
Citation: Jo, A.-H.; Kwak, K.-C.

Speech Emotion Recognition Based

on Two-Stream Deep Learning Model

Using Korean Audio Information.

Appl. Sci. 2023, 13, 2167. https://

doi.org/10.3390/app13042167

Academic Editors: Jan Egger and

Chun-Xia Zhang

Received: 2 January 2023

Revised: 1 February 2023

Accepted: 7 February 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Speech Emotion Recognition Based on Two-Stream Deep
Learning Model Using Korean Audio Information
A-Hyeon Jo 1 and Keun-Chang Kwak 2,*

1 Electronic Engineering IT-Bio Convergence System Major, Chosun University,
Gwangju 61452, Republic of Korea

2 Electronic Engineering, Chosun University, Gwangju 61452, Republic of Korea
* Correspondence: kwak@chosun.ac.kr; Tel.: +82-062-230-6086

Abstract: Identifying a person’s emotions is an important element in communication. In particular,
voice is a means of communication for easily and naturally expressing emotions. Speech emotion
recognition technology is a crucial component of human–computer interaction (HCI), in which
accurately identifying emotions is key. Therefore, this study presents a two-stream-based emotion
recognition model based on bidirectional long short-term memory (Bi-LSTM) and convolutional
neural networks (CNNs) using a Korean speech emotion database, and the performance is compara-
tively analyzed. The data used in the experiment were obtained from the Korean speech emotion
recognition database built by Chosun University. Two deep learning models, Bi-LSTM and YAMNet,
which is a CNN-based transfer learning model, were connected in a two-stream architecture to design
an emotion recognition model. Various speech feature extraction methods and deep learning models
were compared in terms of performance. Consequently, the speech emotion recognition performance
of Bi-LSTM and YAMNet was 90.38% and 94.91%, respectively. However, the performance of the
two-stream model was 96%, which was a minimum of 1.09% and up to 5.62% improved compared
with a single model.

Keywords: speech emotion recognition; human–computer interaction; two-stream; bidirectional
long-short term memory; convolutional neural network

1. Introduction

Different emotions, such as happiness, anger, sadness, and surprise, play an impor-
tant role in communication among people, and speech (voice) is a communication means
that easily conveys emotions in the most natural manner. Precisely recognizing human
emotions using speech data has become an essential research area in human–computer inter-
action (HCI), particularly as artificial intelligence (AI) technology is progressing rapidly [1].
Speech emotion recognition (SER) technology can enhance the quality of HCI by accurately
classifying human emotions and enabling machines to adequately grasp user intention [2].
This technology is receiving increasing attention from researchers because of its appli-
cability in diverse fields, including medical and customer service robots. Deep learning
technology has been successfully applied and advanced in the fields of image recognition
and speech recognition; thus, studies have begun employing it in SER, and research is
actively being conducted on deep learning-based SER algorithms [3–11].

Through experimentation, Kipyatkova [3] deduced that a long short-term memory
(LSTM) network is effective in large-scale acoustic and speech sequence modeling for each
layer of the network for the long-term dependency characteristics of speech sequences.

Basu [4] used features based on the mel frequency cepstral coefficients (MFCCs) as
input and implemented an SER algorithm using a convolutional neural network (CNN),
which is a deep learning model, and an LSTM network.

Peng [5] proposed an SER system in which a back-end deep learning model combining
3D convolution and attention-based sliding recurrent neural networks (ASRNN) was
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used with an auditory perception-based front-end using auditory signal processing and
a temporal attention mechanism. In this system, the front-end is used to generate time-
modulated signals, and the attention-based back end is used to identify emotional states
in speech.

Bhosale [6] proposed an end-to-end model utilizing a multihead self-attention mech-
anism and convolutional layer that uses both encoded language and audio spectrogram
as input.

Liu [7] proposed a deep learning-based feature fusion method for heightening the
performance of an SER system. The extraction of hyperprosodic features (EHPF) involves
extracting hyperparameter statistical features from prosodic features. Two-dimensional
spectrogram features are extracted from the raw voice signal and then used as input for
training the CNN network. Further, the spectra-based feature vectors are extracted using
the CNN network and EHPF feature vectors are fused for emotion recognition via a deep
neural network (DNN). The experiment confirmed that the proposed model effectively
improved the SER accuracy.

Zayene [8] proposed a 3D convolutional recurrent global neural network (CRGNN)
that uses log-mels (static, deltas, and delta-deltas for the log mel-spectrogram) as input for
SER. The model consists of a CNN to extract log-mels and local invariant features, followed
by a recurrent neural network (RNN) that learns temporal dependency between different
time-step local invariant features. Finally, the most active feature is selected using the global
max pooling mechanism. To evaluate model performance, experiments were conducted
on four datasets, and the effectiveness of the model was demonstrated by significantly
improving the SER accuracy, compared with that of other approaches.

Zhang [9] proposed a two-stream emotion-embedded autoencoder, which is a new
type of autoencoder architecture, for extracting the features of deeper emotions. The first
stream of the autoencoder is a basic autoencoder used to learn the best representation of
speech. The second stream learns the information of strong emotions in labels through an
emotion-embedding path. Finally, the autoencoder and emotion embedding are combined,
and batch normalization (BN) is then converted to instance normalization (IN). In the
emotion classification process, deep emotion features output by the two-stream autoencoder
are fused with the IS10 feature set obtained from the openSMILE toolkit, and emotion
classification is then performed by adopting a fully connected network based on the
connected feature vectors. The proposed model was evaluated on the IEMOCAP database,
resulting in a 71.56% classification accuracy.

Han [10] proposed a new parallel network for SER by connecting a ResNet-CNN-
Transformer encoder. ResNet uses the Gaussian error linear unit (GELU) as an activation
function to solve the gradient vanishing problem caused by the deepening of the network,
while the CNN is used to compute fewer parameters to then improve the fitting expression
capability of the network. Furthermore, a transformer encoder is used to predict the fre-
quency distribution of various emotions using a multihead self-attention layer considering
the continuity of speech over time. For the fusion of these three models, the outputs of the
ResNet and CNN are planarized to a one-dimensional vector and connected with the out-
put of the transformer encoder; subsequently, the fully connected layer and softmax layer
are sequentially connected to classify eight types of emotions. This model was assessed on
the RAVDESS dataset and achieved an 80.89% classification accuracy, which is higher than
that observed in previous studies.

Kakuba [11] proposed a model that uses a hybrid of self and multihead attention
mechanisms along with dilated convolutions and an LSTM to achieve a comparable perfor-
mance. Such a method computes global context dependencies between features in parallel
using multihead attention. Furthermore, the global context and long-term dependency
are computed using the self-attention mechanism in the Bi-LSTM layer stack. Using a
dilated convolution layer improves the receptive field because the increase in the number
of parameters is low, compared with the number of layers. As models that use raw sig-
nals tend to confuse happiness with anger or neutral with sadness, they typically employ
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spectrum and audio quality features extracted from raw audio signals as input. In terms of
the performance evaluation of the proposed model, 96.36% accuracy was achieved on the
EMODB dataset and 88.96% accuracy was achieved on the RAVDESS dataset.

Unfortunately, previous studies have limitations in that multidimensional feature
information cannot be utilized as SER is conducted using only one of the one-dimensional
spectral features or two-dimensional spectrogram features. Therefore, this study designed
a two-stream-based SER model involving a Bi-LSTM network and CNN-based transfer
learning model using multidimensional features (1D and 2D) of the Korean speech emotion
database containing eight emotions, and then comparatively analyzed the emotion recogni-
tion model’s performance according to diverse feature extraction methods. Since it uses
multidimensional features, it is possible to utilize multidimensional feature information of
audio, which has the advantage of being able to classify a person’s emotional state more
objectively and accurately. The remainder of this paper is organized as follows. Section 2.1
discusses the theoretical concept of the one-dimensional spectrum feature exaction method
and two-dimensional spectrogram feature extraction method of speech data. Section 2.2
introduces the deep learning models used in this study, and Section 2.3 details the architec-
ture of the proposed two-stream-based SER model employing Bi-LSTM and CNN. Section 3
overviews the Korean speech database and then discusses the comparative analysis of
the results and SER performances. Section 4 discusses the findings of this study. Finally,
Section 5 explains the outcomes of this study and proposes direction for future research.

2. Materials and Methods
2.1. Feature Extraction Methods of Speech Data
2.1.1. One-Dimensional Spectrum Feature Extraction

Extracting useful features is the most critical factor in implementing a model that uses
speech data. In this study, the one-dimensional spectrum features of speech data were
extracted using MFCCs and gammatone cepstral coefficients (GTCCs).

The MFCC is one of the most frequently used feature extraction methods in speech
recognition. It extracts feature coefficients from the audio based on a mel filter bank
reflecting the characteristics of the human auditory frequency range [12]. This is derived
from the discrete cosine transform of the log power spectrum and is used to represent the
short-term power spectrum of a sound. The purpose of extracting MFCC features from the
speech is to determine the most compressed and beneficial set of features for improving
efficiency [13]. In this study, the speech data were segmented into a frame unit, and these
frames were overlapped by 25 ms and applied with a hamming window of 70 ms to extract
the features of the MFCCs.

Unlike MFCC, GTCC is calculated by applying an equivalent rectangular bandwidth
(ERB)-based gamma-tone filter bank rather than a mel filter bank. The ERB is a frequency
scale used in psychoacoustics to measure the width of the auditory filter at each point.
The gamma-tone filter bank is defined as an impulse response in the time domain, which
provides an approximation to the bandwidth of the auditory filter of humans [14]. Similar to
MFCCs, the speech data are segmented into a frame unit, and these frames are overlapped
by 25 ms and applied with a hamming window of 70 ms to compute the GTCC values.

2.1.2. Two-Dimensional Spectrogram Feature Extraction

To train the 2D CNN model with speech data of the 1D time domain, we must convert
the speech data into 2D spectrogram images by converting them from the time domain
into the frequency domain. In this study, we extracted Bark spectrogram, ERB spectrogram,
and log-mel spectrogram features, which are 2D images, based on the time–frequency
conversion, and used them as inputs to the CNN transfer learning model.

The Bark spectrogram is based on the Bark frequency scale, which distinguishes sound
characteristics. The Bark scale was first proposed by Barkhause as a subjective measurement
of loudness [15]. The Bark spectrogram can be obtained by designing an auditory filter
bank using the Bark frequency scale and then applying it to the spectrogram through a
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short-time Fourier transform. Figure 1 visualizes the Bark spectrogram for eight emotions
in which the features are demonstrated.
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The ERB spectrogram is based on the ERB scale, which is used in psychoacoustics. The
ERB scale provides an approximation for the filter bandwidth in human hearing [16], and
if an ERB auditory filter is designed based on it and is applied to the STFT spectrogram,
an ERB spectrogram image can be obtained. Figure 2 presents a visualization of ERB
spectrograms for eight emotions and shows the characteristics of the ERB spectrograms.
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The log-mel spectrogram is based on the mel scale, which was created to be most
similar to the human auditory structure. The auditory filter bank was created based on
the mel scale and applied to the STFT spectrogram to obtain the mel spectrogram, and
log conversion is then applied to obtain the log-mel spectrogram. Figure 3 visualizes the
log-mel spectrogram for eight emotions in which the features are shown.
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2.2. Deep Learning Models
2.2.1. One-Dimensional Audio Signal-Based LSTM and Bi-LSTM Models

LSTM is a type of RNN that iterates and maintains the information obtained from
a previous step. It is a deep learning model explicitly designed to solve the long-term
dependency problem of an RNN and can perform learning that requires a long dependency
time. LSTM was first introduced by Hochreiter and Schmidhuber [17] and has been widely
used across various fields owing to its advancements and popularity achieved.

All RNNs have a chain-like form that repeats neural network modules, and the
repeated modules consist of one neural network layer. As shown in Figure 4, LSTM has a
chain-like form; however, each repeated module has four layers exchanging information
with each other in a specific manner. The core idea was designed based on a cell state.
The cell state functions as a conveyor belt, and thus operates the entire chain continuously
by applying a small linear interaction. It ensures that information flows without being
altered. Furthermore, LSTM can add or remove certain elements to or from the cell state,
which is controlled by a “gate” structure. The gate is an additional measure for delivering
information and consists of a sigmoid layer and pointwise operation.
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Unlike the original LSTM, Bi-LSTM receives input from both directions and can utilize
the information of both directions. LSTM can only perform forward learning in a sequential
manner, whereas Bi-LSTM can learn forwards and backwards.
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In Figure 5, the architecture of the Bi-LSTM indicates that the forward-direction LSTM
in pink blocks is in parallel with the backward-direction LSTM in purple blocks. Bi-LSTM
adds one more LSTM layer that reverses the direction of information flow. That is, the
input sequence flows in the backwards direction in the additional LSTM layer. Then, the
outputs of two LSTM layers are combined through various methods, including mean, sum,
multiplication, and concatenation. Bi-LSTM is generally used when the task order must
be designated. This type of network can be used for text classification, speech recognition,
and prediction models.
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2.2.2. Two-Dimensional-Based CNN-Based Transfer Learning Model

In this study, two-dimensional spectrogram images were trained using VGGish and
YAMNet among CNN-based models pretrained through audio data. VGGish is a CNN-
based neural network proposed by Hershey [18] designed to classify audio classes by
training the deep learning neural networks using audio data contained in large-scale video
databases. The deep learning network is trained using audio content consisting of more than
2 million YouTube videos, including 527 audio classes. Adult voices, baby babbling, and
animal sounds are included in the 527 audio classes [19]. This model is constructed based
on the VGG network, one of the CNN-based pretrained models frequently used in the field
of computer vision. VGGish consists of four convolution blocks and receives a spectrogram
comprising an audio clip with a size of 96 × 64 × 1 as input. Each block includes a 2D-based
convolution layer that performs the feature extractor role, ReLU activation function, and
max pooling layer, which reduces the image dimensions while maintaining the image
features. Two fully connected layers, embedding layers, and regression output layers, that
function as a classifier, are included behind the four convolution blocks.

The YAMNet model is an audio detection model trained using an audio set with
521 classes, such as laughter, dog barking, or sirens, contained in more than 2 million video
databases. The YAMNet model was proposed by Ellis and Chowdhry and is a computa-
tionally efficient model for the problem of classifying audio events. The VGGish model
has a complicated computation because it involves over 72 million parameters. Conversely,
the YAMNet model uses only 4.7 million parameters, thereby being computationally more
efficient than the VGGish model. A lightweight model was designed using a convolution
kernel capable of separating by depth to be used in the computer vision field; this model
was designed based on the proposed MobileNet architecture in the study of Andrew [20].
The YAMNet model consists of 14 convolution layer blocks, and in this study, the pretrained
model was modified by reassigning the number of classes by adding a fully connected
layer after the last convolution layer and then replacing the classification layer.

2.3. Proposed Deep Learning Two-Stream-Based Emotion Recognition Model

Figure 6 illustrates the proposed architecture of the Bi-LSTM and CNN two-stream-
based emotion recognition model using the Korean speech data. As shown in the figure,
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the softmax value is obtained by extracting 1D spectrum features using MFCCs and GTCCs
and then training based on the Bi-LSTM model. In addition, two-dimensional spectrogram
images such as Bark spectrogram, ERB spectrogram, and log-mel spectrogram are obtained
on the basis of time–frequency conversion and then trained using CNN-based pretrained
learning models, such as VGGish and YAMNet, to obtain the softmax value. The softmax
probability values output from the two models are either added or multiplied using the
late score fusion method to obtain the final classification value, and eight emotions are then
classified based on the two-stream model.
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The Bi-LSTM network used for 1D-spectrum learning used four Bi-LSTM layers,
and each layer had 100, 100, 50, and 30 hidden layers. In addition, the dropout layers
(with probabilities of 0.5, 0.5, 0.3, and 0.3) were added in between to prevent overfitting
during training. In the CNN-based transfer learning model, the number of classes was
changed to eight in the fully connected layer for classifying eight emotions, and the existing
classification layer was changed to a new classification layer.

3. Results
3.1. Korean Speech Emotion Database

The Korean speech emotion database built by Chosun University was used in this
study. This database was built from 200 subjects and includes recorded speech files of eight
emotions: happy, neutral, angry, sad, chagrin, disgust, fear, and surprised. The participants
had a Sony ECM-CS3 stereo pin microphone attached to their collar and were recording in
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an environment that was maintained as quiet as possible without noise, as voice data are
sensitive to noise. The data were collected by instructing the participants to act out short
scripts appropriate for each type of emotion. The audio files were recorded at 48,000 Hz in
a .wav file format. This database contains 10 files for each emotion type, which is 80 files
per participant; therefore, 2000 files were collected for each emotion type, which is a total of
16,000 audio data files. Figure 7 visualizes the recorded speech file for the eight emotions
of the 17th participant.
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3.2. Results and Performance Analysis

This study comparatively analyzed the performance of a two-stream-based SER model
using the Bi-LSTM and CNN two-stream-based transfer learning model, as well as various
other deep learning models, by extracting multidimensional features of speech data. Table 1
overviews the experimental environment. The first experiment was conducted for emotion
recognition based on the LSTM and Bi-LSTM using the spectrum features of the Korean
speech data. Three different feature extraction methods were used for the LSTM and Bi-
LSTM models to compare the emotion recognition performance. Table 2 lists the learning
parameters used for the models.
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Table 1. Experimental environment.

Division Use

Hardware

CPU Intel Core i9 10900K @ 3.70 GHz

GPU NVIDIA GeForce RTX 2080 SUPER

RAM 128 GB

Software
OS Windows 10

Programming Language Matlab 2022b

Table 2. Learning parameters of LSTM and Bi-LSTM.

Training Options Parameter Optimization Function Gradient Threshold Mini-Batch Size Epoch

Parameter values Adam 2 300 50

Table 3 compares the performances of the LSTM and Bi-LSTM according to the spec-
trum feature extraction method. Three cases of feature extraction were separately con-
ducted: MFCC, GTCC, and both MFCC and GTCC. When LSTM and Bi-LSTM are com-
pared, the overall performance was higher for the Bi-LSTM. As shown in Table 3, the best
performance of 90.38% resulted when learning was performed by the Bi-LSTM model and
the features were extracted from both the MFCC and GTCC spectrum. Figure 8 shows the
relevant confusion matrix, in which emotions are fairly accurately classified at an overall
high probability; however, fear has a relatively lower classification accuracy compared with
the other emotion types.

Table 3. Accuracy of 1D spectrum feature-based LSTM and Bi-LSTM models.

Deep Learning Model Feature Extraction Method Accuracy

LSTM

MFCC 87.22%

GTCC 86.28%

MFCC + GTCC 88.47%

Bi-LSTM

MFCC 89.59%

GTCC 87.72%

MFCC + GTCC 90.38%

The second experiment examined the emotion recognition performance of the CNN-
based transfer learning model using the time–frequency conversion-based 2D-spectrogram
features of the Korean speech data; Table 4 presents the learning parameters of this model.

Table 4. Learning parameters of CNN transfer learning model.

Training Options Parameter Optimization Function Gradient Threshold Mini-Batch Size Epoch

Parameter values Adam 1 512 5
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Table 5 presents the performance of VGGish and YAMNet, among the CNN-based
transfer learning models, according to the spectrogram feature extraction method. The
features were extracted for the Bark, ERB, and log-mel spectrograms for the experiment.
Here, the performance of the YAMNet model is overall more outstanding compared with
the VGGish model. In this experiment, the best performance of 94.91% resulted when ERB
spectrogram features were extracted and learning was performed based on the YAMNet
model. Figure 9 shows the relevant confusion matrix. Similar to the CNN-based model,
each type of emotion was classified with an overall high probability of 90% or higher;
however, fear has a relatively lower classification accuracy than the other types of emotion.

Table 5. Accuracy of CNN transfer learning model based on 2D spectrogram features.

Deep Learning Model Feature Extraction Method Accuracy

VGGish

Bark Spectrogram 89.19%

ERB Spectrogram 88.53%

Log-mel Spectrogram 92.31%

YAMNet

Bark Spectrogram 93.47%

ERB Spectrogram 94.91%

Log-mel Spectrogram 93.66%
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Finally, the experiment compared the performance of the two-stream ensemble-based
SER model. Table 6 presents the performances of the two-stream based emotion recognition
models measured by two different late score fusion methods according to the feature extrac-
tion method; Figure 10 visualizes the performance. The two-stream model’s performance
was compared by selecting the LSTM, Bi-LSTM, and YAMNet models that demonstrated
the best performances in previous experiments. As shown in Table 6 and Figure 10, the
proposed Bi-LSTM and CNN two-stream-based model outperformed the single model. In
particular, the highest accuracy of 96.00% was achieved when emotion recognition was
performed based on the two-stream model by extracting 1D features for both the 2D MFCC
and GTCC features for the ERB spectrogram and then inputting them into the Bi-LSTM
and YAMNet models, respectively, and multiplying the last softmax value.

Figure 11 shows the relevant confusion matrix. The classification accuracy for fear
remains insufficient; however, all other types of emotion were classified with a fairly high
probability overall. This result indicates that the classification performance improves when
SER is performed based on the two streams through an ensemble of two models because
the performance improved by at least 1.09% and up to 5.62% compared with single models
in previous studies.

Table 6. Accuracy of two-stream-based SER models.

Deep Learning Model Feature Extraction Method Late Fusion Accuracy

LSTM + YAMNet
1D: MFCC + GTCC

2D: ERB Spectrogram
sum 95.69%

product 95.34%

Bi-LSTM + YAMNet
1D: MFCC + GTCC

2D: ERB Spectrogram
sum 95.94%

product 96.00%
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4. Discussion

This study aimed to analyze the information of emotions by extracting multidimen-
sional features from speech data and design a deep learning model capable of effectively
identifying the emotional state of a person. In previous studies, speech emotion recog-
nition was conducted using one of the 1D spectrum features and time-frequency-based
2D spectrogram features of audio data, but in this study, we confirmed that the proposed
model is significant for speech emotion recognition by achieving 96% accuracy as two deep
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learning models are fused using 1D and 2D features. Consequently, the two-stream deep
learning model used to classify eight types of emotion was proven to be more effective
in identifying the emotional states of a person than a single model. However, fear had a
relatively lower classification accuracy compared with the other seven types of emotion,
which is suggested to be due to limitations in how to express emotions in detail because a
person expresses emotions directly. Therefore, further research is required on methods that
can more objectively and accurately identify emotional states from speech data.

5. Conclusions

This study designed a two-stream-based emotion recognition model based on a Bi-
LSTM and CNN-based transfer learning model using the Korean speech emotion database,
and the emotion recognition performance was compared. For the experiment, the Korean
speech emotion database containing eight types of emotions—happy, neutral, angry, sad,
chagrin, disgust, and fear—was built by 200 participants from Chosun University. Various
experiments confirmed that the performance improves by at least 1.09% and up to 5.62%
when emotion recognition is performed by the proposed Bi-LSTM and CNN-based two-
stream ensemble transfer learning model compared with a single model. Accordingly,
the proposed two-stream based ensemble model is more effective for emotion recognition
using speech data. In the future, further research should be conducted on methods that can
more objectively and accurately identifying emotional states from speech data, as well as
on methods for recognizing emotions using multimodal data, including both speech and
text data.
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