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Abstract: A historical review is conducted of PhyFire, a simplified physical forest fire spread model
developed by the research group on Numerical Simulation and Scientific Computation (SINUMCC)
at the University of Salamanca. The review ranges from the first version of the model to the current
one now integrated into GIS, considering all the mathematical problems and numerical methods
involved throughout its development: finite differences, mixed, classical and adaptive finite elements,
data assimilation, sensitivity analysis, parameter adjustment, and parallel computation, among
others. The simulation of processes as complex as forest fires involves a multidisciplinary effort that
is constantly being enhanced, while posing interesting challenges from a mathematical, numerical,
and computational perspective, without losing sight of the overriding aim of developing an efficient,
effective, and useful simulation tool.

Keywords: wildfire spread model; numerical methods for complex simulation models; simplified
physical model; GIS-integrated models

1. Introduction

The EU figure of 770,710 hectares burned in 2022 is the highest since records began in
2006. Spain leads the ranking with 299,436 hectares devastated by fire, more than triple
the ten-year average, according to data provided by the European Forest Fire Information
System (EFFIS) consulted at the end of September (see Figure 1 and [1]). In just one
province, Zamora, more than 60,000 hectares have been burned in two of the largest fires
thus far in Spain.

Not only were there major fires in Southern Europe in 2022, but also further north in
countries that are not usually affected. It has been a year of all-time records, including heat
waves and severe drought. The catastrophic figure of thousands of hectares devastated by
fire in Europe alone shows that the problem is increasingly pressing under the growing
threat of climate change.

This increase in the number and magnitude of wildfires also influences the accom-
panying smoke emissions. According to data from the CAMS Global Fire Assimilation
System (GFAS), total wildfire emissions in the EU during the summer of 2022 are estimated
to have amounted to 6.4 megatons of carbon, the highest level since 2007 [2].

This situation has not only affected Europe, as in the first half of 2022, extreme
fires have also ravaged vast swathes of land across the world. In late July and early
August, numerous forest fires broke out in the eastern and western regions of Eurasia. The
large number of wildfires in 2021 in Western U.S. states made it the most-devastating year
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in this area so far. Their rate has nonetheless increased in the U.S. Pacific Northwest and
Western Canada.

Figure 1. Burned hectares in the most-affected European countries (more than 10,000 ha) during 2022.
Data from EFFIS on 28 September 2022.

The above data provided only a very partial view of the problem of forest fires. Africa,
where fires are widely used to clear grasslands and savanna, accounts for around seventy
percent of the area burned globally. Many of the fires in South America involve the Amazon
rainforest. The latest fire season in the Amazon region (August–September) has registered
the highest number of fires in the last decade, although it is not clear whether this upward
trend will continue. The bushfire season in Australia recorded the most-serious fires. For
an overall view of the global wildfire situation, we recommend [3] and its references.

Although some wildfires occur naturally and help keep forest ecosystems healthy, an
astonishing percentage are caused by human-related activities. Wildfires not only destroy
lives, wildlife habitats, forests, and property, they also accelerate climate change.

Understanding and predicting the behavior of a system as complex as a wildfire is an
undeniably useful tool for reducing its negative effects. Mathematical modeling and numer-
ical simulation play a fundamental role, and they can ultimately assist in decision-making
in prevention, fire-fighting, and further analysis. Improved remote sensing information
technologies, advanced computational capabilities, and the development of communication
technology have exponentially increased the efficiency and applicability of wildfire model-
ing. The quasi-empirical models combined with the software developed for extending the
utility of these models to the landscape level has resulted in comprehensive and accurate
tools for predicting wildfire spread, such as FlamMap-FARSITE [4,5] and Prometheus [6].

The rapid increase in computing power and advances in technology allow more
complex models to become a real option, so research is focusing on physical-based mod-
els coupled with the atmosphere [7], for example HIGRAD/FIRETEC [8] or WFDS [9].
These models are computationally expensive, but there are also other more affordable
atmosphere–wildfire models combining empirical or simplified quasi-physical fire models
with atmospheric ones, such as WRF-SFIRE [10] or MesoNH-ForeFire [11].

The advances made in remote sensing information technologies (i.e., satellites, aircraft,
and drones) have provided more and better data for feeding wildfire simulation models.
A new type of model, referred to as data-driven or data-assimilation [12], is a result of
these technologies. Their objective is to reduce the uncertainties in both model fidelity
and input data by using real-time observations of wildfire dynamics. Artificial intelligence
can also exploit the current ability to obtain increasingly more reliable data on wildfires
for predicting their behavior [13]. Nevertheless, the use of wildfire spread modeling and
the tools developed accordingly have been relatively limited in practice due to the high
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level of uncertainty in both the models and the available data for their initialization and
parametrization. Reducing the level of uncertainty continues to be one of the unresolved
challenges of wildfire modeling.

The model described in this paper, PhyFire, is framed within the physical-based
models. It is a single-phase simplified two-dimensional model based on the fundamental
physics of combustion and fire spread. It considers convection and radiation as the main
heat transfer mechanisms, taking into account the heat lost by natural convection, the effect
of the flame tilt caused by wind or slope, the influence of fuel moisture content and fuel
type, and certain random effects such as fire-spotting. The resulting Partial Differential
Equations (PDEs) are solved using efficient numerical and computational tools to obtain a
software with levels of efficiency comparable to empirical models, including its own finite
element toolbox and the use of parallel computing techniques.

Furthermore, PhyFire can be coupled with HDWind [14,15], which is a high-resolution
wind field that adjusts a set of specific wind measurements to local factors within the
simulation domain, such as the slope, roughness of the terrain, and surface temperature
gradients. This wind model is based on an asymptotic approximation of the Navier–Stokes
equations, deriving a mass-consistent vertical diffusion model capable of providing a 3D
wind field by solving only 2D linear equations. This model was developed at the same time
as the PhyFire model, by the same authors, with the initial aim of improving wind data for
the fire spread model, but it was soon realized that the wind model posed very interesting
mathematical and computational challenges and provided new applications [16].

PhyFire and HDWind have now been integrated into a Geographical Information System
(GIS) [17], which is available for use in Spain through the URL: http://sinumcc.usal.es
(accessed on 30 January 2023) [18].

This paper covers the PhyFire design process from its inception to the current GIS-
integrated version, emphasizing its mathematical and numerical aspects and explaining
why the modeling of such complex questions is a major source of interesting mathematical
and numerical problems. Some of the results included here are unpublished, such as the
flame temperature sub-model, the new predictor–corrector numerical scheme, and the use
of new pre- and post-processing functionalities.

The paper is organized as follows. Section 2 describes the initial fire spread models
in chronological order, through their main developments, focusing on mathematical and
numerical aspects. Section 3 summarizes the current PhyFire model and describes in
detail the numerical method used, as well as some original ways of improving the model
efficiency. Section 4 discusses certain details of the work performed to integrate the model
into a GIS. Section 5 covers a real wildfire simulated with the PhyFire-HDWind system. We
end with the conclusions and suggestions for future work.

2. Previous Models
2.1. Conservation Laws

Combustion in a forest fire is a physical–chemical process that, as such, can be rep-
resented by conservation laws. These laws can be written in general as PDEs having the
following form:

∂

∂t
(ρφ) +∇(ρφv)−∇(K∇φ) = Sφ (1)

where φ is a generic magnitude, ρ represents the density, v = (vx, vy, vz) is the velocity,
K is the diffusion coefficient, and Sφ is the source term. Initially, we considered a three-
dimensional problem, that is ∇ = ( ∂

∂x , ∂
∂y , ∂

∂z ).
A first paramount simplification to achieve an efficient simulation model from the com-

putational point of view is to reduce the three-dimensional problem to a two-dimensional
one. Equation (1) describes the evolution of the corresponding magnitude in a three-
dimensional domain, which represents a bed of fuel of thickness δz. We considered the
following boundary conditions: homogeneous Dirichlet on the lateral boundary of the

http://sinumcc.usal.es
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three-dimensional domain, homogeneous Neumann on the lower boundary (z = 0), and
non-homogeneous Neumann on the upper boundary (z = δz):

K
∂φ

∂η

∣∣∣
Γz=δz

= Hφ.

Denoting

φ(x, y) =
∫ δz

0
φ(x, y, z)dz

and integrating Equation (1) with respect to the variable z, we can reduce the problem to
two dimensions in space.

∂

∂t
(ρφ) +∇(ρφv)−∇(Kφ∇φ) = Sφ + Hφ, (2)

where, now, ∇ = ( ∂
∂x , ∂

∂y ) and v = (vx, vy).
We assumed that, vz = 0 away from the fire, the vertical variation of the corresponding

magnitude is null near the fire, Kφ is not dependent on z, and the thickness of the three-
dimensional domain δz is small enough to suppose that Sφ ≈ Sφ̄.

Another aspect that adds complexity to an eventual fire spread simulation model is
the fact that combustion in a forest fire is a positive feedback system, so we can distinguish
two phases, an endothermic phase or solid phase, in which heat is used to release the
volatile substances, and an exothermic phase or gas phase, in which the volatile substances
mixed with oxygen react, producing more heat (see [19]). Bearing this in mind, a two-
phase model can be proposed, with an energy conservation equation for each phase and
mass conservation equations for solid fuel, gaseous fuel, and oxygen [20]. A two-phase
model poses the drawback of correctly evaluating nonlinear terms. The correct evaluation
of these terms would lead to introducing more elaborate models of turbulence, leading
to much more complex systems, moving away from the goal of designing an efficient
computational model.

Each of the models that we reviewed depends on the simplifying hypotheses raised in
each case. All of them attempt to represent the main heat transfer mechanisms in a wildfire,
namely radiation and convection [21]. The predominant mode of heat transfer will depend
on the wind conditions, terrain slope, fuel type, and location relative to the fire.

2.2. First Model: Turbulent Diffusivity

The first simplified physical model for wildfire spread simulation proposed was a
two-dimensional one-phase model considering turbulent flow, vertical heat lost, and a
convective term representing the effect of wind [22]. The original equations are

ρC
(

∂

∂t
T + v · ∇T

)
−∇(K∇T) + H(T)(T − T∞) = Q M A e−

EA
RT , (3)

∂

∂t
M = −M A e−

EA
RT , (4)

where T is the average value of temperature and M is the solid fuel load. K is the turbulent
diffusivity. H(T) = H(T− T∞)1/3 is the vertical convection heat transfer. T∞ is the ambient
temperature. The reaction rate is given by the Arrhenius law. R is the universal gas constant.
EA represents the activation energy. A is the pre-exponential or frequency factor of the
reaction. We assumed that the activation energy for the gaseous phase is much lower than
the one of the solid phase in order to propose a simplified one-phase chemical reaction. Q
is the global heat production in the reaction.

The PDEs to be solved are a non-dimensional version of Equations (3) and (4), based on
the following change of variables: the dimensionless temperature is u = (T − T∞)/(T − T∞),
where T is a temperature up to which generalized combustion takes place; the dimension-
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less solid fuel is c = M/M0, where M0 the initial solid fuel load. Dimensionless time and
space variables were also introduced, although, for the sake of simplicity, we kept the same
notation. The non-dimensional equations are

∂

∂t
u + w · ∇u−∇(κ∇u) + h(u)u = q c s(u), (5)

∂

∂t
c = −c s(u), (6)

where w is the dimensionless wind velocity field, κ is related to the turbulent diffusivity,
h(u) is the normalized vertical convection coefficient, q depends on the heat released, and
s(u) is written in terms of the previous exponential expression.

The non-dimensional equations were completed with the initial and boundary condi-
tions. We propose the Dirichlet boundary conditions assuming the domain is big enough
to ensure that the fire does not arrive at the boundary. The initial conditions represent the
initial fuel load and fire source.

The first numerical method proposed was an implicit and upwind finite difference
scheme for the energy Equation (5), assuming that the wind field velocity and diffusivity
are constant along the domain. The matrix of the linear system obtained in each time
step is block tridiagonal and strictly diagonally dominant, so the blockwise Gauss–Seidel
method is convergent. The global Lipschitz condition that the source term satisfies ensures
the stability of the scheme. An implicit Euler method was the scheme proposed for the
fuel Equation (6).

The second numerical method proposed for the partial differential problem given
by Equations (5) and (6) was an Adaptive Finite-Element Method (AFEM). The idea of
using an adaptive method aims to reduce the operational cost by adapting the mesh to
the numerical solution where more precision is necessary, the fire front, as this takes up
a small part of the whole domain. This method combines refinement and derefinement
techniques to generate in each time step a sequence of nested meshes, allowing an easy
application of multigrid acceleration techniques. The design of this first model and its
numerical resolution already pursued the aim of simulating the fire spread in times much
shorter than real-time, through a simplified model and efficient numerical methods.

2.3. Second Model: Rosseland Approximation for Local Radiation

The second model is again a one-phase 2D model, but it addresses radiation as the
dominant thermal transfer mechanism, without forgetting convection, which represents
the effect of wind and slope. In [23], radiation was incorporated in the fire spread model by
using a local radiation term using the Stefan–Boltzmann law and approximating the fourth
power of the temperature by a Taylor expansion [24]. This is known as the Rosseland radia-
tion model; it is valid when the medium is optically thick. It is a diffusion approximation for
the radiation, and it introduces a nonlinearity in the diffusive term of the energy equation.
Another modification compared to the first model is the simplification of the vertical heat
loss term or natural convection. In this second model, the one-phase simplification leads to
introducing a logic expression depending on the phase change temperature, which we can
assimilate with the pyrolysis temperature. The PDEs in this model are written as follows:

ρC
(

∂

∂t
T + v · ∇T

)
−∇

(
(4σδT3 + K)∇T

)
+ H(T − T∞) = (T > Tp) Q M A e−

EA
RT , (7)

∂

∂t
M = −(T > Tp) M A e−

EA
RT , (8)

where σ is the Stefan–Boltzmann constant, δ is the optical path length for radiation, and Tp
is the pyrolysis temperature.

A more rational change of variables is also incorporated for the non-dimensionalization
of the equations, the Frank-Kamenetskii change of variables [25]. This change of variables
involves setting reference values for temperature and fuel in which an equilibrium state
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can be assumed, as well as spatial and temporal variables, and permits elucidating the
significant parameters. The reference values are the ambient temperature T∞ and the initial
solid fuel load M0. Then, the dimensionless temperature is now u = (T − T∞)/ε T∞, and
the dimensionless solid fuel load is c = M/M0. We kept again the notation for the spatial
and temporal variables. The non-dimensional PDEs of this second model are

∂

∂t
u + w · ∇u−∇(K(u)∇u) + αu = f (u, c), (9)

∂

∂t
c = − ε

q
f (u, c), (10)

where

K(u) = κ(1 + εu)3 + 1,

f (u, c) = (u > up)ce
u

1+εu ,

α is the dimensionless natural convection coefficient, and it depends on the natural con-
vection coefficient, the density, and the specific heat. The nonlinear function K(u) in the
diffusive term represents the local radiation. The parameter κ is the dimensionless inverse
of the conductivity coefficient and depends on the Stefan–Boltzmann constant, the optical
path length for radiation, the thermal conductivity, and the ambient temperature. ε is the
dimensionless inverse of the activation energy and depends on the activation energy, the
universal constant of gases, and the ambient temperature. The function f (u, c) is given by
an Arrhenius type law, where up is the non-dimensional pyrolysis temperature, and the
logic expression is equal to 1 if it is true and 0 if it is false. q is the non-dimensional reaction
heat and depends on the heat of combustion, the initial fuel, and the specific heat. For a
deep understanding of the dimensionless process, see [23].

Equations (9) and (10), together with appropriate initial and boundary conditions,
provide challenging mathematical and numerical problems. Facing these types of mathe-
matical questions is one of the challenges that should not be forgotten in the development of
simulating models of processes as complex as wildfire spread. Some results about the exis-
tence and uniqueness of weak solutions of the non-convective version, that is the nonlinear
reaction–diffusion problem, can be found in [23]. From the numerical point of view, the
proposed scheme for the full version of the model is based on the use of the Mixed Finite-
Element Method (MFEM), which admits discontinuities in the temperature, preserving the
continuity of the flux through the inter-element boundaries. This allows the representation
of high gradients in the solution corresponding to the fire front with strong temperature
gaps. The scheme proposed uses the lowest-order Raviart–Thomas elements [26]. Finally,
the convective term is solved by a splitting technique using Godunov’s method.

2.4. The Effect of Moisture Content: A Multivalued Operator in Enthalpy

The third improvement to the model was intended to reflect the effect of fuel moisture.
The effect of the moisture content of the solid fuel was included through a multivalued
maximal monotone operator relating enthalpy and temperature. The use of a multivalued
operator was informed by the classical two-phase Stefan problem [27], and it was adapted to
model the two well-defined phases in a wildfire combustion process [19]: the endothermic
phase, which includes the dehydration of the solid fuel, and the exothermic phase, in which
the flammable mixture from fuel pyrolysis begins to release energy. The Fuel Moisture
Content (FMC) is one of the most-influential factors in fire spread, mainly through the
process of heating and subsequently evaporating the water in the fuel, enabling it to attain
combustion conditions. This process involves the consumption of the energy released by
the adjacent combustion fuel and requires time, which reduces the fire Rate Of Spread (ROS)
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as moisture increases. The non-dimensional equations of this new model that appeared
in [28] are, keeping the previous notation,

∂

∂t
e + w · ∇e−∇(K(u)∇u) + αu = f (u, c), (11)

e ∈ G(u), (12)

∂

∂t
c = − ε

q
f (u, c), (13)

where u and c are again the dimensionless temperature and mass fraction of solid fuel,
respectively, and e is the dimensionless enthalpy.

The change of the Frank-Kamenetskii variable is maintained since an Arrhenius-type
expression continues to appear in the reactive term. The diffusive term function K(u), and
the reactive term function f (u, c) are the same as in the previous model. The multivalued
operator is given by

G(u) =


u if u < uv,
[uv , uv + λv] if u = uv,
u + λv if uv < u < up,
[up + λv , up + λv + λp] if u = up,
u + λv + λp if u > up,

(14)

where uv is the dimensionless water evaporation temperature and up is the dimensionless
solid fuel pyrolysis temperature. The quantity λv is the dimensionless evaporation heat
related to the latent heat of evaporation Λv and the fuel moisture content Mv (kg of
water/kg of dry fuel); λp is the dimensionless pyrolysis heat related to the latent heat of
pyrolysis Λp.

It is worth noting that, in the burnt area, the multivalued operator does not exactly
represent the physical phenomena since water vapor is no longer in the porous medium.
This inconvenience can be avoided by setting λv = 0 and λp = 0 in the burnt area.

The maximal monotone property of this multivalued operator allows the implementa-
tion of a numerical algorithm with good convergence properties based on the use of duality
methods [29]. Given an exact perturbation of the multivalued operator, its properties, and
an appropriate choice of the parameters, we can define the resolvent and its Yosida approx-
imation, whereby the new nonlinear univalued operator equivalent to the multivalued one
can be solved by a fixed-point iteration. For further details of how to numerically treat
this multivalued operator, see [30,31], although Section 3.1 provides updated explanations
about how the multivalued operator is numerically solved in the current model.

2.5. Non-Local Radiation: Some 3D Effects

In fact, the model in Section 2.4 was not implemented as-is, since another important
improvement, the non-local radiation, was simultaneously incorporated. This is an essential
improvement to reach the current version of the model, and it allows incorporating certain
three-dimensional effects while maintaining the simplicity of a two-dimensional model.

In a first approximation, the idea of non-local radiation was introduced by means of
a convolution operator, simultaneously maintaining the local radiation represented with
the nonlinear term of the diffusive term of the energy equation; see [30]. However, based
on the results, it was decided to simplify the energy equation and choose only non-local
radiation [32]. This was a challenge from a computational point of view as it involved
solving the radiation intensity equation in a 3D domain, the layer of air on the surface in
which the fire develops.
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The equations of the above models are defined over the surface S where the fire takes
place, defined by the mapping:

S : d 7−→ R3

(x, y) 7−→ (x, y, h(x, y)),
(15)

where h(x, y) is a known function representing the topography of the surface S.
In order to take into account some 3D effects, specifically non-local radiation, we shall

consider the following 3D domain, representing the air layer of thickness δ on the surface S:

D={(x, y, z): x, y ∈ d, h(x, y)< z<h(x, y) + δ}.

The non-dimensional simplified equations defined on the surface S are

∂

∂t
e + w · ∇e + αu = r, (16)

e ∈ G(u), (17)

∂

∂t
c = −g(u)c, (18)

completed again with homogeneous Dirichlet boundary conditions, assuming that the
surface S is large enough so that the fire does not reach the boundary during the simulation
interval tmax, the initial conditions representing the initial fuel load and fire source.

The unknowns e = E
MCT∞

, the dimensionless enthalpy, u = T−T∞
T∞

, the dimensionless
temperature of the solid fuel, and c = M

M0
, the mass fraction of solid fuel, are bidimensional

variables defined in S× (0, tmax). Note that we abandoned the Frank-Kamenetskii change
of variable since an Arrhenius-type expression no longer appears in the energy equation.
The physical quantities E, T, and M are the enthalpy, the temperature of solid fuel, and the
fuel load, respectively; C is the heat capacity of solid fuel; T∞ is a reference temperature,
namely the ambient temperature; M0 is the initial fuel load.

The multivalued maximal monotone operator G is slightly different:

G(u) =


u if u < uv,
[uv , uv + λv] if u = uv,
u + λv if uv < u < up,
[up + λv , ∞] if u = up,

(19)

where, again, uv, up, and λv are the same as above. We simplified the model assuming that
the maximum value that the dimensionless temperature of the solid fuel u reaches is the
dimensionless solid fuel pyrolysis temperature up.

We must specify that, in this model, only the solid phase of the combustion process is
considered: the mass fraction of solid fuel c is a dimensionless variable between 0 and 1,
and as just mentioned, the maximum value of the dimensionless solid fuel temperature u
is the dimensionless pyrolysis temperature up. Note that this is not the fire temperature,
since the gaseous phase in this model is parameterized through the flame temperature
Tf and the flame height F in the radiation term, which at the moment are considered
input data dependent on the type of fuel. In Section 2.6, we explain how to improve this
parameterization.

We also assumed that the dimensionless solid fuel begins to be lost when it reaches
this temperature, up.This means a simplification of the right-hand side of Equation (18),
which represents the loss of solid fuel due to combustion. Now, g(u) = 0 when u < up, and
g(u) is constant when u = up, where this constant is inversely proportional to the half-life
time of the combustion of each type of fuel.

It remains to explain how the non-local radiation is computed, that is the r term on
the right-hand side of Equation (16). Since radiation essentially comes from flames, we
considered a simplified physical model in which the gases produced by pyrolysis burn
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above the fuel layer, producing a flame above that layer. The flame may eventually be tilted
due to the wind or the slope of the ground and emits radiation, which reaches points ahead
of the flame, heating the surrounding unburned fuel and allowing the fire to spread.

The term r describes the thermal radiation, which reaches the surface S from the flame
above the layer

r =
[t]

MCT∞
R. (20)

where [t] is a time scale that appears during the dimensionless process. R represents the
incident energy at a point x = (x, y, h(x, y)) of the surface S, due to radiation from the flame
over the surface per unit time and per unit area, obtained by summing up the contribution
of all directions Ω, i.e.,

R(x) =
∫ 2π

ω=0
I(x, Ω)Ω ·N dω, (21)

where ω is the solid angle and N is the unit normal vector to the surface S. We considered
only the hemisphere above the fuel layer, and each contribution depends, among others,
on the flame height F and the flame temperature Tf .

I is the total radiation intensity, described by the following differential equation:

dI
ds

+ a(s)I(s) = a(s)Ib(s), (22)

where Ib is the black body total radiation intensity, and it is governed by the Stefan–
Boltzmann law:

Ib =
σ

π
T4, (23)

where σ = 5.6699× 10−8 wm−2K−4 is the Stefan–Boltzmann constant and a is the radiation
absorption coefficient inside the flame. The path s is within the 3D domain D reaching
any point on the surface S and eventually passing through a flame. We assume that the
temperature T reaches the flame temperature Tf .

Details on how to approximate Equation (22) and calculate R(x) for different types of
flame, vertical or tilted, can be found in [32]. We include here some aspects of the calculation
of the radiation term for the case of a vertical flame in order to clarify some concepts that
were introduced to reduce the computational time and to enhance the efficiency of the
simulation process.

In our model, the radiation term R for a vertical rectangular flame has the form:

R(x) =
aσT4

f

π

∫
Ω

χ(x̃) f (x− x̃)dÃ, (24)

where χ is the characteristic function of the flames, i.e., χ(x) = 1 if T(x) = Tp and χ(x) = 0
otherwise, and Tp represents the pyrolysis temperature.

We used the P1 finite-element method for the spatial discretization, so using the finite-
element basis to represent the f function, the radiation term can be written for each node xi
of the mesh as follows:

R(xi) =
aσT4

f

π ∑
j

Rij Ajχ(xj)

where R = (Rij = f j(xi)), is the Radiation Matrix, representing the nodes of the finite
element mesh, which are reached by the radiation emitted by each node, and it is computed
only once (outside the time loop).

In practice, the radiation term is only calculated in a neighborhood of the fire front,
which we call Active Nodes. At the beginning of the numerical process, we define a uni-
form and fine spatial mesh for spatial discretization, and for each time step ∆t of the time
discretization, we define a set of Active Nodes formed by those nodes located inside a
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sufficiently large area close to the fire front (burning area); we solved the corresponding
equations only in this set of nodes, as well as the calculation of the radiation term. Specif-
ically, a node is Active if the dimensionless temperature in the node is positive, and the
dimensionless solid fuel is ≥ 0.1, or if the node belongs to the Radiation Molecule associated
with a node fulfilling the previous conditions. The Radiation Molecule is a round set of
nodes formed by the node itself and neighboring nodes that define the area affected by
the radiation emitted by the node concerned. The Radiation Molecule was initially a set of
89 nodes formed by the node itself and 88 nodes surrounding it forming a circle of nodes
of radius 5 nodes (see Figure 6 in [32]).

2.6. Flame Submodel

As discussed in the previous section, the calculation of non-local radiation strongly
depends on the temperature and height of the flame, Tf and F, respectively, which are ini-
tially considered model parameters depending on the type of fuel. These parameters have
been improved by means of two submodels that delve into their physical meaning.

2.6.1. Flame Height Submodel

Flame angle and flame length are determining factors in the radiative heat transfer of
a flame. Flame geometry plays a key role in determining the rate of spread of fires where
radiation is the dominant heat transfer mechanism to the unburned fuel [33]. The joint
effects of wind speed and slope percentage affect the flame geometry. We focused on the
flame height F, understanding that this is the height of the flame above the vertical, relating
the flame length L f and flame angle θ f , F = L f sin θ f . The flame height, and not the flame
length, is one of the input parameters determining the non-local radiation calculation in
our model. Data from [34] and the sensitivity analysis of the model performed in [35] led
us to propose the following flame height sub-model:

F = (FH + Fv|v|1/2)(1 + Fss2) (25)

where FH is a flame-height-independent parameter, Fv is a wind correction factor, Fs is a
slope correction factor, |v| is the wind strength, and s represents the slope at each point on
the surface. The first factor in Equation (25) represents the correction of the flame height
due to the wind. This expression is derived from the observation of the experimental
curves for different fuels gathered in [34], where the increase in the height of the flame
due to the wind responds to such a function. FH stands for zero wind, and the correction
coefficient Fv was added to experimentally adjust the different behaviors for each type of
fuel by a least-squares method. The second factor in Equation (25) represents the correction
of the flame height according to surface slope. When there is no slope or wind, the flame is
vertical, and its height is equal to its length; as deduced from [36], a relationship can be
derived between the flame height and the vertical gas velocity inside it. However, when
there is a slope, the following proportionality factor must be considered:

1
cos2 α

= 1 +
( ∂h

∂x

)2
+
(∂h

∂y

)2
= 1 + s2

where α is the angle between the horizontal plane and tangential plane to the surface S
on each point and h = h(x, y) is the surface height, so s is the slope at each point on the
surface S. Again, a correction factor Fs was added to adjust data from [34] in the sense of
least-squares.

2.6.2. Flame Temperature Submodel

In our simplified fire spread model, the gaseous fuel is parameterized by the flame
temperature in the non-local radiation calculation. We can improve this input parameter
by writing the generic Equation (1) for the temperature inside the flame Tf and assuming
some simplifications. We assumed that this temperature does not vary inside a stabilized
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flame. We also considered that heat losses inside the flame are mainly due to local radiation,
representing this term as hr(T4

f − T4
∞), and that the heat source due to gas combustion

is represented by QM, where M represents the solid fuel and Q is the heat generated or
absorbed per unit mass of solid fuel. Since we wanted to represent the heat generated, that
is when the process is exothermic, we added the term (t > tp), which is 0 when the process
is endothermic and 1, when it is exothermic. Finally, the temperature equation inside a
stabilized flame can be written as follows:

hr(T4
f − T4

∞) = (t > tp)QM (26)

Rearranging the previous expression, we obtained the following value for the flame
temperature:

Tf = (T4
∞ + (t > tp)

Q
hr

M)1/4 (27)

If an estimate of the maximum flame temperature Tf ,max is available, it can be used
as the input in Equation (26) to obtain an approximation of Q/hr so that the following
approximation of the flame temperature in terms of solid fuel is finally obtained:

Tf = (T4
∞ + (t > tp)(T4

f ,max − T4
∞)M)1/4 (28)

2.7. Fire-Spotting

The spot fire ignition of a wildland fire by hot sparks and firebrands is an important fire
ignition pathway by which wildfires are started and may propagate. Once the wildfire has
been ignited and grows, it can spread rapidly through ember spotting, where pieces of
burning material are lofted by the plume of the fire and then transported forward by the
wind, landing where they can start spot fires downwind beyond the main fire’s direct
ignition zone. These secondary fires frequently cause hazardous situations for firefighters
and contribute to the increase in the rate of fire spread. There are decisive factors affecting
the generation of fire-spotting and the firebrands’ landing patterns and flight paths. Some
are macro-scale factors such as the atmospheric stability [37] and others are meso-scale
factors such as the flame geometry [38]. Nevertheless, fire-spotting has a strong random
component, so available fire-spotting models are inherently probabilistic.

In [18], we proposed a preliminary fire-spotting sub-model that follows the charac-
teristics of our model based on the ideas of the RandomFront 2.3 in [39], as a random
heat contribution added to the right-hand side of the energy conservation equation. The
heat contribution due to fire-spotting is written in terms of the distance of firebrand
distribution φ(`):

q = Fq × Nq × ∆t × φ(`) (29)

where Fq is a factor transforming the probability density function φ(`) into energy, ∆t is the
time step of the time discretization used to numerically solve the PhyFire model equations,
and Nq is a fire-spotting index introduced to significantly reduce the computational effort of
the fire-spotting module. In practice, this computation is performed every Nq × ∆t, instead
of every ∆t.

The firebrand landing distance ` can be assumed to follow a log-normal distribution [40]:

φ(`) =
1

`σ
√

2π
exp(− (ln(`)− µ)2

2σ2 ) (30)

where µ and σ are the mean and standard deviation of the logarithm of the variable `, that
is ln ` ∼ N(µ, σ).

The set of possible firebrand emitter nodes is computed as a subset of the fire front.
Next, the set of possible receiving nodes of the firebrand from each emitting node is
computed as a random subset such that the main direction of firebrand propagation is
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the wind direction, and the firebrands’ landing distance depends on the mean distance of
firebrand landing. The details of these calculations can be found in [18].

3. Current Model and Numerical Algorithm

All the improvements and sub-models described in the previous sections have been
included in the current fire propagation model, PhyFire, as well as certain computational
improvements, which we describe next.

3.1. Model Description

The surface S where the fire takes place is defined by the mapping described by the
expression (15). The size of this surface S and the study time interval (0, tmax) were selected
so that the fire does not reach the boundary in time tmax, to assume Dirichlet homogeneous
boundary conditions to complete the set of PDEs that governs the PhyFire model. The
latest version of these non-dimensional PDEs are as follows:

∂te + βv · ∇e + αu = r + q in S× (0, tmax), (31)

e ∈ G(u) in S× (0, tmax), (32)

∂tc = −g(u)c in S× (0, tmax), (33)

where the unknowns are the following variables defined in S× (0, tmax): the dimensionless
enthalpy e, the dimensionless solid fuel temperature u, and the solid fuel mass fraction c.
The relationship between these dimensionless variables and the corresponding physical
quantities is given in Table 1.

Table 1. Dimensionless unknowns and related physical quantities.

Physical Variable Symbol Units Dimensionless Variable

Enthalpy E J m−2 e = E/MCT∞
Solid fuel temperature T K u = (T − T∞)/T∞
Solid fuel load M kg m−2 c = M/M0

The physical quantities that appear in Table 1 are the enthalpy E, the solid fuel temper-
ature T, and the fuel load M. Their relationship depends on the reference temperature T∞,
the heat capacity of the solid fuel C, and the maximum solid fuel load M0. The reference
temperature T∞ is related to the ambient temperature, measured far enough from the fire
front to ensure that T ≥ T∞, whereby u ≥ 0. The heat capacity of the solid fuel C and
maximum solid fuel load M0 both depend on the fuel type. Table 2 lists all the variables
that depend on the fuel type.

Table 2. Fuel-type-dependent input variables.

Input Variable Symbol Units

Heat capacity C J K−1 kg−1

Maximum initial fuel load M0 kg m−2

Fuel moisture content Mv kg water/kg fuel
Maximum flame temperature Tf ,max K
Pyrolysis temperature Tp K
Combustion half-life t1/2 s
Flame length independent factor FH m
Flame length wind correction factor Fv m1/2s1/2

Flame length slope correction factor Fs −

The PhyFire model also depends on the three model parameters listed in Table 3.
These three parameters are related to the heat transfer terms in Equation (31): H in the
natural convection term αu, β in the convective term βv · ∇e, and a in the radiation term r.
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Table 3. Model parameters.

Parameter Symbol Units

Natural convection coefficient H J s−1m−2K−1

Convective term factor β −
Mean absorption coefficient a m−1

We completed the problem with the following initial conditions:

u(x, y, 0) = u0(x, y) in S, (34)

c(x, y, 0) = c0(x, y) in S. (35)

which represent, respectively, the focus of the fire, or eventually an intermediate perimeter
if it is decided to restart the simulation from an instant later than the initial one, and the
initial distribution of the fuel, including any possible firebreaks.

We should point out that the data for topography (function h(x, y) defining S), solid
fuel distribution (initial value of M), and fuel type distribution (to spatially determine
the fuel-type-dependent input variables) were obtained from the cartography generated
particularly for each case. This process was automated by developing the necessary
cartographic database [17] and the online GIS interface [18]. Section 4 details some aspects
related to the cartographic and meteorological information necessary to apply the PhyFire
model in real cases.

The zero-order term αu in Equation (31) represents the energy lost by natural convec-
tion in the vertical direction, as in the initial models. Here, parameter α depends on the
natural convection coefficient H through the following expression:

α =
H[t]
MC

(36)

where [t] is a time scale.
The convective term, βv · ∇e, represents the energy convected by the gas pyrolyzed

through the elementary control volume. v is the wind velocity re-scaled by a correction
factor β. The idea behind this parameter is how the one-phase model, PhyFire (mainly a
solid phase model), can be understood as a simplification of a gas–solid two-phase model
where we retained the enthalpy transported in the gas phase. The enthalpy transported in
the gas phase is retained, and β represents the fraction of transported heat that must be
taken into account in Equation (31). For typical values of the heat capacity for the air and
for the fuel (wood), β can be estimated to have an order of magnitude of 10−2 inside the
flame and 10−4 away from the flame. See [41] for more details.

Furthermore, we have to mention that the surface wind velocity v can be considered
as the given data or can be computed, for example, by means of the high-definition wind
field model HDWind specifically developed to be used coupled with the PhyFire model
(see [14,15]).

As we explained in Section 2.4, the multivalued Equation (32) models the influence of
moisture content and depends on the fuel moisture content Mv and solid fuel pyrolysis
temperature Tp. The dimensionless enthalpy e is, thus, an element of the multivalued
maximal monotone operator G defined by Equation (19), where, remember, uv is the
non-dimensional water evaporation temperature and up is the non-dimensional solid fuel
pyrolysis temperature. It remains to specify the expression defining the non-dimensional
evaporation heat λv:

λv =
MvΛv

CT∞
(37)

where the latent heat of water evaporation Λv = 2.25× 106 J kg−1 and the fuel moisture
content Mv (kg of water/kg of dry fuel) is one of the fuel-type-dependent input variables in
Table 2. We should clarify that the fuel moisture content depends not only on the fuel-type,
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but also on other factors that vary both spatially and temporally. Fuel moisture content is
driven by several weather factors, such as long-term droughts, recent rains, or immediate
temperature and relative humidity [42]. Topographic aspect, i.e., the direction that the
land faces, is another factor that affects the fuel moisture content [43]. Depending on the
landscape position, there are areas that receive more radiation, will dry more quickly, and
will, therefore, have lower fuel moisture. One of the latest enhancements to the PhyFire
model is the ability to use space-varying fuel moisture content data, replacing the fuel-type-
dependent input variable Mv with a raster containing the spatial distribution of the Mv
values, using remote sensing data.

The non-local radiation term r in the right-hand side of Equation (31) represents the
radiation from the flames above the surface where the fire takes place, as we explained
in Section 2.5. This term depends on the incident energy due to radiation R received
in each point of the surface S given by Equation (20). The incident energy R should
be computed by adding the contribution of all directions on the hemisphere above the
fuel layer following the Equation (21), where the total radiation intensity I is given by
the differential Equation (22). Each incident energy contribution depends on the flame
temperature Tf , which is approximated by Equation (28) once dimensionless, and the
flame height F, which is calculated depending on the wind, slope, and fuel type, according
to Equation (25).

The term q on the right-hand side of of Equation (31) stands for the random heat
contribution due to fire-spotting, explained in Section 2.7.

Equation (33) represents the loss of solid fuel due to combustion, where

g(u) =

{
0 i f u < up,
γ i f u = up, (38)

i.e., there is no loss of solid fuel if the temperature is below the pyrolysis temperature, and
it remains constant when the temperature of pyrolysis is reached. This constant value is
inversely proportional to the solid fuel half-life time t1/2, of the combustion of each type
of fuel:

γ =
ln 2[t]
t1/2

. (39)

3.2. Numerical Method

The PhyFire code used here incorporates a new numerical scheme based on the use
of P1 finite-element approximation on a regular mesh for spatial discretization, as in the
previous schemes. However, a new predictor–corrector finite difference scheme was developed
for time discretization. The predictor step is an Euler semi-implicit scheme, and the
corrector step is a modified Crank–Nicolson scheme. The computational cost was reduced
by defining the set of Active Nodes, as we explain at the end of Section 2.5, solving the
equations only in the neighborhood of the fire front and adapting the numerical scheme
and the corresponding code to parallel computing [32].

Given the initial values u0 and c0 defined by the initial conditions, we set the value
of the initial enthalpy for each node i of the spatial discretization depending on the initial
nondimensional temperature u0 as follows:

e0
i =

{
u0

i if u0
i ≤ uv,

u0
i + λv if u0

i > uv,
(40)

where, as we have mentioned before, uv is the non-dimensional water evaporation tem-
perature and λv is the dimensionless evaporation heat. As we explained in the description
of the multivalued operator G, we assumed that the maximum value that the solid fuel
temperature reaches is the pyrolysis temperature, because the gaseous phase is parame-
terized, so the only phase change in the temperature of the solid fuel corresponds to the
water evaporation.
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Given the values of the unknowns un, cn, and en at time step n, we computed un+1,
cn+1, and en+1 by means of the following steps:

1. Build the set of Active Nodes.
2. Compute the Radiation Heat.
3. Prediction step: semi-implicit Euler method.
4. Update the set of Active Nodes.
5. Update the Radiation Heat.
6. Correction step: modified Crank–Nicolson method.

Lets us remember that a node i is considered an Active Node if ui > 0 and ci ≥ 0.1 or if
it belongs to the Radiation Molecule associated with a node fulfilling the previous condition.
The number of nodes defining the Radiation Molecule was modified in order to keep its real
size independent of the spatial discretization size. Specifically, a number of nodes of the
radius of the round radiation molecule was fixed for each mesh size. The mesh size of the
spatial discretization varied depending on the precision level, which currently varied from
precision level 0 corresponding to 50 m cell size, to simulate large fires, to Precision Level
5, corresponding to a 2.5 m cell size, to simulate small fires. We also contemplated much
thinner meshes, on the order of centimeters, to simulate laboratory experiments. In any
case, the input raster files were adapted to the FEM precision level.

3.2.1. Convection Step

We must begin by explaining the total discretization of the convective term of (31),
which was carried out in each step of the predictor–corrector scheme:

∂te + βv.∇e ≈ 1
∆t

(en+1 − ēn)

where ēn = en ◦ Xn and Xn(x) = X(x, tn+1, tn) ≈ x− βv∆t is the position at time tn of the
particle that is at position x at time tn+1 [44].

3.2.2. Predictor Step

The discrete equations in the burning area in the predictor step respond to a semi-
implicit Euler scheme:

en+1/2 − ēn

∆t
+ αun+1/2 = rn + qn, (41)

en+1/2 ∈ G(un+1/2), (42)

cn+1/2 − cn

∆t
= −g(un+1/2)cn+1. (43)

where en+1/2, un+1/2, and cn+1/2 mean the predicted value of en+1, un+1, and cn+1, respec-
tively. The basic idea is to treat the linear term implicitly. The heat contribution of non-local
radiation r and fire-spotting q depends on the dimensionless temperature u and solid fuel
mass c, so the non-local radiation term rn and fire-spotting term qn are evaluated explicitly
at time tn. Even so, Equations (41)–(43) continue to be nonlinear due to the multivalued
operator G. However, the solution to this problem can be reduced to explicit calculations.

The multivalued operator in Equation (42) is maximal monotone, and hence, its
resolvent Jµ = (Id + µG)−1 is a well-defined univalued operator for any µ > 0. Moreover,

the Yosida approximation [29] of G, Gµ =
Id−Jµ

µ is a Lipschitz operator, and the inclusion in
Equation (42) is equivalent for all µ > 0 to the following equation:

en+1/2 = Gµ(un+1/2 + µen+1/2), (44)

or
un+1/2 = Jµ(un+1/2 + µen+1/2). (45)
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Now, rearranging Equation (41):

un+1/2 +
1

α∆t
en+1/2 =

1
α∆t

ēn +
1
α
(rn + qn). (46)

and taking µ = 1/(α∆τ) in Equation (45), we obtain

un+1/2 = J1/α∆t

(
1

α∆t
ēn +

1
α
(rn + qn)

)
(47)

which it is equivalent to solving

(α∆t Id + G)un+1/2 3 ēn + ∆t (rn + qn). (48)

Thus, denoting æn = ēn + ∆t (rn + qn), the value of un+1/2 is given by

æn

1+α∆t
if æn < (1+α∆t) uv,

uv if æn ∈ [(1+α∆t) uv, (1+α∆t) uv + λv],
æn − λv

1+α∆t
if æn ∈ [(1+α∆t) uv + λv, (1+α∆t) up + λv],

up if æn ∈ [(1+α∆t) up + λv, ∞]. (49)

Once un+1/2 has been obtained, we calculate en+1/2 and cn+1/2 explicitly from
Equation (41) and (43), respectively,

en+1/2 = ēn − α∆tun+1/2 + ∆t (rn + qn), (50)

cn+1/2 =
cn

1 + ∆tg(un+1/2)
. (51)

Notice that Equations (47), (50), and (51) can be solved simultaneously in all active
nodes, and hence, parallel computation can be used to reduce the computational cost.
In actual fact, the loop over all actives nodes to compute un+1/2, en+1/2, and cn+1/2 was
parallelized using the API OpenMP [45].

In the burned area, only Equation (41) needs to be solved. Since there is no fuel in this
area and there are no changes in enthalpy or fire-spotting, Equation (41) simplifies to

un+1/2 − un

∆t
+ αun+1/2 = rn (52)

which can be solved explicitly:

un+1/2 =
un + ∆t rn

1 + α∆t
(53)

3.2.3. Corrector Step

The discrete equations in the burning area in the corrector step respond to a Crank–
Nicolson scheme:

en+1 − ēn

∆t
+ α

un+1 + un

2
=

rn+1/2 + rn

2
+

qn+1/2 + qn

2
(54)

en+1 ∈ G(un+1), (55)

cn+1 − cn

∆τ
= −g

(
un+1 + un

2

)
cn+1 + cn

2
(56)

where we approximated rn+1 and qn+1 by rn+1/2 and qn+1/2, respectively, computed in
terms of un+1/2 and cn+1/2, the estimations obtained in the prediction steps, as at this
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point, un+1 and cn+1 are not known. As in the prediction step, rearranging Equation (54),
we have:

un+1 +
2

α∆t
en+1 =

2
α∆t

ēn − un +
rn+1/2 + rn

α
+

qn+1/2 + qn

α
. (57)

As in the predictor step, taking µ = 2
α∆t , the multivalued Equation (55) can be writ-

ten as

un+1 = J 2
α∆t

(
2

α∆t
ēn − un +

rn+1/2 + rn

α
+

qn+1/2 + qn

α

)
(58)

which it is equivalent to solving

(
2

α∆τ
Id + G)un+1 3

(
2

α∆t
ēn − un +

rn+1/2 + rn

α
+

qn+1/2 + qn

α

)
. (59)

Denoting now æn = 2
α∆t ēn − un + rn+1/2+rn

α + qn+1/2+qn

α , the value of un+1 is given by

æn

1+ α∆t
2

if æn < (1+
α∆t

2
) uv,

uv if æn ∈ [(1+
α∆t

2
) uv, (1+

α∆t
2

) uv + λv],

æn − λv

1+ α∆t
2

if æn ∈ [(1+
α∆t

2
) uv + λv, (1+

α∆t
2

) up + λv],

up if æn ∈ [(1+
α∆t

2
) up + λv, ∞]. (60)

Again, once un+1 has been obtained, we can update the enthalpy en+1 from Equation (54)
and the fuel cn+1 from Equation (56):

en+1 = en − α∆t
un+1 + un

2
+ ∆t

rn+1/2 + rn

2
+

qn+1/2 + qn

2
, (61)

cn+1 =
1− ∆t

2 g( un+1+un

2 )

1 + ∆t
2 g( un+1+un

2 )
cn. (62)

Once again, Equations (58), (61), and (62) can be solved simultaneously in all active
nodes, so again, the parallel calculation allowed us to reduce the computational cost in the
correction step.

In the burned zone, only (54) needs to be taken into account, which can be simplified as
well and solved explicitly:

un+1 =
(1− α∆t

2 )un + ∆τ
2 (rn+1/2 + rn + qn+1/2 + qn)

1 + α∆t
2

The computational cost was reduced by defining the Active Nodes, solving the equa-
tions only for the fire front, computing the Radiation Matrix once out of the time loop,
differentiating the burning zone from the burned zone, and adapting the numerical scheme
and the corresponding code to parallel computing. We also introduced the fire-spotting
index Nq to significantly reduce the computational cost of the set of possible firebrand
receiver nodes, so that the term qn is not calculated in all the time steps, but every Nq
steps, although for greater clarity, we detailed the calculation of this term in each time
step. Improving computational efficiency is crucial to obtain simulation results in times
that are significantly lower than the real-time evolution of a fire. However, it is also of
great importance to address other objectives in the design and improvement of this type
of complex models, such as the sensitivity analysis or the parameter adjustment, which
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require a large number of model evaluations, as well as to improve simulation results
through data assimilation. All these aspects have been analyzed for the PhyFire model in
different previous works [32,35,41].

The PhyFire model was developed under C++, using Neptuno++, a finite-element
toolbox mainly developed by L. Ferragut [46], and has the advantages of the shared memory
parallel paradigm using the OpenMP API.

4. GIS Integration

The ultimate goal of this kind of environmental model was to provide the potential
end-user with a simple, intuitive, and easy-to-use tool. The key to achieve this was to
automate the pre-processing of the input data and the post-processing of the simulation
results, showing them in a user-friendly interface. Environmental event simulation requires
coupling geospatial data with the simulation models, and this approach calls for a geospa-
tial data management system to handle the diverse resources of information needed as
the input data, as well as to display the simulation results. The Geographical Information
System (GIS) is one of the geospatial information technologies that can be used to store,
manage, and analyze geographical data about natural factors contributing to wildfires, and
therefore, it is a suitable tool to integrate a wildfire simulation model.

Different attempts have been made to integrate the PhyFire model in a GIS system:
as an add-in for the desktop software ArcMap and as a GIS solution based on a web
server. In [17], several scripts were developed to automate geospatial data acquisition
and pre-processing, model execution, and visualization of the simulation results on a base
map. This implementation used the Python language and Esri’s ArcPy library to extend
the functionality of ArcMap 10.4. Although fully functional, integrating the PhyFire model
into ArcGIS makes it difficult for potential usersto obtain the model, as it requires them
to have the appropriate ArcGIS Desktop software license. To overcome these disadvantages,
make the PhyFire model a widely accessible tool, and reach a broader audience, a web
platform was developed in [18]. The platform http://sinumcc.usal.es (accessed on 30
January 2023) allows uploading fire simulation data and the pre-processing, processing,
and visualization of the simulation results throughout the Spanish territory. The web
platform involves two large modules: the Sinumcc Web Platform (frontend) itself and the
Sinumcc GIS Server (backend). The Sinumcc Web Platform is used to collect data intuitively,
semi-automatically, and visually, as well as to display the results of the simulations. The
Sinumcc GIS Server is the module that processes the spatial data for the area selected
by the users and performs the simulations based on the data collected from the Sinumcc
Web Platform. The web platform was developed using current communication and data
processing technologies, such as API REST, JSON, and ArcGIS Server. Both solutions need
a base map to help the user identify the different points of reference of the study domain:
both the Spanish Topographic Base Map provided by the Instituto Geográfico Nacional de
España (IGN) via a Web Map Service [47] and the Topographic base map from Esri were
used for this purpose [48]. Currently, we are working on a profound improvement of
this web platform to make it more accessible and expandable through the use of free
software. Maintaining the philosophy of a frontend and backend (client–server) connected
through web services based on a REST API, the web platform is being redesigned through
a module-based design. Technologically, the new platform will be based on the use of a
No-SQL database for user management, a spatial data model of global scope based on
the World Geodetic System WGS84 [49] geographic coordinate system, enabling better
access to geospatial information, the free software library GDAL/OGR [50], eliminating its
dependence on the ArcGIS Server, the framework Angular 2+ [51], and OpenLayers as the
map viewer.

For any of the GIS solutions adopted, it is essential to gather all the necessary geospatial
information, as well as meteorological data, to feed the PhyFire model. For this purpose,
a geodatabase was developed for the Spanish territory, which contains three maps with
information adapted to the requirements of the PhyFire model.

http://sinumcc.usal.es
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The first map integrated into our geodatabase is the topographic map, which contains
the height h at each point of the surface S, defined by the mapping given by Equation (15).
This information can be found in any Digital Elevation Model (DEM), and we initially
selected the DEM also published by the IGN via a Web Coverage Service (WCS) [52] with
a resolution of 25 m, currently deprecated. Today, cartographic products with the same
purpose and resolutions of 2 [53] and 5 [54] meters are available. The topographic map
with a 5 m resolution is the most-appropriate option for PhyFire’s features.

The second map collects all the elements involving the function of either artificial or
natural fuelbreaks that affect the fire spread. These were initially extracted from the Spanish
Land Cover Information System (SIOSE) [55] by selecting all areas where a fire cannot
occur (barren land, water bodies, transport infrastructures, etc.), providing zero-load fuel
data for the model. It should be noted that forest fires simulated with the PhyFire model
can cross the area associated with these elements thanks to the modeling of the radiation
process. Today, new versions of the SIOSE product [56] together with other highly detailed
products can be used for the same purpose, such as the National Topographic Database at
a 1:25,000 scale (BTN25) [57], or the collaborative project OpenStreetMap [58]. It is possible
to include temporal scenarios, especially those related to the different states of the crops, by
using satellite data and the estimation of different spectral indexes such as the NDVI [59]
or the NDBR [60].

The third map gathers all the information related to the fuel type, which is especially
important for the PhyFire model, as most of its input variables depend on the fuel type (see
Table 2). The PhyFire model can be tuned to work with different fuel classification systems,
such as the Northern Forest Fire Laboratory (NFFL) system [61], the Fire Behavior Fuel
Models (FBFM) [62], and of course, the Mediterranean-European Prometheus system [63],
or even monitored data whenever available. In Spain, depending on the region and/or
year in which the fire to be simulated occurred, the fuel type map used by PhyFire was
processed by assembling the Spanish Forestry Map 1:25,000 (MFE25) [64] and the Spanish
Forestry Map 1:50,000 (MFE50) [65]. Some limitations of this type of information are
its lack of update, the lack of information in some areas, the non-consideration of the
seasonal nature of forest fuel, or the subjective interpretation in the field work when this
information is gathered. It is possible to solve these problems by using satellite data [63]
for the specific instants when the simulation is going to be carried out and algorithms of
machine learning [66] to keep the fuel classification updated.

The pre-processing of the geospatial input data and the post-processing of the sim-
ulation results can slow down the simulation process due to the high amount of infor-
mation to be handled. New improvements have been developed to further enhance the
efficiency of the simulation system embedding part of the pre- and post-processing func-
tionalities through the integration of GDAL/OGR [50] utilities in the original code of the
PhyFire model.

5. Real Case

In this section, we present the simulation of a real wildfire with the current PhyFire
version, which includes the flame temperature and height submodels, as well as fire-
spotting. We selected this wildfire for two reasons: firstly because we have all the relevant
information of this fire, which was documented by the coordinator of the fire-suppression
operations in [67], and, secondly, because the extensive photo-guide [34] provides us
suitable information about the characteristics of the fuel types of the simulation area.

This wildfire occurred in Osoño, Ourense province, in the autonomous region of
Galicia in north-western Spain, on 17 August 2009. The fire ignited at 3:45 p.m. local time
near the motorway bridge. The firefighting team had failed to stabilize the fire by 11:00 p.m.
on the same day, but brought it under control at 3:45 a.m. on the following day, finally
extinguishing it at 9:10 p.m. on 18 August. The fire burned 224 ha:185 ha of forest area
(83 ha were tree-covered interspersed with heath) and 39 ha of agricultural area.



Appl. Sci. 2023, 13, 2035 20 of 26

The fuel data were obtained from the IFN4 with the fuel type distribution according
to the NFFL classification [61], adapted to Spanish forestry by the Nature Conservation
Institute [68]. The initial burnt area was covered mainly with Pinus pinaster corresponding
to Model 7 (inflammable brush); the middle area was covered with Model 6 (dormant
brush) and, to a lesser extent, Model 2 (timber grass). The end burnt area was covered with
diverse fuel types, mainly Model 5 (brush).

Figure 2 shows the fuel type distribution, as well as the existing fuelbreaks, roads,
rivers, and particularly interesting, a wide fuelbreak (20 m wide) along the crests that the
actual fire crossed, as did the simulation.

Figure 2. Simulation area (black rectangle), contour lines, fire ignition point, IFN4 fuel type distribu-
tion, actual final perimeter (red line), and firefighters’ firebreaks (blue lines).

As can be seen in the contour lines of Figure 2, for the first hours, the fire spread over
an uneven surface, with positive and negative discontinuous slopes, with watersheds and
river basins; for the final part, although the altitude is higher, the surface is relatively flat,
and the terrain is more accessible for firefighter teams.

The firefighting team carried out a series of actions to prevent the fire from reaching
the municipality of Osoño, establishing a set of firebreaks by widening the existing roads
on the southern flank of the fire. Figure 2 also shows the three firebreaks (blue lines) the
firefighters made. We did not consider in the simulation the actions of the fire truck water
tanks on both flanks during the last part of the fire.

We simulated the first and most-complicated hours of this real fire, specifically 4 h
and 15 min, updating the wind data (wind speed and direction) every hour and providing
graphic results of the burnt area and fire front every 15 min. The simulation area was a
rectangle measuring 3320 m × 2745 m; the cartographic spatial resolution was 5 m; and
the finite-element mesh resolution was 7.5 m. The whole simulation involved about 150 s
of computational time on a laptop equipped with an Intel i7 processor (two cores, each one
working at a frequency of 3.50 GHz) and 16 GB RAM. This same example was included
in [17], achieving an eight=times lower computational cost. This means that the current
version of the model allows simulating one hour of a real fire, like the one in the example,
in one minute on a standard computer, which is highly competitive. In fact, although the
computational cost depends on the size of the simulation area, the option of using different
resolution levels enables the model to maintain a highly competitive computational cost in
all types of simulations.

The three model parameter values for this simulation were as follows: mean absorp-
tion coefficient a = 0.095 m−1, natural convection coefficient H = 15 Js−1m−2K−1, and
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correction factor of convective term β = 0.015. The values of the fuel-type-dependent
input variables used for the simulation are summarized in Tables 4 for each one of the
five fuel types in the simulation area, adapting the information from [34] to the NFFL
classification [61]. The values of the maximum initial fuel load M0 were obtained from [34];
the fuel moisture content Mv depends on the fuel type and ambient humidity reported
in [67]. The maximum flame temperature Tf ,max and pyrolysis temperature Tp are standard
values. The combustion half-life t1/2 and heat capacity C varied slightly depending on fuel
type, but had little influence on the ROS. Finally, the flame length factors, FH , Fv, and Fs,
were adjusted in the sense of least-squares to the data from [34] for the fuel types selected
to represent the standard fuels according to the NFFL classification.

Table 4. Fuel-type-dependent input variable values.

Fuel Type (NFFL/[34]) M0 Mv Tf Tp t1/2 C FH Fv Fs

Timber grass (2/Pa-06) 1.0 10% 1300 500 100 2000 1.1100 0.4712 0.6759
Brush (5/Eu-06) 2.3 10% 1300 500 200 2300 3.7780 0.5075 2.8280

Dormant brush (6/Cl-02) 2.2 10% 1300 500 200 2300 3.3240 0.4888 2.6880
Inflammable brush (7/Ea-08) 2.4 15% 1300 500 300 2300 3.9320 0.6752 3.0150

Table 5 summarizes the average hourly ambient temperature (Celsius), relative air
humidity (%), wind speed (m/s) and direction (degrees from north), and wind gusts (m/s).

Table 5. Fuel-type-dependent input variable values.

Local Time Temperature Humidity Wind Speed (m/s) Wind Direction

3.45–5.00 p.m. average 32.02 27.17 2 260
5.00–6.00 p.m. average 32.01 27.43 3.3 300
6.00–7.00 p.m. average 31.50 27.43 4.75 300
7.00–8.00 p.m. average 31.42 27.50 4.75 360

We compared the simulation of the fire spread considering the fire breaks shown
in Figure 2 or not, and the results showed that these firewalls were key for saving the
municipality of Osoño from the flames. Figures 3 and 4 represent the burned area each
hour and the fire front at 20.00, in both cases.

Figure 3. Simulation area (black rectangle), fire ignition point, actual final perimeter (red line), fire-
fighters’ firebreaks (blue lines), simulated burned areas each hour, and fire front at 20.00, considering
the effect of fuelbreaks by modifying the initial fuel load.
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Figure 4. Simulation area (black rectangle), fire ignition point, actual final perimeter (red line),
simulated burned areas each hour, and fire front at 20.00. No firefighting actions were considered.

6. Discussion and Conclusions

We understand that research in applied mathematics is intricately linked to real-world
issues. Interesting mathematical problems arise in engineering and other basic sciences,
which pose challenges for mathematical research. Conversely, mathematics becomes an
essential tool for improving our knowledge and understanding of complex systems. In
particular, environmental issues constitute some of the major challenges for mathematical
modeling because of their complexity and high degree of uncertainty. This is the underlying
purpose of this work, without forgetting that technological advances allow faster progress
in the development and resolution of complex models.

This article described the evolution of a mathematical model and the numerical
resolution of a highly complex environmental problem involving wildfire spread. We
studied PhyFire, from its initial concepts through to its current GIS-integrated version,
paying special attention to the underlying mathematical, numerical, and computational
aspects of this ongoing research work.

Throughout the entire process, we sought to strike a balance between model accuracy
and computational cost, as the ultimate goal has always been to provide a useful tool for
wildfire management.

Regarding the mathematical model, we have been making step-by-step improvements
in pursuit of a simple model that is capable of representing the most-relevant phenomena
to adequately represent the main features of a wildfire. Two of the key simplifications
involved, first, considering a 2D model, while maintaining certain 3D phenomena, and
second, considering a one-phase model, namely the solid phase, by parameterizing the gas
phase. We paid particular attention to the simulation of heat transmission by convection
and radiation, designing various proposals for the latter. We have always been mindful of
the factors that most influence the spread of a fire, such as weather conditions, especially
wind, the slope of the land, and fuel (type, distribution, and moisture content), all without
increasing the model’s complexity while applying original mathematical concepts such
as the use of a multivocal operator to simulate the effect of fuel moisture content. We
added sundry sub-models to improve the simulation of certain key aspects, such as flame
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temperature and flame height. We also added the random phenomenon of fire-spotting,
which is extremely dangerous during a real wildfire.

Concerning the numerical solution of the different models proposed, the objective
was to maintain the lowest possible operational cost without compromising efficiency. We
used various numerical methods ranging from finite differences to classical, mixed, and
adaptive finite-elements. We also adapted the typical schemes of other types of problems
to our models, such as duality methods. After checking different numerical schemes,
the one that provided the best results in the current model was based on the use of P1
finite-element approximation on a regular mesh for spatial discretization and a predictor–
corrector finite difference scheme for time discretization. In addition, certain ideas such
as Actives Nodes, Radiation Molecule, and the ability to use several resolution levels were
incorporated to maintain a fire’s simulation time well below its real-time evolution. This
makes our simplified physical model highly competitive compared to other experimental
models, and it can be adapted to simulate examples of different magnitudes.

From a computational perspective, the final code was optimized, and parallel com-
puting was considered. Significant improvements were also made to the pre- and post-
processing phases by integrating GDAL/OGR utilities into the code. These two steps are
essential for completing the model and making it a fully functional and useful tool for
wildfire management services. This was achieved by integrating the model into GIS and
providing the necessary geospatial data.

Finally, the simulation results of the real fire reported here were highly accurate with a
very competitive computational cost, whereby PhyFire was proven to be an effective tool
for wildfire simulation.

This work is continuously evolving, and we are constantly working on improvements
and solving new challenges. We are currently analyzing the effect of FMC on the simulation
results through the multivalued operator. The positive results suggest that the use of remote
sensing for providing reliable FMC data significantly improves the model´s efficiency.
We intend to address other improvements in the physical model, such as the effect of
soot on radiation. We also plan to address the complex issue of adjusting the model’s
parameters, paying particular attention to the latest fuel classification systems and mapping
available in Europe. This major task involves the simulation of a wide and varied set of real
wildfires, for which all the necessary information is being gathered. We are also working on
improving the coupling of PhyFire and HDWind, as we considered that studying the effect
of fire temperature on local winds may be highly expedient. Lastly, a complex challenge
involves coupling PhyFire with an atmospheric dispersion model to simulate wildfire
smoke dispersion.
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Abbreviations
The following abbreviations are used in this manuscript:

EFFIS European Forest Fire Information System
GFAS CAMS Global Fire Assimilation System
PDE Partial Differential Equation
FEM Finite-Element Method
AFEM Adaptive Finite-Element Method
MFEM Mixed Finite-Element Method
GIS Geographical Information System
FMC Fuel Moisture Content
ROS Rate Of Spread
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