

since they are useless data for a normal manipulation task. This is represented by blue lines 736

in Fig.29. Learned data does not make logical sense for the realization of trajectories for 737

normal handling tasks in indoor environments, which is why they are considered to be 738

incorrect. If a trajectory is computed aiming to connect a starting and an end point close to 739

Figure 28. Path (green) generated using segregated data (blue) for the fourth experiment. Red point
indicates the initial point of the path.

Appl. Sci. 2023, 13, 2028 26 of 29

4.2.5. Fifth Experiment: Incorrect Data

The fifth performed experiment aims to prove the correctness of the method when
generating a path using incorrect learned data. Incorrect data are considered to be those
that are unrelated to each other, unrealistic and impractical for an everyday task. In this
case, paths give random turns at different points of the workspace and are also unrealistic,
since they are useless data for a normal manipulation task. This is represented by blue lines
in Figure 29. Learned data do not make logical sense for the realization of trajectories for
normal handling tasks in indoor environments, which is why they are considered to be
incorrect. If a trajectory is computed aiming to connect a start and an end point close to the
incorrect data, a smooth path invariant from this incorrect data is found. This is depicted
by the green line in Figure 29. The initial point in this experiment is P0 = [40, 87, 90] cm and
the endpoint is Pf = [40, 78, 87] cm with a position error of Perror = 0 cm. Despite having
unconnected data, the method takes advantage of some of the learned data and manages
to solve the path by establishing a region that connects both points using a combination of
the exploration of the environment and exploitation of the information learned.

Version January 31, 2023 submitted to Journal Not Specified 26 of 28

incorrect data, a smooth path invariant from this incorrect data is found. This is depincted 740

by the green line in Fig.29. The initial point in this experiment is P0 = [40, 87, 90] cm and 741

the endpoint is Pf = [40, 78, 87] cm with a position error of Perror = 0 cm. Despite having 742

unconnected data, the method takes advantage of some of the learned data and manages 743

to solve the path by establishing a region that connects both points using a combination of 744

exploration of the environment and exploitation of the information learned. 745

x

y

z

Figure 29. Path (green) generated with erroneous data (blue) for the fifth experiment. Red point
indicates the initial point of the path.

5. Conclusions 746

In this paper, the operation of the extended FML and the extension of the algorithm 747

can be observed by adding the ability to work in a 3-dimensional environment as well as 748

the auto-learning process developed for this method has been detailed. It has been shown 749

that the method works correctly in empty workspaces, with obstacles that are present when 750

the data is being collected and with obstacles that work as dynamic objects. Due to the 751

benefits of the FM2 capabilities, the method shows a different point of view from other 752

motion learning methods. 753

The method shows an equilibrium between the exploration of the environment and 754

the exploitation of the learning data, this generates results that allow adaptation to any 755

type of environment tested, independently of errors in data collection and segregation 756

in the data learned. The principal advantages from this method againsts other are the 757

determinism, stable behaviour, bi-directional behaviour, one-shot learning, capability to 758

solve the problem without enough data and capability to auto-learn from its own experience. 759

Besides, experimental results show that FML method generates reliable and safe paths. 760

The method has been presented qualitatively with the LASA dataset and has been 761

compared quantitatively against 5 different Imitation Learning algorithms presented in 762

the state of the art. This comparison has presented that the method developed generates 763

paths with less error and faster than the other previous methods. This is mathematically 764

represented by SEA, in which our method promotes approximately 69, 78%, and Vrmse, with 765

an improvement of 78.06% without auto-learning process and 83.85% with auto-learning 766

process compared with the most restrictive method (Modified DS). It can be seen that the 767

method developed tends to seek the fastest solution by making use of both the information 768

learned and the exploration of the environment, generating solutions that, compared with 769

other typical methods, optimise the resolution. It does not only make use of contrasted 770

information, but is able to carry out an auto-learning of possible options that optimise 771

the solution. The idea of this method is not to position itself as a better option than other 772

methods, but to present its own solution based on the idea of learning the environment for 773

the manipulation of elements in an environment and with a real robot. In spite of this, it can 774

be observed that the FML algorithm presents clear advantages over other imitation learning 775

techniques since it is able to solve the main defects of imitation algorithms such as data 776

Figure 29. Path (green) generated with erroneous data (blue) for the fifth experiment. Red point
indicates the initial point of the path.

5. Conclusions

In this paper, the operation of the extended FML and the extension of the algorithm
can be observed by adding the ability to work in a 3-dimensional environment as well as
the auto-learning process developed for this method has been detailed. It has been shown
that the method works correctly in empty workspaces, with obstacles that are present when
the data are being collected and with obstacles that work as dynamic objects. Due to the
benefits of the FM2 capabilities, the method shows a different point of view from other
motion learning methods.

The method shows an equilibrium between the exploration of the environment and the
exploitation of the learning data, which generates results that allow adaptation to any type
of environment tested, independently of errors in data collection and segregation in the
data learned. The principal advantages from this method against others are its determinism,
stable behavior, bi-directional behavior, one-shot learning, capability to solve the problem
without enough data, and capability to auto-learn from its own experience. Additionally,
experimental results show that the FML method generates reliable and safe paths.

The method was qualitatively presented with the LASA dataset and has been quan-
titatively compared against five different imitation learning algorithms presented in the
state of the art. This comparison has presented that the developed method generates
paths with less error and faster than the other previous methods. This is mathematically
represented by SEA, in which our method promotes approximately 69, 78%, and Vrmse,
with an improvement of 78.06% without an auto-learning process and 83.85% with an

Appl. Sci. 2023, 13, 2028 27 of 29

auto-learning process compared with the most restrictive method (modified DS). It can
be seen that the developed method tends to seek the fastest solution by making use of
both the information learned and the exploration of the environment, generating solutions
that, compared with other typical methods, optimize the resolution. This does not only
make use of contrasted information, but is able to carry out an auto-learning of possible
options that optimize the solution. The idea of this method is not to position itself as a
better option than other methods, but to present its own solution based on the idea of
learning the environment for the manipulation of elements in an environment and with
a real robot. In spite of this, it can be observed that, the FML algorithm presents clear
advantages over other imitation-learning techniques since it is able to solve the main defects
of imitation algorithms, such as data dependence, since the algorithm is able to work with
none, one and even with incorrect data due to its balance between the exploitation factor
and the exploration of the environment. In addition to this, the presented algorithm can
be implemented in several dimensions, a factor that other algorithms do not have, as it
presents a higher efficiency than the algorithms typically used for this type of techniques.

Therefore, future work will focus on applying that method for the bimanipulation
of elements of the environment using the same robot, taking into account the learning
process for each of the arms, generating the auto-learned data and correlating it to generate
coordinated and independent tasks.

Author Contributions: Conceptualization, A.P., S.G. and R.B.; methodology, R.B. and S.G.; software,
A.P.; validation, A.P., A.M., B.L. and J.M.; formal analysis, A.P., A.M., B.L. and J.M.; investigation,
A.P. and A.M.; resources, A.P. and A.M.; data curation, A.P. and A.M.; writing—original draft
preparation, A.P., A.M., B.L. and J.M.; writing—review and editing, A.P., A.M., B.L, J.M., S.G. and
R.B.; visualization, A.P. and A.M.; supervision, S.G. and R.B.; project administration, S.G. and R.B.;
funding acquisition, S.G. and R.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the funding from HEROITEA: Heterogeneous Intelligent
Multi-Robot Team for Assistance of Elderly People (RTI2018- 095599-B-C21), funded by Spanish Min-
isterio de Economia y Competitividad, RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation
Hub, S2018/NMT-4331, funded by “Programas de Actividades I+D en la Comunidad de Madrid”
and cofunded by Structural Funds of the EU.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: We acknowledge the R&D&I project PLEC2021-007819 funded by MCIN/AEI/
10.13039/501100011033 and by the European Union NextGenerationEU/PRTR and the Comunidad de
Madrid (Spain) under the multiannual agreement with Universidad Carlos III de Madrid (“Excelencia
para el Profesorado Universitario”—EPUC3M18) part of the fifth regional research plan 2016-2020.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, X.; Zhao, B.; Wang, Y.; Xu, S.; Gao, X. Control of a 7-DOF robotic arm system with an SSVEP-based BCI. Int. J. Neural Syst.

2018 28, 1850018. [CrossRef]
2. Si, W.; Wang, N.; Yang, C. A review on manipulation skill acquisition through teleoperation-based learning from demonstration.

Cogn. Comput. Syst. 2021, 3, 1–16. [CrossRef]
3. Xie, Z.; Zhang, Q.; Jiang, Z.; Liu, H. Robot learning from demonstration for path planning: A review. Sci. China Technol. Sci. 2020,

63, 1325–1334. [CrossRef]
4. Shen, Y.; Jia, Q.; Huang, Z.; Wang, R.; Fei, J.; Chen, G. Reinforcement learning-based reactive obstacle avoidance method for

redundant manipulators. Entropy 2022 24, 279. [CrossRef]
5. Nguyen, H.; La, H. Review of deep reinforcement learning for robot manipulation. In Proceedings of the 2019 Third IEEE

International Conference on Robotic Computing (IRC), Naples, Italy, 25–27 February 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 590–595.

http://doi.org/10.1142/S0129065718500181
http://dx.doi.org/10.1049/ccs2.12005
http://dx.doi.org/10.1007/s11431-020-1648-4
http://dx.doi.org/10.3390/e24020279

Appl. Sci. 2023, 13, 2028 28 of 29

6. Gomez, J.V.; Alvarez, D.; Garrido, S.; Moreno, L. Kinesthetic teaching via fast marching square. In Proceedings of the 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; IEEE:
Piscataway, NJ, USA, 2012; pp. 1305–1310.

7. Gomez, J.V.; Alvarez, D.; Garrido, S.; Moreno, L. Fast marching-based globally stable motion learning. Soft Comput. 2017, 21,
2785–2798. [CrossRef]

8. Gomez, J.V.; Alvarez, D.; Garrido, S.; Moreno, L. Fast marching solution for the social path planning problem. In Proceedings of
the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May 2014–7 June 2014; IEEE:
Piscataway, NJ, USA, 2014; pp. 1871–1876.

9. Tan, G.; Zou, J.; Zhuang, J.; Wan, L.; Sun, H.; Sun, Z. Fast marching square method based intelligent navigation of the unmanned
surface vehicle swarm in restricted waters. Appl. Ocean. Res. 2018, 95, 10.

10. Fang, B.; Jia, S.; Guo, D.; Xu, M.; Wen, S. Survey of imitation learning for robotic manipulation. Int. J. Intell. Robot. Appl. 2019, 3,
362–369. [CrossRef]

11. Billard, A.; Calinon, S.; Dillman, R.; Schaal, S. Robot programming by demonstration. In Springer Handbook of Robotics; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 1371–1394.

12. Ott, C.; Lee, D.; Nakagura, Y. Motion capture based human motion recognition and imitation by direct marker control. In
Proceedings of the Humanoids 8th IEEE-RAS International Conference on Humanoid Robots, Daejeon, Republic of Korea, 1–3
December 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 399–405.

13. Sasagawa, A.; Fujimoto, K.; Sakaino, S.; Tsuij, T. Imitation learning based on bilateral control for human robot cooperation. IEEE
Robot. Autom. Lett. 2020, 5, 6169–6176. [CrossRef]

14. Singh, J.; Srinivasan, A.R.; Neumann, G.; Kucukyilmaz, A. Haptic-guided teleoperation of a 7-dof collaborative robot arm with an
identical twin master. IEEE Trans. Haptics 2020, 13, 246–252. [CrossRef] [PubMed]

15. Nemec, B.; Zorko, M.; Zlajpah, L. Learning of a ball-in-a-cup playing robot. In Proceedings of the 19th International Workshop on
Robotics in Alpe-Adria-Danube Region (RAAD 2010), Budapest, Hungary, 24–26 June 2010; IEEE: Piscataway, NJ, USA, 2010;
pp. 297–301.

16. Bujarbaruah, M.; Zheng, T.; Shetty, A.; Sehr, M.; Borrelli, F. Learning to play cup-and-ball with noisy camera observations. In
Proceedings of the IEEE 16th International Conference on Automation Science and Engineering (CASE), Hong Kong, China,
20–21 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 372–377.

17. Muelling, K.; Kober, J.; Peters, J. Learning table tennis with a mixture of motor primitives. In Proceedings of the 2010 10th
IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, 6–8 December 2010; IEEE: Piscataway, NJ, USA,
2010; pp. 411–416.

18. Saveriano, M.; Abu-Dakka, F.J.; Kramerber, A.; Peternel, L. Dynamic movement primitives in robotics: A tutorial survey. arXiv
2021, arXiv:2102.03861.

19. Pastor, P.; Hoffman, H.; Asfour, T.; Schaal, S. Learning and generalization of motor skills by learning from demonstration.
In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; IEEE:
Piscataway, NJ, USA, 2009; pp. 763–768.

20. Li,Z.; Zhao, T.; Chen, F.; Hu, Y.; Su, C.Y.; Fukuda, T. Reinforcement learning of manipulation and grasping using dynamical
movement primitives for a humanoid like mobile manipulator. IEEE/ASME Trans. Mechatron. 2017, 23, 121–131.

21. Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [CrossRef]
22. Ratliff, N.D.; Silver, D.; Bagnell, J.A. Learning to search: Functional gradient techniques for imitation learning. Auton. Robot. 2009,

27, 25–53. [CrossRef]
23. Ratliff, N.D.; Bagnell, J.A.; Zinkevich, M.A. Maximum margin planning. In Proceedings of the 23rd International Conference on

Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 729–736.
24. Khansari-Zadeh, S.M.; Khatib, O. Learning potential functions from human demonstrations with encapsulated dynamic and

compliant behaviors. Auton. Robot. 2017, 41, 45–69. [CrossRef]
25. Khansari-Zadeh, S.M.; Billard, A. Learning stable nonlinear dynamical systems with gaussian mixture models. IEEE Trans. Robot.

2011, 27, 943–957. [CrossRef]
26. Khansari-Zadeh, S.M.; Billard, A. Learning control Lyapunov function to ensure stability of dynamical system-based robot

reaching motions. Robot. Auton. Syst. 2014, 62, 752–765. [CrossRef]
27. Duan, J.; Ou, Y.; Hu, J.; Wang, Z.; Jin, S.; Xu, C. Fast and stable learning of dynamical systems based on extreme learning machine.

IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1175–1185. [CrossRef]
28. Delgado-Guerrero, J.A.; Colome, A.; Torras, C. Sample-efficient robot motion learning using Gaussian process latent variable

models. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31
August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 314–320.

29. Zhang, Y.; Cheng, L.; Li, H.; Cao, R. Learning Accurate and Stable Point-to-Point Motions: A Dynamic System Approach. IEEE
Robot. Autom. Lett. 2022, 7, 1510–1517. [CrossRef]

30. Gomez, J.V.; Lumbier, A.; Garrido, S.; Moreno, L. Planning robot formations with fast marching square including uncertainty
conditions. Robot. Auton. Syst. 2013, 61, 137–152. [CrossRef]

31. Sethian, J.A. Fast marching methods. SIAM Rev. 1999, 41, 199–235. [CrossRef]

http://dx.doi.org/10.1007/s00500-015-1981-1
http://dx.doi.org/10.1007/s41315-019-00103-5
http://dx.doi.org/10.1109/LRA.2020.3011353
http://dx.doi.org/10.1109/TOH.2020.2971485
http://www.ncbi.nlm.nih.gov/pubmed/32012028
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1007/s10514-009-9121-3
http://dx.doi.org/10.1007/s10514-015-9528-y
http://dx.doi.org/10.1109/TRO.2011.2159412
http://dx.doi.org/10.1016/j.robot.2014.03.001
http://dx.doi.org/10.1109/TSMC.2017.2705279
http://dx.doi.org/10.1109/LRA.2022.3140677
http://dx.doi.org/10.1016/j.robot.2012.10.009
http://dx.doi.org/10.1137/S0036144598347059

Appl. Sci. 2023, 13, 2028 29 of 29

32. Garrido, S.; Moreno, L.; Gomez, J.V. Motion Planning Using Fast Marching Squared Method. In Motion and Operation Planning of
Robotic Systems: Background and Practical Approaches; (Mechanisms and Machine Science, v.29); Carbone, G., Gomez-Bravo, F., Eds.;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 223–248.

33. Coggan, M. Exploration and Exploitation in Reinforcement Learning. Research Supervised by Prof. Doina Precup, CRA-W DMP Project at
McGill University; McGill University: Montréal, QC, Canada, 2004.

34. Fei-Fei, L.; Fergus, R.; Perona, P. One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 594–611.
[CrossRef]

35. Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv.
2020, 53, 1–34. [CrossRef]

36. Lopez, B.; Muñoz, J.; Moreno, L. Planificacion y manejo de conflictos basado en fast marching square para UAVs en entornos 3D
de grandes dimensiones. In XLIII Jornadas de Automática; Universidade da Coruña. Servizo de Publicacions: A Coruña, Spain,
2022; pp. 735–742.

37. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
38. Putterman, M.L. Markov decision processes. In Handbooks in Operations Research and Management Science; Elsevier: Amsterdam,

The Netherlands, 1990; Volume 2, pp. 331–434.
39. Khansari-Zadeh, S.M. Lasa Human Handwriting Library. Available online: http://lasa.epfl.ch/khansari/LASA_Handwriting_

Dataset.zip/ (accessed on 1 February 2023).
40. Khansari-Zadeh, S.M.; Lemme, A.; Meirovitch, Y.; Schrauwen, B.; Giese, M.A.; Steil, J.; Ijspeert, A.J.; Billard, A. Benchmarking

of state of the art algorithms in generating human-like robot reaching motions. In Proceedings of the Workshop at the IEEE-
RAS International Conference on Humanoid Robots (Humanoids), Atlanta, GA, USA, 15–17 October 2013. Available online:
http://www.amarsi-project.eu/news/humanoids-2013-workshop./ (accessed on 1 February 2023).

41. Lemme, A.; Reinhart, F.; Neumann, K.; Steil, J.J. Neural learning of vector fields for encoding stable dynamical systems.
Neurocomputing 2014, 141, 3–14. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPAMI.2006.79
http://dx.doi.org/10.1145/3386252
http://lasa.epfl.ch/khansari/LASA_Handwriting_Dataset.zip/
http://lasa.epfl.ch/khansari/LASA_Handwriting_Dataset.zip/
http://www.amarsi-project.eu/news/humanoids-2013-workshop./
http://dx.doi.org/10.1016/j.neucom.2014.02.012

	Introduction
	Fast Marching Applied to Path Planning
	Learning Manipulation Trajectories via Fast Marching Square
	Kinesthetic Data Collection
	Fast Marching Learning Algorithm
	Auto-Learning Process
	Important Parameters: Saturation and Area of Influence
	Addition of Obstacles in the Workspace
	Fast Marching Learning Characteristics
	Deterministic Behavior
	Bi-Directional Behavior
	Behavior with No Previous Experience
	One-Shot Learning
	Stable Behavior
	Limitations of the Method

	Fast Marching Learning as a Reinforcement Learning Problem

	Experimental Evaluation of FML Algorithm
	Experiments Based on Human Handwriting Paths
	Experiments in a Real Indoor Environment
	First Experiment: Empty Environment
	Second Experiment: Environment with Static Objects
	Third Experiment: Environment with Dynamic Objects
	Fourth Experiment: Segregated Data
	Fifth Experiment: Incorrect Data

	Conclusions
	References

