
Citation: Liu, W.; Mo, J.; Zhong, F.

Class Imbalanced Medical Image

Classification Based on

Semi-Supervised Federated Learning.

Appl. Sci. 2023, 13, 2109. https://

doi.org/10.3390/app13042109

Academic Editor: Jan Egger

Received: 8 December 2022

Revised: 24 January 2023

Accepted: 3 February 2023

Published: 6 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Class Imbalanced Medical Image Classification Based on
Semi-Supervised Federated Learning
Wei Liu 1 , Jiaqing Mo 1,* and Furu Zhong 2

1 Xinjiang Key Laboratory of Signal Detection and Processing, College of Information Science and Engineering,
Xinjiang University, Urumqi 830017, China

2 School of Physics and Electronic Science, Zunyi Normal College, Zunyi 563006, China
* Correspondence: xjumojiaqing@163.com; Tel.: +86-139-9999-7550

Abstract: In recent years, the application of federated learning to medical image classification has
received much attention and achieved some results in the study of semi-supervised problems, but there
are problems such as the lack of thorough study of labeled data, and serious model degradation in the
case of small batches in the face of the data category imbalance problem. In this paper, we propose
a federated learning method using a combination of regularization constraints and pseudo-label
construction, where the federated learning framework consists of a central server and local clients
containing only unlabeled data, and labeled data are passed from the central server to each local client
to take part in semi-supervised training. We first extracted the class imbalance factors from the labeled
data to participate in the training to achieve label constraints, and secondly fused the labeled data
with the unlabeled data at the local client to construct augmented samples, looped through to generate
pseudo-labels. The purpose of combining these two methods is to select fewer classes with higher
probability, thus providing an effective solution to the class imbalance problem and improving the
sensitivity of the network to unlabeled data. We experimentally validated our method on a publicly
available medical image classification data set consisting of 10,015 images with small batches of data.
Our method improved the AUC by 7.35% and the average class sensitivity by 1.34% compared to the
state-of-the-art methods, which indicates that our method maintains a strong learning capability even
with an unbalanced data set with fewer batches of trained models.

Keywords: federated learning; semi-supervised algorithm; pseudo-labels; classification

1. Introduction

Compared with traditional natural image classification, the following two problems
are common for all kinds of medical image data in medical image classification tasks:
One is data scarcity and category imbalance caused by privacy protection [1,2], and the
other is that it is difficult to get tags [3] due to high tagging cost and lack of professional
talents in some regions. In recent years, federated learning has received a lot of attention
from researchers due to its ability to total various idiosyncratic data by fusing distributed
training network parameters with no interaction between data in various places. This guar-
antees data privacy, based on these advantages, which makes it compatible with medical
tasks [4–9]. Through our research survey we noticed that concerning federated learning
methods most of the current research revolves around supervised training [10,11], some of
the research applies valid features from labeled data to unlabeled data [12], and there is
less research on class imbalance within the data. On the difficulty of acquiring balanced
data: Due to the large differences in the incidence of disease types among localities [13] and
the inability of some hospitals to effectively label the huge amount of data, how to apply
a large amount of unlabeled data to federated learning and overcome the internal class
imbalance problem to improve the accuracy of the network becomes the main problem to
be solved in this paper.
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To this end, we investigated an improved semi-supervised federated learning problem
that introduces a treatment of the unlabeled-data class-imbalance problem based on the
fact that only a small amount of labeled data is involved. To obtain useful information from
unlabeled data, two methods are commonly used: One uses regularization to constrain
unlabeled data using labeled data features [12,14–17], and the other uses a specific way
to construct pseudo-labels [18–20] and set confidence thresholds to filter the predicted
features. Liu et al. [12] set a small amount of labeled data in a local client and achieved
regularization constraints by extracting the intrinsic relationships of the categories in the
labeled images in the form of a correlation matrix to laterally constrain the unlabeled
data from other clients. Although further exploitation of labeled data is carried out, the
training on unlabeled data only incorporates common consistent regularization methods
to improve the robustness of the model and does not effectively address the problem of
category imbalance at the data level. The difference is that Bdair et al. [21] used labeled data
only as a model initialization training and focused their research on the training of local
clients, where they applied the peer anonymous (PA) learning method to unlabeled clients,
integrating similar clients to the community and obtaining pseudo-labeling of unlabeled
data with the aid of peer learning. This method improved the training efficiency but still
suffers from category imbalance at the data level. To solve this problem, Jiang et al. [18]
used labeled data for pre-training and performed dynamic library building in a local
client containing only unlabeled data. They transformed the original classification task into
classification of the library by randomly setting different label ratios to avoid the problem of
blurred decision boundaries in low categories caused by unbalanced data categories. This
approach largely alleviates the problem of data-level imbalance, but ignores the value of
labeled data and requires training in large batches to optimize the class imbalance problem,
otherwise the client experiences severe model degradation in some places, which leads
to serious degradation in the performance of the aggregated model, as also confirmed in
the experimental Section 3.2. Meanwhile, in FedAvg [22], FedIRM [12], FedPerl [21], and
imFed-Semi [18] studies, which have federated learning as a framework, it is common to
divide the ratio of labeled to unlabeled data in the experimental data into 2:8, where the
labeled data are divided into a small number (1–4) of labeled local clients. The unlabeled
data are divided into a majority of unlabeled local clients, and the studies do not investigate
the effect of a different number of local clients on model classification. In addition, the
performance of the model is only measured using various metrics in the model validation
phase, and there is no research on how to represent the robustness of the model.

Based on the above problems, how to effectively extract valuable information from
labeled data and better overcome the class imbalance problem has become a key issue.
The thought is to apply and process the labeled data several times so that it can play
an auxiliary role in the process of client-side training. Based on the similarity index of
disease presentation [23], it was indicated that the distribution of diseases between different
categories of the same type still presents a high degree of similarity across geographic
areas. With this discovery, we consider that the validity of training in each client can be
guaranteed with a reasonable distribution of data, and this makes it possible to supervise
the pseudo-labeling of its predictions. In addition, we think it is also significant to choose
what kind of unlabeled data should participate in the training, because the data selection
can mitigate the task loss of unlabeled clients and effectively utilize the unlabeled samples.

In our article, we present a semi-supervised federated learning approach based on a
combination of regularization and pseudo-label construction. We labeled data for model
pre-training, local client fusion training, and constraining the generation of pseudo-labels
inside each client. Additionally, to better shape the decision boundaries for fewer categories
in unlabeled data, we considered using a data selector to filter partially stable unlabeled
data in combination with the existing SSL algorithm [24]. To validate the performance of
the model, we present a method to measure the robustness of the model. We experimentally
validated it on the ISIC 2018: skin lesion analysis for melanoma detection data set [25] with
the class sample distribution of the training and test sets as shown in Figure 1. Our method
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improves all metrics compared to other advanced federated learning methods [12,18,22]
for the same data sample, and the model has optimal robustness.
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Figure 1. (a) The distribution of samples with labels in the central server is shown in red, and the
distribution of samples without labels in the local client is shown in green. (b) Sample distribution of
test set categories for model detection.

The main contributions of our article are as follows:

• To the extent of our knowledge, we present the first approach that combines regular-
ization constraints with pseudo-label construction in solving a federated learning for
medical information classification tasks.

• We propose a stable selector to filter unlabeled data to improve the robustness of the
model and the pseudo-labeling information.

• We construct controllable data samplers that can divide labeled and unlabeled data
in arbitrary proportions to explore the impact of different numbers of clients on
the model.
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• We suggest a measure of model robustness that measures the sensitivity of the model
to the class of data.

2. Materials and Methods
2.1. Data Set and Task Setup

Data set: We used the ISIC 2018: dermal lesion analysis for melanoma detection data
set [25] for dermal lesion diagnosis, which collected dermoscopic images from different
populations, consisting of 10,015 dermoscopic images of cases. These include a representa-
tive collection of all important diagnostic categories in the field of pigmented lesions: actinic
keratoses and intraepithelial carcinoma/Bowen’s disease (akiec), basal cell carcinoma (bcc),
benign keratosis-like lesions (bkl), dermatofibromas (df), melanomas (mel), melanocytic
nevi (nv), and vascular lesions (vasc).

In our task, we let xl be labeled data, xu be unlabeled data, y be true labels, y be
pseudo-labels, DL =

{
x1

l , x2
l · · · x

N
l
}

be the labeled data set, DL =
{

xN+1
u , xN+2

u · · · xN+M
u

}
be the unlabeled data set, and C = ∑n

i=1 ci be the local client set, where ci = ∑M/n
j=1 Oj(DU),

n is the number of clients, O is the random sampler, K = {m1, m2 · · ·mk} is the distribution
of each category in the labeled data set, k is the number of categories, and y = min

K∈DL
(K)/K

is the imbalance factor.

2.2. Federated Learning Method

As shown in Figure 2, our approach is to pre-warm the labeled data using the central
server network f (θ), pass the network parameters to the local network by broadcasting,
pass the labeled data to each local client to train the local network fi(θ) jointly with the
unlabeled data, use the imbalance factor to construct the equilibrium auxiliary to do regular-
ization constraints at the representation layer of the local network, and use the aggregation
algorithm FedAvg [22] to aggregate the network of each local client to get the updated
central server network f (θ) = ∑n

i=1 ci × fi(θ)/C. Then, the global network is passed to the
local client network again by broadcasting for the next iteration until convergence.
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In the local client training process we used ReMixMatch [24], which has the most
advanced performance in the field of semi-supervised learning, as the main body. We first
used the pre-trained network for pseudo-label prediction, taking the average of the output
of each batch as one prediction, and using a distributed alignment method to match the
pseudo-label with the real label, with the following expression

Y = K/ fi(p(η|xu), θ) (1)

where p(η|xu) is the primary prediction of the unlabeled data. We finally obtained the
pseudo-label y = τ(Y), where τ(·) is the temperature sharpening function. The second
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method used was anchored augmentation, i.e., the same input data were randomly inverted
and cropped to form weakly augmented data, and the augmented labeled data were mixed
with unlabeled data for regularization. Finally, using the cross-entropy loss as a metric,
we introduced a self-supervised rotation loss lr for consistent regularization of unlabeled
images in order to improve the sensitivity and stability of the network to unlabeled images
under different perturbations [26,27].

2.3. Data Distribution

We followed the previous method of data assignment and divided the ratio of data with
and without labels into 2:8. However, in our method, labeled data were very significant,
and since the labeled information needs to be fully utilized to extract the class imbalance
factor and fuse it with the unlabeled data to join the training network, as shown in Figure 3,
we set the number of labeled local clients to 0. The unlabeled data can be assigned
to 0 to 8 local clients by parameter control, and the advantage of this setting is that we
can change the training pattern at any time. When the unlabeled local client is 0, the
model can be pre-trained to achieve the initialization of the model; when the unlabeled
local client is 1, the training mode degenerates from federated learning to ordinary semi-
supervised learning, so that the differences between the two modes can be compared
under the same data. Furthermore, the optimal number of unlabeled clients can be derived
through experiments to achieve optimal model performance.
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2.4. Class Balance Auxiliary

To solve the experimental class imbalance problem, we introduced the class balancing
aid proposed by Lee et al. [20]. The schematic diagram is shown in Figure 4. Experimentally,
the central client has labeled data for category statistics to obtain the imbalance factor ς .
Using the Bernoulli distribution B(·) to generate the mask I = B(y× ς) , so that a few class
labels have a higher probability of generating 1, while most category labels generate 0 with
a higher probability, with label balancing loss can be calculated as follows:

labc = I × H( fi(p(η|xl), θ), y) (2)

where H(·) is the standard cross-entropy loss and (p(η|xl), θ) is the prediction of the local
network on the labeled data.



Appl. Sci. 2023, 13, 2109 6 of 16

Appl. Sci. 2023, 13, 2109 6 of 17 
 

To improve the accuracy of label-free prediction, we introduced a confidence level 𝛾(∙). The data are used as a loss calculation only when the probability of predicting a label 
is greater than the confidence threshold. The unlabeled equalizer is also adjusted, because 
the unlabeled data do not have accurate label information; if the category is directly bal-
anced, it is easy to cause the model to forget most of the category information. In order to 
ensure that the model can both fully learn the multi-category information and adapt to 
the class imbalance challenge, we introduced dynamic weights. The weight parameter is 
affected by the iteration cycle, in the initial training the imbalance factor is constant to 1, 
so it loses its balancing role. As the iteration cycle increases the imbalance factor gradually 
recovers to continue working; the unlabeled balance loss is calculated as follows: 𝑙௔௕௖௨ = 𝛾(𝑓௜(𝑝(𝜂|𝑥௨), 𝜃), 𝜔) × 𝐼 × 𝐻(𝑓௜(𝑝(𝜂|𝑥௨), 𝜃), 𝑦) (3)

where 𝛾(∙) is the confidence function and 𝜔 is the confidence threshold. 

 
Figure 4. The training method in the local client network and the composition of the class-balanced 
auxiliary. 

2.5. Pseudo-Label Construction 
In the construction of semi-supervised loss, we borrowed the pseudo-label construc-

tion framework of ReMixMatch [24]. However, medical images require higher stability of 
the model in the classification task compared to natural images, because the classification 
of disease recognition often depends on local pixel points. If the model is not strong 
against interference, the model obtains more ambiguous label information when the un-
labeled images are less informative or when the image quality is poor. To address this 
problem, we present the stable selector pseudo-label construction method, which aims to 
further improve the stability of the network for unlabeled images by screening more stable 
samples of unlabeled images to generate pseudo-labels with sufficient label information. 

The stability selector estimates the predictive stability of the model for unlabeled 
samples by calculating the difference in probability distribution between the features of 
the unlabeled augmented samples and the perturbed adversarial samples after going 
through the model. The process is as follows: we pass a batch of unlabeled weakly en-
hanced data𝑥௨ through the pre-training network 𝑓௜(𝜃) to obtain the general label predic-
tion 𝑦௜௨. At the same time, we pass the added perturbed unlabeled adversarial sample 𝑑(𝑥௨) into the network to obtain the perturbed label prediction 𝑑(𝑦௜௨). Finally, we input 
both 𝑦௜௨ and 𝑑(𝑦௜௨) into the generator to obtain the adversarial perturbation vector 𝑟௜௨. 𝑟௜௨ is denoted as 𝑟௜௨ = 𝑎𝑟𝑔 min௄ 𝐷𝑖𝑣(𝑦௜௨, 𝑑(𝑦௜௨)) (4)

Figure 4. The training method in the local client network and the composition of the class-
balanced auxiliary.

To improve the accuracy of label-free prediction, we introduced a confidence level γ(·).
The data are used as a loss calculation only when the probability of predicting a label is
greater than the confidence threshold. The unlabeled equalizer is also adjusted, because the
unlabeled data do not have accurate label information; if the category is directly balanced,
it is easy to cause the model to forget most of the category information. In order to ensure
that the model can both fully learn the multi-category information and adapt to the class
imbalance challenge, we introduced dynamic weights. The weight parameter is affected by
the iteration cycle, in the initial training the imbalance factor is constant to 1, so it loses its
balancing role. As the iteration cycle increases the imbalance factor gradually recovers to
continue working; the unlabeled balance loss is calculated as follows:

labcu = γ( fi(p(η|xu), θ), ω)× I × H( fi(p(η|xu), θ), y) (3)

where γ(·) is the confidence function and ω is the confidence threshold.

2.5. Pseudo-Label Construction

In the construction of semi-supervised loss, we borrowed the pseudo-label construc-
tion framework of ReMixMatch [24]. However, medical images require higher stability of
the model in the classification task compared to natural images, because the classification
of disease recognition often depends on local pixel points. If the model is not strong against
interference, the model obtains more ambiguous label information when the unlabeled
images are less informative or when the image quality is poor. To address this problem,
we present the stable selector pseudo-label construction method, which aims to further
improve the stability of the network for unlabeled images by screening more stable samples
of unlabeled images to generate pseudo-labels with sufficient label information.

The stability selector estimates the predictive stability of the model for unlabeled
samples by calculating the difference in probability distribution between the features of the
unlabeled augmented samples and the perturbed adversarial samples after going through
the model. The process is as follows: we pass a batch of unlabeled weakly enhanced data
xu through the pre-training network fi(θ) to obtain the general label prediction yu

i . At
the same time, we pass the added perturbed unlabeled adversarial sample d(xu) into the
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network to obtain the perturbed label prediction d
(
yu

i
)
. Finally, we input both yu

i and d
(
yu

i
)

into the generator to obtain the adversarial perturbation vector ru
i . ru

i is denoted as

ru
i = argmin

K
Div(yu

i , d(yu
i )) (4)

where K is the maximum selection hyperparameter and Div(·) is a function of the scatter
between the predicted labels of the augmented samples and the perturbed adversarial
samples. In our experiments we used the KL scatter.

However, the above selector has a problem, because the selector uses randomly
generated perturbation terms in the interval of ±0.5, because when the perturbation is 0,
the gradient of Div(·) with respect to the perturbation is constant 0. At this time, the
selector is not able to improve the network stability. For this problem we use a sample once
for the network training scatter, with respect to the average gradient of the perturbation to
approximate the perturbation, which is represented in the experiment as follows.

g = ∇d(xu)Div(yu
i , d(yu

i )) (5)

ru
i = argmin

K
Div( fi(p(η|xu), θ); fi(p(η|g), θ)) (6)

where ∇ is the average gradient operation. Finally, we selected the predicted labels corre-
sponding to the first K-minimum scatter to participate in the pseudo-label construction.

Then we introduced the distribution alignment proposed by ReMixMatch [24], which
makes the predicted labels fit the class ratio to further overcome the class imbalance
problem; The semi-supervised pseudo-label construction process is shown in Figure 5.
First, we designate the K stable predicted pseudo-labels screened as the prediction q of one
batch of unlabeled data and define the edge class distribution as Ydist = ς×

(
NDL /NDU

)
.

Then, the K unlabeled data after each round of screening are input into the network to
get the label prediction and are stored. When the next round of prediction is finished, it
will be averaged with the previous prediction, and when the 129th round of prediction
is finished, it will replace the prediction of the 1st round, and the average of each round.
The prediction after each round is averaged so that it is the distribution of unlabeled data
predictions Ydist. The final pseudo-label is defined as

y = Norm
(
q×

(
Ydist/Ydist

))
(7)

where Norm(·) is the normalization process.
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alignment generated by the screened pictures into the network to generate label predictions.
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2.6. Model Stability Validation

To verify that our method combining label regularization with pseudo-label construc-
tion and a data selector is helpful for the stability of the model, we propose a simple way to
measure the stability of the training completion model, i.e., two different validation meth-
ods were selected to experimentally validate the test set: One is the traditional single-label
multi-classification validation method, used by Jiang et al. [18] in their experiments, which
is characterized by selecting the larger probability ordinal number in a single image as
the predicted label y1. However, there are cases where the probability of multiple ordinal
numbers is approximated, which indicates a bias in the model’s classification of that image.
The second is the multi-label multiclassification validation method, used by Lee et al. [20]
in their experiments, which features a hyperparameter threshold (<0.5) and then compares
the data by category and selects the ordinal number corresponding to a probability greater
than the threshold as the label y2 for that image. This allows for the presence of multiple
labels and clearly shows the bias of the model on the classification of that image. When the
model is sensitive to each category, the probability corresponding to the correct category is
much higher than the incorrect category, and y1 and y2 are equal, but if the model is less
sensitive to certain categories, y1 and y2 are not equal. According to this characteristic, we
chose to use the sensitivity metric to calculate the error of the two validation methods to
assess the stability of the model, and the error representation formula is as follows:

ε =
∣∣∣S(∑N

i=1 yi
1

)
− E

[
∑K

j=1 Sj(y2)
]∣∣∣ (8)

where N is the number of validation sets, K is the number of categories, S(·) is the sensitivity
metric calculation method, E is the expectation calculation, and |·| indicates that the
absolute value is taken.

3. Results
3.1. Experimental Setup and Details

Experimental setup: We trained 80% of the image data for the federated network
and 20% for the final network test, and followed the COVID-Net [28] scheme for the
preprocessing of the data to perform a random transformation of the image with translation,
rotation, and flip. The image size was adjusted to 224 × 224 and normalized, and the pre-
network initialization was performed using the network parameters input to the network
pre-trained by ImageNet. Through experimental observations, we set the number of local
clients as four, and used random sampling to equally divide the randomly disrupted image
data into five subsets, of which one subset was assigned to the central server as labeled data
and four subsets were assigned to the local clients as unlabeled data. The evaluation metrics
consisted of AUC, sensitivity, specificity, accuracy, precision, and F1. The performance of
the central server network was analyzed comprehensively, and the mean value of the best
metrics from three independent trainings was used as the final result. Their computational
relationships are as follows:

Sensitivity = TP/TP + FN (9)

Specificity = TN/TN + FP (10)

Accuracy = (TP + TN)/(TP + FN + TN + FP) (11)

Precision = TP/TP + FP (12)

F1 = 2(Precision× Sensitivity)/(Precision + Sensitivity) (13)

Among them, sensitivity and specificity metrics are very important metrics in medical
image classification tasks, but these two metrics are contradictory, so we chose to use Sensi-
tivity metrics to measure the performance of the model in our experiments. Additionally,
in our study, the AUC metric is very informative because it is not sensitive to whether
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the samples are balanced or not and is more suitable for dealing with unbalanced data
distributions. In addition, the AUC is more sensitive to model changes and the larger the
value of the AUC, the more likely the current classification algorithm will rank the positive
samples, i.e., will be able to classify them better [29].

Implementation details: To ensure fair consistency of the experiments we chose the
network DenseNet121 consistent with FedIRM [12] and 30 cycles of warm-up; performed
200 cycle iterations, data batch size was set to 10; did random augment [30] data en-
hancement on the input images; and added Dropout layer to the network to prevent
overfitting. Confidence level of network parameters threshold was 0.95, batch training was
performed using Adam optimizer with momenta of 0.9 and 0.99, and the learning rate was
set to 2 × 10−4.

3.2. Comparison with Advanced Methods

We set up controlled experiments including (1) a FedAvg [22] model using only 20% of
the central client with labeled data and using it as a baseline criterion; (2) FedIRM [12]
using a new inter-client matching relationship to obtain similar information about labeled
client diseases to constrain unlabeled clients and reduce task loss; and (3) imFed-Semi [18]
used to build a dynamic class library, filter out high confidence samples, re-estimate the
client class distribution, subdivide it into sub-banks with different pseudo-labels, and
construct a priori transformation functions through Bayesian criteria to transform the task
into classification of the sub-banks, thus avoiding the impact caused by the majority class
of the central client.

Due to the limitations of the experimental equipment, the upper limit of our method
batches was 10, which is also the optimal batch that our method can achieve. We performed
two sets of control experiments for the state-of-the-art method separately: One set of models
effects under 10 batches of data training (fixed variables, let the state-of-the-art method
be compared with our method under the same batches). The other set shows the effect of
the model trained with the optimal batch (greater than 10) (fixed upper limit to allow the
state-of-the-art method to be compared with our method at the optimal effect that can be
achieved). A comparison of the results of our method and the state-of-the-art method is
shown in Table 1.

Table 1. Comparison with state-of-the-art methods on the same task.

Method
Client Num Metrics

Label Unlabel AUC Accuracy Sensitivity Specificity Precision F1

FedAvg [22] 2 0 88.27 92.34 61.43 92.28 66.50 62.53
FedIRM(10) [12] 2 8 88.17 89.87 40.76 91.66 34.38 37.02
FedIRM(best) [12] 2 8 90.38 90.30 67.86 92.87 61.20 62.02
imFed-Semi(10) [18] 2 8 92.40 93.30 58.29 92.10 76.87 63.10
imFed-Semi(best) [18] 2 8 88.40 94.75 67.75 94.04 79.12 71.77
our 2 8 95.75 95.58 72.92 95.47 73.88 72.90

Among them, the FedIRM [12] and imFed-Semi [18] methods produce a degradation
in model performance due to the reliance on inter-data relationship-driven representation
and the need for sub-base-alike redistribution of data in small batches of data. This leads to
insufficient information on class relationships during a single training session, resulting
in the loss of a few class decision boundaries in the aggregated and broadcast models.
When increasing the batch size, there is a significant improvement in model performance
beyond the baseline level as more information on class relationships can be obtained from
the labeled data and there is a greater probability of reassigning a few classes, indicating
that the additional unlabeled information is beneficial for federated learning through the
integration algorithm.

Our combination of regularization constraints and pseudo-label construction solves
these problems well. In contrast to FedIRM [12], which can only find limited relational
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matches from each batch of labeled image data, our imbalance factors extracted from the
labeled data are global and unique, and thus are not affected by the size of the data training
batches. Relying only on regularized relational matches between clients in FedIRM [12]
greatly reduces the learning ability of the model for fewer classes in the face of small
batches of imbalanced data, while our regularized class balancing aid, constructed using
imbalance factors, significantly improves the learning ability of the model.

Compared with the imFed-Semi [18] method, the method attempts to solve the class
balance problem by constructing sub-banks for the contradictory transfer of tasks, which
transforms the classification problem for unbalanced classes into a classification problem for
sub-banks after reconstructing the data. However, when constructing the transfer function,
due to the randomness of the data allocation ratio, in order to ensure full data coverage, it
often appears that the first few libraries have less data allocated and the last library has too
much data allocated. This allocation is unlearnable, which also means that this phenomenon
will continue throughout the training, and when the batch is small, it may even appear that
some of the libraries are empty, which makes it easy to have model degradation during
the training. The pseudo-label construction we use solves these problems by first using a
data selector to filter out stable samples, second by averaging the 128 batches of unlabeled
predictions to alleviate the problem of limited learning range due to small batches of data,
generating dynamic edge distributions in a cyclic manner (replacing the 1st prediction
when the 129th prediction occurs). Additionally, it incorporates a constant edge distribution
imbalance factor to jointly constrain the class probability distribution generated by the
network, and finally generates pseudo-labels. This ensures the smoothness of the model in
learning unlabeled data and improves the category imbalance problem.

Our method shows significant improvement in most metrics (especially AUC, Sensi-
tivity, and specificity) compared to FedIRM [12] and imFed-Semi [18] on the skin lesion
classification task for the same batch of dermoscopic images, thanks to the combination
of class distribution regularization with pseudo-label representation. In general, category
distribution regularization solves the problem that the aggregated model is more likely
to favor the majority class in having labels, as shown in the FedIRM(10) results in Table 2
of Section 3.3, which tends to cause the decision boundary of the minority class to vanish.
In addition, the application of our pseudo-labeled representation solves the problem of
perturbation of the training model by the adversarial samples, as shown in Figure 5 of
Section 3.3. Our method makes full use of the unlabeled data, so that the robustness of the
model is significantly improved, and the cyclic dynamically generated distribution also
avoids model degradation.

Table 2. Comparison of the sensitivity of each category under different methods.

Method
Category

1 2 3 4 5 6 7 Average

FedAvg 44.40 92.99 69.63 42.05 57.83 60.83 70.00 62.53
FedIRM(10) 61.23 88.73 0 0 60.59 0 0 30.07
FedIRM(best) 58.15 80.76 87.96 45.59 66.01 33.33 11.75 54.79
imFed-Semi(10) 29.07 99.40 74.07 50.00 39.40 16.66 78.12 55.24
imFed-Semi(best) 52.86 99.11 77.78 57.35 49.75 87.50 78.13 71.78
our 53.30 96.34 63.88 60.29 63.05 87.50 87.50 73.12

3.3. Internal Comparative Analysis of Methods

Dynamic learning within categories: In Figure 6a, the sensitivity change curves of each
category under our method, and in Figure 6b the sensitivity change curves of each category
under FedAvg [22] model are shown and set as the baseline level for comparison with our
method. The horizontal axis shows 30 class sampling points sampled in 10 cycles, and the
vertical axis indicates the change in sensitivity of each class in the test set as the iteration
cycle progresses. From the observation we can infer that with the convergence of training
almost all sensitivities of all classes are higher than the baseline level. Our method can learn
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knowledge effectively from unlabeled data and improve the network performance, to not
only have higher recognition for multi-category data, but also have a greater improvement
in the recognition rate for fewer category data. Figure 7 reflects the changes of each loss for
the training set and the test set. It can be observed that at the beginning of the 170th cycle,
each loss curve shows an obvious decreasing trend, among which the change of auxiliary
loss is the most obvious and runs through the other curves. This is, because with the
increase in training cycles, the class balance aid gradually produces a constraining effect on
the pseudo-label of unlabeled data, and each loss curve has the same change trend among
them. This indicates that there is no overfitting phenomenon in the training of the model.
This result also demonstrates the effectiveness of our approach of combining consistency
constraints with pseudo-labeling in the federated learning for the class imbalance task.
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Figure 6. (a) A graph of the sensitivity changes of each category under our method. (b) A graph of
the sensitivity changes of each category under the basic network.
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Performance Analysis of Fusion Methods: As shown in Table 2, for the comparison
of the category analysis performed using the FedAvg [22], FedIRM [12], imFed-Semi [18]
method, and our method under different batches, first we can observe that FedAvg [22]
can guarantee a higher accuracy rate under the same small batch of training with fewer
category samples, which indicates that the category is more distinguishable compared to
other categories and reduces the impact caused by fewer data samples. FedIRM [12] shows
severe model degradation, with smaller batches of training affecting the supervision of inter-
client relationships, as can be observed in comparison to the control in Figure 1b, where,
although most categories show a significant improvement in accuracy, a smaller number of
four categories show the disappearance of decision boundaries. imFed-Semi [18] shows
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a significant improvement in the average category sensitivity compared to FedIRM [12]
and a significant improvement in the impact caused by data class imbalance. However,
due to the uneven distribution of sub-bases during data redistribution and the fact that
this phenomenon is constant, which leads to a new imbalance problem in small batches of
training, we can find a significant decrease in the accuracy of the first category compared
to the other methods. In contrast, the regularization constraint in our method is global
and unique, unaffected by small batches of data, and the pseudo-label construction is
smooth. Combining the two methods ensures the stability of the model while solving
the class imbalance problem, and it can be observed that our class sensitivity is generally
higher than the baseline level, and the average class sensitivity shows a large improvement
compared to the advanced methods tested. Secondly, under the optimal batch training,
our method shows an average category sensitivity improvement of 1.34% compared to
the imFed-Semi [18] method with class balancing effect. As shown in Figure 8, under our
model evaluation criteria, it can be observed that our method produces a lower error, which
indicates that the model trained by our method has higher robustness.
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Exploratory study of internal parameters: We fixed the amount of tagged data for the
central client at 20% and kept increasing the number of local clients to change the ratio of
tagged and untagged data. By observing Figure 9 we can conclude that the accuracy is
highest when the local clients are four and the ratio of tagged to untagged data for a single
local client is 1:1. It is worth mentioning that when the local client is 1, the training method
degenerates to ordinary semi-supervised learning, which also proves the effectiveness
of using federated learning. In addition, we continued to do a dynamic analysis of the
confidence threshold of the key parameter in the method, because when the threshold is
too low, the training is disturbed and produces errors, while a high threshold causes the
regularization to lose its effect. As shown in Table 3, we detected that the model accuracy
reaches the highest values when the threshold is set to 0.95.

Table 3. Sensitivity of our method at different confidence thresholds.

η 1 0.98 0.95 0.9 0.85 0.8 0.75 0.7

Sensitivity 71.09 71.63 72.92 71.53 72.16 71.5 69.89 69.94
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4. Discussion

We present a new federated learning method that can effectively solve the class
imbalance problem in the melanoma dermoscopy image classification task. This is the
first time that regularization constraints are combined with pseudo-labeled representations
in semi-supervised federated learning, and this classification model demonstrates the
improvement in the accuracy of the model using our approach by two validation methods.
The classification model trained under our method has an accuracy of 95.75%, sensitivity
of 72.92%, specificity of 95.47%, precision of 73.88%, F1 score of 72.90%, and AUC of 95.75%.

In the process of proving the validity of our proposed method, we compared our
method with the baseline level FedAvg [22] and two of the current state-of-the-art methods
FedIRM [12] and imFed-Semi [18] in the field of federated learning. With the same data
set, the same data distribution, the same batch, and the same model optimal performance,
our method leads to the optimal level of the model. The sensitivity (recall), the most
important metric in medical image classification, is improved by 5.17% compared to the
state-of-the-art level, and the specificity, another important metric, is improved by 1.43%.

In addition, we present a simple model-robustness evaluation criterion, which demon-
strates the effectiveness of our proposed method in improving the robustness of the model
by showing that our model yields the smallest prediction distribution error compared to
the models trained by FedAvg [22], FedIRM [12] and imFed-Semi [18]. When we change the
sample ratio between the medium and local clients by a controlled data sampler, as shown
in Figure 9, we find that the sensitivity of important metrics is improved by 3.62% under
the federated learning framework compared to the degraded ordinary semi-supervised
method. This demonstrates the effectiveness of combining federated learning with semi-
supervised learning for the improvement of classification performance of medical image
classification models.

Notably, by looking at Table 1, it can be observed that the accuracy index decreases
by 5.24% compared to the state-of-the-art level, while Equation (14) reflects a significant
decrease in accuracy when false positives (FP) rise. Through analysis, we believe that
the reason is that the pseudo-labeling is constrained while relaxing the prediction of the
few-category data labels, thus improving the sensitivity of the model to the few categories
to some extent. In contrast to the decrease in sensitivity for most categories, described in
Table 2, according to Equation (15) we observe a significant decrease in sensitivity when
false negatives (FN) rise, due to the constraint of pseudo-labeling while suppressing the
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prediction of most category data labels. In short, this phenomenon occurs uniformly,
i.e., all images from the majority category are predicted into the minority category, but
we believe that this phenomenon can be tolerated, because from a theoretical point of
view, the sensitivity of the minority category is substantially improved, which nicely solves
the category imbalance problem. From a practical point of view, we believe that a larger
number of image categories corresponds to diseases with higher probability of occurring.
This means, there are relatively more experience and methods to deal with that category
of diseases in clinical treatment, and doctors have higher recognition of that category of
diseases. This is a deficiency that can be largely compensated for manually, while a few
categories of diseases lack the above elements, so we believe that the classification model
trained by our method has more advantages than disadvantages.

In addition to these shortcomings of our approach, in terms of model initialization only
simple supervised training is used, and we believe that such a migration of the parameter
distribution is not suitable for semi-supervised learning. In terms of task selection, although
our method has been validated effectively in single-category multiclassification tasks, it
is still inadequate in the face of multi-category multiclassification tasks and needs further
exploration and research. Similarly, our proposed model robustness validation method
is only applicable to single-category multiclassification task models. In terms of model
generalizability, our method contends for better classification of dermoscopic images, but
whether the method is generalizable in the field of medical images requires further research,
e.g., Amyar et al. [31] proposed a multi-task learning framework to predict diseases, and
they argued that encoders can use multiple tasks to extract meaningful and powerful
features, allowing better generalization of the model. We believe that such an approach
is highly informative in the field of medical image classification. In terms of practical
application, at present, our research is still theoretical basic research. Theoretically, we
believe that the method is clinically applicable, but at present it is not applied in clinical
applied research. In a subsequent work we will attempt to address the shortcomings
presented above, and in a recent work we preliminarily constructed a model initialization
method applicable to semi-supervised learning and extended the approach of this paper
in combination with it to other medical imaging tasks to demonstrate the generality of
the method.

5. Conclusions

In this study we present an improved semi-supervised federated learning problem in
solving federated learning for medical information classification tasks, and we propose the
first method that combines regularization constraints with pseudo-label construction. To
address the category imbalance at the data level, our specific approaches include (1) using
valid information in tagged data to constrain pseudo-labels in local clients and (2) proposing
a data selector to make it filter interference-resistant when using untagged images as new
data sets to participate in pseudo-label generation. In addition, we propose a method to
measure the robustness of the model in the experimental validation phase. The validity of
our proposed method is verified in an experimental validation on a publicly available data
set. In the future, we will strive to investigate the direction of model parameter initialization
in semi-supervised learning in order to explore a model parameter initialization method
applicable to universal medical image classification tasks.
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