
Citation: Albakri, A.; Alhayan, F.;

Alturki, N.; Ahamed, S.;

Shamsudheen, S. Metaheuristics with

Deep Learning Model for

Cybersecurity and Android Malware

Detection and Classification. Appl.

Sci. 2023, 13, 2172. https://doi.org/

10.3390/app13042172

Academic Editor: Christina Thorpe

Received: 10 January 2023

Revised: 3 February 2023

Accepted: 3 February 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Metaheuristics with Deep Learning Model for Cybersecurity
and Android Malware Detection and Classification
Ashwag Albakri 1 , Fatimah Alhayan 2, Nazik Alturki 2,*, Saahirabanu Ahamed 1 and Shermin Shamsudheen 1

1 Department of Computer Science, College of Computer Science & Information Technology, Jazan University,
Jazan 45142, Saudi Arabia

2 Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint
Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

* Correspondence: namalturki@pnu.edu.sa

Abstract: Since the development of information systems during the last decade, cybersecurity has
become a critical concern for many groups, organizations, and institutions. Malware applications
are among the commonly used tools and tactics for perpetrating a cyberattack on Android devices,
and it is becoming a challenging task to develop novel ways of identifying them. There are various
malware detection models available to strengthen the Android operating system against such at-
tacks. These malware detectors categorize the target applications based on the patterns that exist
in the features present in the Android applications. As the analytics data continue to grow, they
negatively affect the Android defense mechanisms. Since large numbers of unwanted features create
a performance bottleneck for the detection mechanism, feature selection techniques are found to
be beneficial. This work presents a Rock Hyrax Swarm Optimization with deep learning-based
Android malware detection (RHSODL-AMD) model. The technique presented includes finding the
Application Programming Interfaces (API) calls and the most significant permissions, which results
in effective discrimination between the good ware and malware applications. Therefore, an RHSO
based feature subset selection (RHSO-FS) technique is derived to improve the classification results.
In addition, the Adamax optimizer with attention recurrent autoencoder (ARAE) model is employed
for Android malware detection. The experimental validation of the RHSODL-AMD technique on the
Andro-AutoPsy dataset exhibits its promising performance, with a maximum accuracy of 99.05%.

Keywords: cybersecurity; Android devices; malware detection; deep learning; feature selection;
metaheuristics

1. Introduction

The explosive increase in the number of mobile devices operating on the Android plat-
form has received significant intention among malware creators, since a massive quantity
of private information (e.g., contacts, short messages, and e-mails) is typically stored on
these devices. The availability of this information on many mass-market mobile devices
renders them a desirable target for malware creators, making the security of mobile devices
one of the significant, yet challenging, areas of research. Currently, Android remains one
of the most prominent operating systems among mobile devices. An increasing number
of devices with the Android operating system are prone to attacks [1]. This is particularly
significant as smartphones authenticate critical activities (e.g., e-identity and e-banking) [2].
Several applications may have malware; thus, it is important to protect devices from that
malware. The increasing number of mobile devices and their lack of safety have driven
application developers to initiate higher levels of protection for the users’ devices [3]. An-
droid malware can simply refer to a malicious application that takes sensitive data without
the knowledge of the users or executes any action which is not authorized by the user.
Simultaneously, Android malware detection mechanisms are continuously developing.

Appl. Sci. 2023, 13, 2172. https://doi.org/10.3390/app13042172 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13042172
https://doi.org/10.3390/app13042172
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6356-0000
https://doi.org/10.3390/app13042172
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13042172?type=check_update&version=1

Appl. Sci. 2023, 13, 2172 2 of 18

Publications in the field of machine learning (ML) have presented a vast number of
mobile malware detection solutions that are related to some kind of ML-driven technique [4].
Conventionally, ML is used in anomaly-based identification techniques. Anomaly-based
identification involves two fundamental stages: the detection/testing stage and the training
stage. It can be further classified based on the analysis type: hybrid, static, or dynamic.
Static analysis can be executed in a non-runtime atmosphere [5] and analyzes the internal
structure of the applications. The dynamic analysis adopted the opposite technique, carried
out during the normal operation of the applications. By adding more features derived
using dynamic analysis to malware detection methods, they can manage better the more
challenging and newer types of malware [6]. However, hybrid analysis mechanisms are
more complicated, because of the numerous extra elements mandated by the dynamic
analysis, such as real or virtual platforms.

Conventional detection techniques have many disadvantages. With the wide appli-
cability of deep learning (DL) in recent times, a method for identifying Android malware
utilizing DL technologies has emerged, and the efficiency of malware detection has im-
proved dramatically [7]. DL is a subdivision of machine learning (ML) and Artificial Neural
Networks (ANNs). DL is at a high point of development and can be broadly utilized
in natural language processing (NLP), computer vision (CV), and speech recognition [8].
The implementation of DL for Android malware detection has now become a trend. A
common DL method is utilizing a deep neural network (DNN) that may use several hidden
layers of multiple interconnected neurons for data processing. All layers in a DNN contain
distinct neurons, each having varied weights and possibly distinct activation functions [9].
If the data were enforced to a neural network (NN), the loss function would compute
the prediction error. The most prominent value of DL lies in the abstraction of features
and their automatic extraction, abolishing the dreariness of manual feature extraction and
automatically finding useful and sophisticated high-order features [10]. By summarizing
the DL methods utilized in Android malware detection, it is concluded that the current
detection methods are mainly recurrent neural networks (RNNs), deep belief networks
(DBNs), deep autoencoders (DAEs), and convolutional neural networks (CNNs).

This work presents a Rock Hyrax Swarm Optimization with deep learning-based
Android malware detection (RHSODL-AMD) model. The presented RHSODL-AMD model
focuses on the differentiation of Android malware from benign applications and thereby
accomplishes cybersecurity. The presented RHSODL-AMD model employs Application
Programming Interfaces (API) calls and most significant permissions for effective discrim-
ination between the good ware and malware applications. Moreover, an RHSO-based
feature subset selection (RHSO-FS) technique was utilized for selecting a feature set. For
Android malware classification, the Adamax optimizer with attention recurrent autoen-
coder (ARAE) model is employed. The simulation outcome of the RHSODL-AMD method
is carried out utilizing a benchmark database.

The rest of the paper is organized as follows. Section 2 provides the related works,
and Section 3 offers the proposed RHSODL-AMD model. Then, Section 4 gives the detailed
result analysis, and Section 5 concludes the paper.

2. Literature Review

In [11], an Optimizing and effective Ensemble Learning-based Android Malware
Detection technique named “OEL-AMD” was presented. This method utilizes Binary Grey
Wolf Optimizer (BGWO)-based metaheuristic feature selection (FS) technique. Afterwards,
distinct base learners can be trained to utilize hyperparameter tunes for boosting the
inductive reasoning ability of the ensemble method for the classifier, and the aggregate
efficiency was calculated. Sharma and Agrawal [12] propose a hybrid system for Android
malware detection which decreases the dataset dimensionality to reduce resource-intensive
computation while maintaining crucial data. The authors examined a new hybrid scheme
for Android malware detection dependent upon metaheuristic (improved Intelligent Water
Drop Algorithm (IWD)) and DL approaches. The authors [13] developed a new malware

Appl. Sci. 2023, 13, 2172 3 of 18

detection technique using the DL model [13]. Primarily, android malware database input
was attained, and the normalized procedure was performed. The FS was executed together
with the optimizer system Recurrent Tuna Swarm Optimizer (TSO).

Alzubi et al. [14] examine and test a new ML technique for Android malware detection.
The presented method has collected Harris Hawks Optimization (HHO) and Support Vec-
tor Machine (SVM) techniques. Particularly, the HHO technique aims to optimize the SVM
technique hyperparameter, but the SVM carries out the classification of the malware de-
pending upon the best-chosen method and creates the optimum solutions for the weighted
features. Bhagwat and Gupta [15] proposed a new malware structure in which dynamic
features were utilized for android malware detection. When using the presented method,
the author’s purpose is to choose the correct subset of features to enhance their results. In
the presented technique, the metaheuristic FS approach utilized the Gravitational Search
Algorithm (GSA) and the Genetic Algorithm (GA), and a correlation was called the Corre-
lated Genetic GSA (CGGSA) was also utilized. The optimizing features can be employed
using the XGBoost and AdaBoost techniques for detecting malware. Elkabbash et al. [16]
present a new detection method dependent upon the optimizer random vector functional
link (RVFL), utilizing artificial Jellyfish Search (JS) optimization and then the dimensional
reduction of the Android applications’ features. JS was utilized for determining a better
configuration of the RVFL for improving the classifier results.

In [17], an ML-based malware detection scheme was presented for distinguishing
Android malware in benign applications. At the FS step of the presented malware detection
scheme, it can be designed for removing unnecessary features while utilizing a linear
regression-based FS system. Accordingly, the dimensionality of the feature vectors was
decreased, the training time was decreased, and the classifier method was utilized in real-
time malware detection methods. A dynamic detection system termed Artificial Malware-
based Detection (AMD) was presented in [18]. The artificial malware pattern was created
utilizing an evolutionary (genetic) algorithm. The latter develops a population of API
call series to determine novel malware performances next to a group of specific evolution
rules. In [19], an FS scheme dependent upon a rough set and improvised particle swarm
optimizer (PSO) technique were presented for FS from the permission-based Android
malware detection. The most important contribution of this effort is its mention of a novel
arbitrary key encoder system that is utilized in the presented method (PSORS-FS) for
converting typical PSO techniques in distinct domains. It also decreases the problems
based on the maximal particle velocity and the sigmoid function that is connected to the
binary PSO.

Dhabal and Gupta [20] presented a novel android malware recognition structure
utilizing hybrid DL approaches. When using the presented structure, at primary t, pre-
processed stages can be utilized for obtaining an optimized feature set. For malware
detection, an optimizing feature-based database was utilized to train the presented hybrid
of bi-directional long short-term memory (BiLSTM) and a merged sparse autoencoder
(MSAE) with a softmax DL technique. Kim et al. [21] examine a MAPAS, a malware
detection scheme that accomplishes a higher accuracy and an adjustable usage of computing
resources. The MAPAS examines the performances of malicious applications using API call
graphs with an exploiting CNN. Fallah and Bidgoly [22] introduced a model dependent
upon LSTM for malware detection that is allowed to not only distinguish between malware
and benign instances, but among the malware to identify and detect novel and unseen
families. According to our understanding, this is the first time that traffic data were
designed as an order of flows and that the sequential-based DL approach was exploited.
In [23], the authors establish eight Android malware detection approaches dependent upon
ML and DNN that are then examined for their robustness against an adversarial attack.
With this intent, the authors generated novel variations of malware utilizing Reinforcement
Learning (RL) that is misclassified as benign when using the current Android malware
detection approaches.

Appl. Sci. 2023, 13, 2172 4 of 18

Though several malware detection models are available in the literature, only a limited
number of works have involved both FS and hyperparameter tuning processes. For the
design of malware detectors, ML models can be employed to construct classifiers that are
effective for discerning whether the application is benign or malware. Training this classifier
requires large quantities of labeled datasets, which comprise categorized benignware and
malware Android applications, characterized by a collection of features enable to define
their behaviors. Even though various solutions have been put forward for the recognition
of Android malware, feature selection approaches must be utilized in Android malware
detection mechanisms. On the other hand, most of the existing Android malware detectors
do not focus on the automated hyperparameter tuning process, which significantly affects
their overall classification performance. More specifically, hyperparameters, which include
learning rate selection, epoch count, and batch size, play a vital role in accomplishing
effective outcomes. As the trial-and-error hyperparameter tuning process seems to be
difficult, an automated hyperparameter optimizer needs to be employed. In summary, the
design of automated Android malware detectors is yet to be well explored.

3. The Proposed Model

In this work, we have developed a new RHSODL-AMD technique for the effectual
recognition of Android malware among benign applications, thereby accomplishing cyber-
security. The presented RHSODL-AMD technique involves a series of operations, namely,
feature extraction, RHSO-FS-based feature subset selection, ARAE-based classification,
and Adamax hyperparameter optimization. Figure 1 shows the overall workflow of the
RHSODL-AMD method.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 18

utilizing Reinforcement Learning (RL) that is misclassified as benign when using the cur-
rent Android malware detection approaches.

Though several malware detection models are available in the literature, only a lim-
ited number of works have involved both FS and hyperparameter tuning processes. For
the design of malware detectors, ML models can be employed to construct classifiers that
are effective for discerning whether the application is benign or malware. Training this
classifier requires large quantities of labeled datasets, which comprise categorized be-
nignware and malware Android applications, characterized by a collection of features en-
able to define their behaviors. Even though various solutions have been put forward for
the recognition of Android malware, feature selection approaches must be utilized in An-
droid malware detection mechanisms. On the other hand, most of the existing Android
malware detectors do not focus on the automated hyperparameter tuning process, which
significantly affects their overall classification performance. More specifically, hyperpa-
rameters, which include learning rate selection, epoch count, and batch size, play a vital
role in accomplishing effective outcomes. As the trial-and-error hyperparameter tuning
process seems to be difficult, an automated hyperparameter optimizer needs to be em-
ployed. In summary, the design of automated Android malware detectors is yet to be well
explored.

3. The Proposed Model
In this work, we have developed a new RHSODL-AMD technique for the effectual

recognition of Android malware among benign applications, thereby accomplishing cy-
bersecurity. The presented RHSODL-AMD technique involves a series of operations,
namely, feature extraction, RHSO-FS-based feature subset selection, ARAE-based classi-
fication, and Adamax hyperparameter optimization. Figure 1 shows the overall workflow
of the RHSODL-AMD method.

Figure 1. Workflow of the RHSODL-AMD system. Figure 1. Workflow of the RHSODL-AMD system.

Appl. Sci. 2023, 13, 2172 5 of 18

3.1. Feature Extraction

In this work, the presented RHSODL-AMD technique primarily exploited the API
calls and most significant permissions, which results in effective discrimination between
the good ware and malware applications. A large number of studies have integrated more
characteristics to build the learning data and also use an integration of permissions and
API calls. As a result, we have determined the features that depend on the abovementioned
combinations and utilized them for ML. In particular, we acquired permission information
determined in the AndroidManifest.xml files and the API class techniques and exploited it
as a feature. The application permission and API class approaches are derived to attain the
relevant attributes, involving data on 104 permissions in malicious apps discovered from
the training data. Moreover, the study used binary encoding to implement the FS database
and encrypted it as 1 once the feature dataset can be identified in the respective attributes,
or else as 0. Malware data were encoded utilizing binary encoding, with 0 encoded for
benign applications and 1 encoded for malware.

3.2. Algorithmic Procedure of RHSO-FS Technique

To select an optimal set of features, the RHSO-FS method is used. The RHSO technique
is a metaheuristic based on the natural behaviors of a rock hyrax swarm [24]. The proposed
technique simulates the group behavior of rock hyrax swarms in search of food and their
unique method of searching for it. The rock hyrax lives in groups or colonies, with the
dominant male closely following the colony to ensure its safety. The proposed model finds
a better solution by integrating prior knowledge and local heuristics to construct a better
subset of features for optimizing the performance of the classification.

The overall working process RHSOFS system splits the total data into testing and
training sets. The training dataset was entered into the optimization method (f (x)) for
finding the optimal feature. The classification technique is given the optimal set of features
(f (x)), trained, and given the test dataset for evaluating the performance of the model.
Equation (1) is utilized for representing the selection of optimum features. Equation (2)
decreases the error in all the iterations using the specified features, which increases the
performance of the classification.

The regulatory parameters for population-based algorithms are the initial weighting
factors, population size, generation number, probabilities of crossover and mutation, and
social and cognitive scaling factors. To accomplish good performance, these parameters
needs to be finetuned, and the accuracy of the optimization method can be defined by the
fine-tuning parameters; otherwise, the parameter values might result in an optimization
technique leading to local optima, which would increase the computation cost of the
optimization technique. The RHOSFS method is used for overcoming the aforementioned
concern. This model is used for creating the optimum subset of input features for increasing
the classification performance.

The presented RHOSFS approach is briefly discussed in the following:
First, select, examine, and generate a random sample of a (0, 1) binary population for

the overall amount of input attributes for FS. Generate a feature subset which is equivalent
to 1 for all the representations of the input population. For computing the fitness values,
the derived optimum input feature is given to the classification algorithm. The study aims
at finding an optimal subset of input features which minimize the fitness model while
enhancing the performance.

err (xi) = actual−output (xi)−model−estimated−output(xi) (1)

f itness (x) = ∑n
x=0 err(x)

n
(2)

leader = r1 × x
(
leaderpos, j

)
(3)

From the expression, r1 is a randomly generated number ranging from zero to one,
x specifies the preceding location of the leader, leaderpos indicates the older location of

Appl. Sci. 2023, 13, 2172 6 of 18

the leader, and j represents the “each diminution”. After updating the position of the
leader, every member (or searching agent) updates its locations according to the following
equation.

x(i, j) = (x(i, j)− (circ× x(i, j) + leader)) (4)

In Equation (4), circ indicates the circular movement, which attempts to replicate the
circle system as follows:

circ = sqrt
(

n2
1 + n2

2

)
(5)

n1 = r2 × cos(ang) (6)

n2 = r2 × sin(ang) (7)

where r2 indicates the radius and denotes the random integer lies within [0, 1], and
ang represents the angle of movement and is an arbitrary integer within [0, 360] in
Equations (6) and (7). In each generation, the ang is also upgraded, and it depends on
lb and ub, the lower and upper limits of the parameters, correspondingly.

dalta = random[lb, ub] (8)

ang = ang + dalta (9)

When the output values become greater than 360, or lesser than 0, then the angle (ang)
is fixed as 360 or 0 to hold it within a desirable range.

Algorithm 1 describes the pseudocode of the RHSOFS. The RHSOFS initiates by
randomly generating the binary population of the P agent and examining each feature.
Next, it generates a feature subset equivalent to 1 for every instance of the population. This
selected attribute is fed into classification models for calculating the fitness values. Equation
(1) evaluates the err(x) using the difference between a predicted and an actual value of
the models, where χ = 1, 2, . . . , n and n indicates the number of testing observations. The
working process of the RHSO algorithm is shown in Figure 2.

The fitness model can be evaluated by dividing the sum of the errors by the number of
observations, as demonstrated in Equation (2). Then, the technique attempted to upgrade
the Leader location based on Equation (3), and the location of every search agent based
on Equation (4). Next, using Equation (2), every search agent’s new fitness can be defined.
Based on Equations (6) and (8), these algorithms progress towards the angle updating.
The bestX persons hold a minimal fitness value. Then, this model tries to upgrade every
searching agent’s location based on Equation (4). A new individual is selected as long as
the new fitness value was larger than or equivalent to the previous fitness values, and the
newest fitness values are reversed. For the next generation, only those with the lowermost
fitness values are selected. Lastly, the technique chooses the best candidate. The fitness
function (FF) utilized in the RHSO-FS scheme was aimed at taking a balance between the FS
count from every result (lesser) and the classifier accuracy (higher) acquired by employing
these FSs. Equation (10) exemplifies the FF for the measuring solution.

Fitness = αγR(D) + β
|R|
|C| (10)

However, γR(D) symbolizes the classifier rate of errors for the provided classifier
(ARAE technique employed). |R| denotes the cardinality of the chosen subset and |C|
stands for the whole feature count from the database, while α and β demonstrate the two
parameters equal to the impact of the classifier quality and subset length. ∈ [1, 0] and
β = 1− α.

Appl. Sci. 2023, 13, 2172 7 of 18Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 18

Figure 2. Flowchart of RHSO algorithm.

Figure 2. Flowchart of RHSO algorithm.

Appl. Sci. 2023, 13, 2172 8 of 18

Algorithm 1: Proposed RHSO Algorithm

Generate a primary population of 0 and 1 of P agents arbitrarily.
Fixed the dimensional of problems, D = P, whereas P refers to the count of agents.
Fixed Low to 1 and High to D, whereas High and Low signify high and low dimensional,
correspondingly.
Make the value of rl and r2, in which rl denotes the random number (0, 1) and r2 denotes the
random radius (0, 360).
Make testing and training data.
Fixed max− iter = maximal count of iterations.
Compute all the agents’ fitness.
Set Leader = the optimum agents.
Set t = 1.
While (t < max−iter)

for (i = 1 to n) do
Upgrade Leader position.
Upgrade the position of all the searching agents.
Compute the Newfitness of all the searching agents.
Choose the better member of the population → bestX = X(min(f itness))
Upgrade the angle.

If New f itness (i) <= f itness (i); then
Upgrade the position of all the searching agents.
fitness (i) = New f itness (i).

end if
end for
t = t + 1.

end while
Return the optimum agent

3.3. Malware Detection Using ARAE Model

To detect and classify Android malware, the ARAE model is exploited. Ma et al. [25]
first created a long short-term memory (LSTM) cell by setting a long-time delay among the
feedback, input, and gradient burst of the classical RNN module. An underlying concept of
LSTM is to include the infrastructure of the cell state, input, forget, and output gates. The
concrete calculation process and working principle of gate structure have been discussed
in the following.

(1) Forget Gate: Firstly, the LSTM network links ht−1 hidden state and xt input to
[ht−1, xt]. The vector ft is computed to characterize how much data need to be “forgotten”
from the Ct−1 cell state at the t− 1 time.

ft = σ
(

W f · [ht−1, xt] + b f

)
(11)

where σ indicates the sigmoid function, W f denotes the weighted vector of “forget gate”
and b f shows the offset values of the forget gate.

(2) Input Gate: It computes cell state C̃t to be inputted according to the input dataset
[ht−1, xt] and similarly, calculates the vector to control how much data need to be inputted
into the cell state C̃t.

C̃t = tanh (WC · [ht−1, xt] + bC) (12)

it = σ(Wi · [ht−1, xt] + bi) (13)

where C̃t, WC, and bC characterize the value of cell state to be inputted from novel inputs,
the upgraded weight of cell state, and cell state bias value, correspondingly. The resultant
vector, weight matrices, and bias value of inputted gates are represented as it, W, and bi,
correspondingly. Figure 3 depicts the framework of ARAE.

Appl. Sci. 2023, 13, 2172 9 of 18
Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 18

Figure 3. The Architecture of the ARAE model.

(3) Cell Status: The cell state updating can be defined at 𝑡 − 1. Afterwards, the com-
putation outcomes of the forget gate 𝑓௧, the dataset 𝐶௧ିଵ that is forgotten are defined [26].
Next, 𝑡ℎ𝑒 𝐶෫ ௧ cell state is produced by the dataset at 𝑡 time. With the computation result
of the input gate, we adjust to define how much data will be inputted, and updating func-
tion of the 𝐶௧ cell state at 𝑡 time is 𝐶௧ = 𝑓௧ × 𝐶௧ିଵ + 𝑖௧ × 𝐶ሚ௧. (14)

(4) Output Gate: The output 0௧ of the LSTM was computed using the “output gate.”
Next, the cell state 𝐶௧ at 𝑡 time defines what data in the output are eventually trans-
ferred, and the results of the last output are ℎ௧. 𝑜௧ = 𝜎(𝑊௢ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏௢) (15)ℎ௧ = 0௧ × 𝑡𝑎𝑛ℎ (𝐶௧) (16)

where the output vector, weight vector, and offset values of output gate are represented
as 0௧, 𝑊௢, and 𝑏௢, correspondingly. The resultant values of the LSTM at 𝑡 time are rep-
resented as ℎ௧.

An autoencoder (AE) is an unsupervised technique that encompasses the encode and
decode process. Usually, it is exploited for feature extraction or dimension reduction. The
LHS of the encode processes learns its inherent feature vector 𝐻 from the raw input da-
taset X such that the encoder is denoted as = 𝑓(𝑋). The learning technique is understood
to be that which reduces the cost function to guarantee minimal error among the raw in-
puts and the reconstruction dataset: 𝑚𝑖𝑛 ቄ𝐿 ቀ𝑋, 𝑔൫𝑓(𝑋)൯ቁቅ (17)

In Equation (7), X indicates the input vector, 𝑓 denotes the encoding procedure, 𝑔
represents the decoding procedure, and 𝐿 shows the cost function.

3.4. Hyperparameter Tuning
Finally, the hyperparameter tuning of the ARAE model takes place using the Ada-

max optimizer. Owing to the continual deepening of the model, the number of parameters
of the DL models also increases quickly, which results in model overfitting. At the same
time, different hyperparameters have a significant impact on the efficiency of the CNN
model. Particularly, hyperparameters such as the epoch count, batch size, and learning
rate selection are essential to attain effectual outcomes. Since the trial-and-error method
for hyperparameter tuning is a tedious and erroneous process, the Adamax optimizer is
used [27]. The Adamax optimizer is an extension of the Adam optimizer [27]. In this study,
the infinity norm of the moment can be utilized instead of the second-order moment esti-
mation to upgrade the weight parameter. As a result, the magnitude of the parameter

Figure 3. The Architecture of the ARAE model.

(3) Cell Status: The cell state updating can be defined at t − 1. Afterwards, the
computation outcomes of the forget gate ft, the dataset Ct−1 that is forgotten are defined [26].
Next, t̃he Ct cell state is produced by the dataset at t time. With the computation result of
the input gate, we adjust to define how much data will be inputted, and updating function
of the Ct cell state at t time is

Ct = ft × Ct−1 + it × C̃t. (14)

(4) Output Gate: The output 0t of the LSTM was computed using the “output gate.”
Next, the cell state Ct at t time defines what data in the output are eventually transferred,
and the results of the last output are ht.

ot = σ(Wo · [ht−1, xt] + bo) (15)

ht = 0t × tanh (Ct) (16)

where the output vector, weight vector, and offset values of output gate are represented as
0t, Wo, and bo, correspondingly. The resultant values of the LSTM at t time are represented
as ht.

An autoencoder (AE) is an unsupervised technique that encompasses the encode and
decode process. Usually, it is exploited for feature extraction or dimension reduction. The
LHS of the encode processes learns its inherent feature vector H from the raw input dataset
X such that the encoder is denoted as = f (X). The learning technique is understood to be
that which reduces the cost function to guarantee minimal error among the raw inputs and
the reconstruction dataset:

min {L(X, g(f (X)))} (17)

In Equation (7), X indicates the input vector, f denotes the encoding procedure, g
represents the decoding procedure, and L shows the cost function.

3.4. Hyperparameter Tuning

Finally, the hyperparameter tuning of the ARAE model takes place using the Adamax
optimizer. Owing to the continual deepening of the model, the number of parameters
of the DL models also increases quickly, which results in model overfitting. At the same
time, different hyperparameters have a significant impact on the efficiency of the CNN
model. Particularly, hyperparameters such as the epoch count, batch size, and learning
rate selection are essential to attain effectual outcomes. Since the trial-and-error method
for hyperparameter tuning is a tedious and erroneous process, the Adamax optimizer is
used [27]. The Adamax optimizer is an extension of the Adam optimizer [27]. In this
study, the infinity norm of the moment can be utilized instead of the second-order moment

Appl. Sci. 2023, 13, 2172 10 of 18

estimation to upgrade the weight parameter. As a result, the magnitude of the parameter
updating has a simple bound in the Adam optimizer when compared to the momentum,
and the weight upgrading rule is more stable. The weight update process is the same
as the Adam optimizer, except for the subsequent difference: the term

(
η2/

(
1− βk

1

))
characterizes the learning rate with bias-correction for the first-order moment estimation,
and uk indicates the infinity norm of the moment. Here, the pth order moment estimation
vk can be determined by:

vk = β
p
2vk−1 +

(
1− β

p
2

)∣∣∣gk

∣∣∣p (18)

The iteration formula in (8) is formulated as follows:

vk =
(

1− β
p
2

) k

∑
i=1

β
p(k−i)
2 · |gi|p (19)

Let p→ ∞ , and adopted the description uk = (vk)
1/p; then,

uk = (
(

1− β
p
2

) k
∑

i=1
β

p(k−i)
2 · |gi|p)

1/p

= (1− β
p
2)

1/p
(

k
∑

i=1
β

p(k−i)
2 · |gi|p)

1/p

=
k
∑

i=1
(β

(k−i)
2 · |gi|)

p
)1/p

= max
(

βk−1
2 |g1|, βk−2

2 |g2|, . . . , β2|gk−1|, |gk|
)

(20)

Because β2 ∈ [0, 1], (1− β
p
2)

1/p
go to 1 if p→ ∞. Equation (20) is derived from

the description of the infinity norm and later transformed into the subsequent recursive
equation:

u = max (β · u, |gk|) (21)

4. Performance Validation

The proposed model is simulated using the Python 3.6.5 tool on PC i5-8600k, GeForce
1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The Android malware detection results
of the RHSODL-AMD approach are tested using the Andro-AutoPsy dataset [28], which
comprises 9000 benign samples and 13,000 malware samples as represented in Table 1. The
Andro-AutoPsy is an anti-malware system which depends upon the similarity matching
of malware-centric and malware creator-centric information. It is used for classifying
malware samples into similar subgroups by exploiting the profiles extracted from integrated
footprints, which are implicitly comparable to different behavioral characteristics. It is
useful for benign and malicious applications and for classifying malicious applications into
similar behavior groups. For experimental validation, the dataset is split into 70:30 and
80:20 training sets (TRS) and testing sets (TSS).

Table 1. Details of the dataset.

Class No. of Samples

Benign 9000
Malware 13,000

Total Number of Samples 22,000

Appl. Sci. 2023, 13, 2172 11 of 18

The confusion matrices offered by the RHSODL-AMD technique is shown in Figure 4.
The results show that the RHSODL-AMD technique accurately identified the benign and
malignant samples under varying training set (TRS) and testing set (TSS).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 18

Figure 4. Confusion matrices of the RHSODL-AMD algorithm (a,b) TRS/TSS of 80:20 and (c,d)
TRS/TSS of 70:30.

In Table 2, the overall Android malware detection results of the RHSODL-AMD tech-
nique are stated on 80:20 of TRS and TSS. On 80% of TRS, the results ensured that the
RHSODL-AMD technique reaches the effectual classification of benign and malware sam-
ples. In addition, it is observed that the RHSODL-AMD technique offers an average 𝑎𝑐𝑐𝑢௕௔௟ of 96.62%, 𝑝𝑟𝑒𝑐௡ of 96.70%, 𝑟𝑒𝑐𝑎௟ of 96.62%, 𝐹௦௖௢௥௘ of 96.66%, and MCC of
93.32%. Followed by, on 20% of TRS, the RHSODL-AMD system offers an average 𝑎𝑐𝑐𝑢௕௔௟
of 96.22%, 𝑝𝑟𝑒𝑐௡ of 96.26%, 𝑟𝑒𝑐𝑎௟ of 96.22%, 𝐹௦௖௢௥௘ of 96.24%, and MCC of 92.48%.

Table 2. Android malware detection outcome of the RHSODL-AMD system on 80:20 of TRS/TSS.

Class Accuracybal Precision Recall F-Score MCC
Training Phase (80%)

Benign 95.79 96.30 95.79 96.04 93.32
Malware 97.45 97.10 97.45 97.27 93.32
Average 96.62 96.70 96.62 96.66 93.32

Testing Phase (20%)
Benign 95.40 95.72 95.40 95.56 92.48

Malware 97.04 96.81 97.04 96.92 92.48
Average 96.22 96.26 96.22 96.24 92.48

The TACC and VACC of the RHSODL-AMD methodology on 80:20 of TRS/TSS are
signified in Figure 5. The figure pointed out that the RHSODL-AMD system has revealed
a better performance with higher values of TACC and VACC. It is noticeable that the
RHSODL-AMD technique has reached superior TACC outcomes.

Figure 4. Confusion matrices of the RHSODL-AMD algorithm (a,b) TRS/TSS of 80:20 and
(c,d) TRS/TSS of 70:30.

In Table 2, the overall Android malware detection results of the RHSODL-AMD
technique are stated on 80:20 of TRS and TSS. On 80% of TRS, the results ensured that
the RHSODL-AMD technique reaches the effectual classification of benign and malware
samples. In addition, it is observed that the RHSODL-AMD technique offers an average
accubal of 96.62%, precn of 96.70%, recal of 96.62%, Fscore of 96.66%, and MCC of 93.32%.
Followed by, on 20% of TRS, the RHSODL-AMD system offers an average accubal of 96.22%,
precn of 96.26%, recal of 96.22%, Fscore of 96.24%, and MCC of 92.48%.

Table 2. Android malware detection outcome of the RHSODL-AMD system on 80:20 of TRS/TSS.

Class Accuracybal Precision Recall F-Score MCC

Training Phase (80%)

Benign 95.79 96.30 95.79 96.04 93.32
Malware 97.45 97.10 97.45 97.27 93.32
Average 96.62 96.70 96.62 96.66 93.32

Testing Phase (20%)

Benign 95.40 95.72 95.40 95.56 92.48
Malware 97.04 96.81 97.04 96.92 92.48
Average 96.22 96.26 96.22 96.24 92.48

Appl. Sci. 2023, 13, 2172 12 of 18

The TACC and VACC of the RHSODL-AMD methodology on 80:20 of TRS/TSS are
signified in Figure 5. The figure pointed out that the RHSODL-AMD system has revealed
a better performance with higher values of TACC and VACC. It is noticeable that the
RHSODL-AMD technique has reached superior TACC outcomes.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 18

The TLS and VLS of the RHSODL-AMD algorithm on 80:20 of TRS/TSS are given in
Figure 6. The figure stated that the RHSODL-AMD system has exhibited a good perfor-
mance with minimum values of TLS and VLS. It is observable that the RHSODL-AMD
technique has resulted in decreased VLS outcomes.

Figure 5. TACC and VACC outcome of RHSODL-AMD system on 80:20 of TRS/TSS.

Figure 6. TLS and VLS outcome of RHSODL-AMD system on 80:20 of TRS/TSS.

In Table 3, an overall Android malware detection outcome forthe RHSODL-AMD
system is stated at 70:30 of TRS and TSS. The outcome ensured that the RHSODL-AMD
technique gains effective classification of benign and malware samples. On 70% of TRS, it
is evident that the RHSODL-AMD system provides an average 𝑎𝑐𝑐𝑢௕௔௟ of 99.05%, 𝑝𝑟𝑒𝑐௡
of 99.02%, 𝑟𝑒𝑐𝑎௟ of 99.05%, 𝐹௦௖௢௥௘ of 99.03%, and MCC of 98.07%. Moreover, on 30% of
TSS, the RHSODL-AMD algorithm offers an average 𝑎𝑐𝑐𝑢௕௔௟ of 98.57%, 𝑝𝑟𝑒𝑐௡ of 98.69%, 𝑟𝑒𝑐𝑎௟ of 98.57%, 𝐹௦௖௢௥௘ of 98.63%, and MCC of 97.27%.

Figure 5. TACC and VACC outcome of RHSODL-AMD system on 80:20 of TRS/TSS.

The TLS and VLS of the RHSODL-AMD algorithm on 80:20 of TRS/TSS are given in
Figure 6. The figure stated that the RHSODL-AMD system has exhibited a good perfor-
mance with minimum values of TLS and VLS. It is observable that the RHSODL-AMD
technique has resulted in decreased VLS outcomes.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 18

The TLS and VLS of the RHSODL-AMD algorithm on 80:20 of TRS/TSS are given in
Figure 6. The figure stated that the RHSODL-AMD system has exhibited a good perfor-
mance with minimum values of TLS and VLS. It is observable that the RHSODL-AMD
technique has resulted in decreased VLS outcomes.

Figure 5. TACC and VACC outcome of RHSODL-AMD system on 80:20 of TRS/TSS.

Figure 6. TLS and VLS outcome of RHSODL-AMD system on 80:20 of TRS/TSS.

In Table 3, an overall Android malware detection outcome forthe RHSODL-AMD
system is stated at 70:30 of TRS and TSS. The outcome ensured that the RHSODL-AMD
technique gains effective classification of benign and malware samples. On 70% of TRS, it
is evident that the RHSODL-AMD system provides an average 𝑎𝑐𝑐𝑢௕௔௟ of 99.05%, 𝑝𝑟𝑒𝑐௡
of 99.02%, 𝑟𝑒𝑐𝑎௟ of 99.05%, 𝐹௦௖௢௥௘ of 99.03%, and MCC of 98.07%. Moreover, on 30% of
TSS, the RHSODL-AMD algorithm offers an average 𝑎𝑐𝑐𝑢௕௔௟ of 98.57%, 𝑝𝑟𝑒𝑐௡ of 98.69%, 𝑟𝑒𝑐𝑎௟ of 98.57%, 𝐹௦௖௢௥௘ of 98.63%, and MCC of 97.27%.

Figure 6. TLS and VLS outcome of RHSODL-AMD system on 80:20 of TRS/TSS.

In Table 3, an overall Android malware detection outcome forthe RHSODL-AMD
system is stated at 70:30 of TRS and TSS. The outcome ensured that the RHSODL-AMD
technique gains effective classification of benign and malware samples. On 70% of TRS,
it is evident that the RHSODL-AMD system provides an average accubal of 99.05%, precn
of 99.02%, recal of 99.05%, Fscore of 99.03%, and MCC of 98.07%. Moreover, on 30% of TSS,
the RHSODL-AMD algorithm offers an average accubal of 98.57%, precn of 98.69%, recal of
98.57%, Fscore of 98.63%, and MCC of 97.27%.

Appl. Sci. 2023, 13, 2172 13 of 18

Table 3. Android malware detection outcome of RHSODL-AMD system at 70:30 of TRS/TSS.

Class Accuracybal Precision Recall F-Score MCC

Training Phase (70%)

Benign 98.94 98.78 98.94 98.86 98.07
Malware 99.15 99.26 99.15 99.21 98.07
Average 99.05 99.02 99.05 99.03 98.07

Testing Phase (30%)

Benign 97.99 98.76 97.99 98.37 97.27
Malware 99.16 98.63 99.16 98.89 97.27
Average 98.57 98.69 98.57 98.63 97.27

The TACC and VACC of the RHSODL-AMD approach on 70:30 of TRS/TSS have been
represented in Figure 7. The figure inferred that the RHSODL-AMD system has exhibited a
higher performance with maximum values of TACC and VACC. It is observable that the
RHSODL-AMD method has gained higher TACC outcomes.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 18

Table 3. Android malware detection outcome of RHSODL-AMD system at 70:30 of TRS/TSS.

Class Accuracybal Precision Recall F-Score MCC
Training Phase (70%)

Benign 98.94 98.78 98.94 98.86 98.07
Malware 99.15 99.26 99.15 99.21 98.07
Average 99.05 99.02 99.05 99.03 98.07

Testing Phase (30%)
Benign 97.99 98.76 97.99 98.37 97.27

Malware 99.16 98.63 99.16 98.89 97.27
Average 98.57 98.69 98.57 98.63 97.27

The TACC and VACC of the RHSODL-AMD approach on 70:30 of TRS/TSS have
been represented in Figure 7. The figure inferred that the RHSODL-AMD system has ex-
hibited a higher performance with maximum values of TACC and VACC. It is observable
that the RHSODL-AMD method has gained higher TACC outcomes.

The TLS and VLS of the RHSODL-AMD approach on 70:30 of TRS/TSS are exhibited
in Figure 8. The figure implied that the RHSODL-AMD algorithm has revealed an im-
proved performance with minimum values of TLS and VLS. It is noticeable that the
RHSODL-AMD system has resulted in reduced VLS outcomes.

Figure 7. TACC and VACC outcome of RHSODL-AMD system on 70:30 of TRS/TSS. Figure 7. TACC and VACC outcome of RHSODL-AMD system on 70:30 of TRS/TSS.

The TLS and VLS of the RHSODL-AMD approach on 70:30 of TRS/TSS are exhibited in
Figure 8. The figure implied that the RHSODL-AMD algorithm has revealed an improved
performance with minimum values of TLS and VLS. It is noticeable that the RHSODL-AMD
system has resulted in reduced VLS outcomes.

Figure 9 reveals the classifier outcomes of the RHSODL-AMD system under 80:20
and 70:30 of TRS/TSS. Figure 9a,b determines the PR investigation of the RHSODL-AMD
method on 80:20 of TRS/TSS. The figures describes that the RHSODL-AMD methodology
has gained maximal PR performance in several classes. Finally, Figure 9c,d exemplifies the
ROC study of the RHSODL-AMD approach on 70:30 of TRS/TSS. The figure represents
that the RHSODL-AMD technique has proficient results with higher ROC values under
various classes.

Appl. Sci. 2023, 13, 2172 14 of 18Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 18

Figure 8. TLS and VLS outcome of RHSODL-AMD system on 70:30 of TRS/TSS.

Figure 9 reveals the classifier outcomes of the RHSODL-AMD system under 80:20
and 70:30 of TRS/TSS. Figure 9a,b determines the PR investigation of the RHSODL-AMD
method on 80:20 of TRS/TSS. The figures describes that the RHSODL-AMD methodology
has gained maximal PR performance in several classes. Finally, Figure 9c,d exemplifies
the ROC study of the RHSODL-AMD approach on 70:30 of TRS/TSS. The figure represents
that the RHSODL-AMD technique has proficient results with higher ROC values under
various classes.

To demonstrate the better performance of the RHSODL-AMD technique for Android
malware classification, a detailed comparison study is represented in Table 4 [29]. The
simulation values inferred that the J48, RF, MLP, and AdaBoost-M1 models reported poor
classification performances. At the same time, the DBN, LSTM, Decision Table, NB, and
SMO models attained moderately closer results. Although the logistic model has reached
near optimal outcomes, the RHSODL-AMD technique outperformed the existing models
with a maximum 𝑎𝑐𝑐𝑢௬ of 99.05%.

Table 4. Comparative analysis of the RHSODL-AMD algorithm with other approaches [29].

Methods 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆
RHSODL-AMD 99.05 99.02 99.05 99.03

DBN Model 96.81 97.46 96.82 97.99
LSTM Model 96.37 95.45 95.91 97.20

J48 Model 94.85 94.26 94.92 94.09
RF Model 94.93 94.38 94.92 94.69

DecisionTable Model 96.40 96.17 95.95 97.45
NB Model 96.64 97.42 96.74 97.72

MLP Model 95.25 94.66 95.27 95.49
SMO Model 97.05 97.48 96.92 98.26

Logistic Model 98.17 98.27 97.47 98.46
AdaBoost-M1 model 95.88 95.18 95.42 96.82

Ibk Model 96.41 96.89 95.95 97.48

Figure 8. TLS and VLS outcome of RHSODL-AMD system on 70:30 of TRS/TSS.

To demonstrate the better performance of the RHSODL-AMD technique for Android
malware classification, a detailed comparison study is represented in Table 4 [29]. The
simulation values inferred that the J48, RF, MLP, and AdaBoost-M1 models reported poor
classification performances. At the same time, the DBN, LSTM, Decision Table, NB, and
SMO models attained moderately closer results. Although the logistic model has reached
near optimal outcomes, the RHSODL-AMD technique outperformed the existing models
with a maximum accuy of 99.05%.

Table 4. Comparative analysis of the RHSODL-AMD algorithm with other approaches [29].

Methods Accuy Precn Recal FScore

RHSODL-AMD 99.05 99.02 99.05 99.03
DBN Model 96.81 97.46 96.82 97.99
LSTM Model 96.37 95.45 95.91 97.20

J48 Model 94.85 94.26 94.92 94.09
RF Model 94.93 94.38 94.92 94.69

DecisionTable
Model 96.40 96.17 95.95 97.45

NB Model 96.64 97.42 96.74 97.72
MLP Model 95.25 94.66 95.27 95.49
SMO Model 97.05 97.48 96.92 98.26

Logistic Model 98.17 98.27 97.47 98.46
AdaBoost-M1

model 95.88 95.18 95.42 96.82

Ibk Model 96.41 96.89 95.95 97.48

To ensure the computation time (CT) analysis of the RHSODL-AMD technique, a brief
comparison study is made in Figure 10. The experimental results indicate that the MLP
model has shown a poor performance with increased CT value. Next, the decision table
and SMO models reported slightly reduced CT values. Although the remaining models
exhibited closer CT values, the RHSODL-AMD technique outperformed the existing models
with a minimal CT of 0.06s.

Appl. Sci. 2023, 13, 2172 15 of 18Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 18

Figure 9. (a,b) PR and ROC curve at 80:20 of TRS/TSS and (c,d) PR and ROC curve at 70:30 of
TRS/TSS.

To ensure the computation time (CT) analysis of the RHSODL-AMD technique, a
brief comparison study is made in Figure 10. The experimental results indicate that the
MLP model has shown a poor performance with increased CT value. Next, the decision
table and SMO models reported slightly reduced CT values. Although the remaining
models exhibited closer CT values, the RHSODL-AMD technique outperformed the exist-
ing models with a minimal CT of 0.06s.

The effectual performance of the RHSODL-AMD technique is due to the effectual
selection of features and hyperparameters. The enhanced performance of the proposed
model is because the lower number of features of the RHSO-FS technique and the Ada-
max-based hyperparameter optimizer. Therefore, the RHSODL-AMD technique can be
employed for accurate Android malware detection, which can protect Android devices
from mobile security threats and conceal private information (e.g., contacts, short mes-
sages, and e-mails).

Figure 9. (a,b) PR and ROC curve at 80:20 of TRS/TSS and (c,d) PR and ROC curve at 70:30 of
TRS/TSS.

The effectual performance of the RHSODL-AMD technique is due to the effectual se-
lection of features and hyperparameters. The enhanced performance of the proposed model
is because the lower number of features of the RHSO-FS technique and the Adamax-based
hyperparameter optimizer. Therefore, the RHSODL-AMD technique can be employed
for accurate Android malware detection, which can protect Android devices from mo-
bile security threats and conceal private information (e.g., contacts, short messages, and
e-mails).

Appl. Sci. 2023, 13, 2172 16 of 18
Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 18

Figure 10. Comparative CT analysis of the RHSODL-AMD.

5. Conclusions
In this research work, we have developed the RHSODL-AMD technique for the ef-

fectual classification of Android malware from benign applications, thereby accomplish-
ing cybersecurity. The presented technique primarily exploited the API calls and most
significant permissions, which resulted in effective discrimination between the good ware
and malware applications. Next, an optimal subset of features can be chosen by the RHSO-
FS technique. Finally, the Adamax optimizer with the ARAE model is employed for An-
droid malware detection, which helps to generate more precise and reliable outcomes in
the classification of Android applications. The simulation outcome of the RHSODL-AMD
approach was carried out utilizing the Andro-AutoPsy dataset. The experimental result
demonstrates the improvement of the RHSODL-AMD algorithm over existing ap-
proaches, with a maximum accuracy of 99.05%. Thus, the proposed model can be em-
ployed for an accurate Android malware classification process. In the future, the perfor-
mance of the RHSODL-AMD technique can be improved by the use of a metaheuristics-
based hyperparameter tuning process. In addition, it is necessary to conduct a validation
using a dataset consisting of recently released applications. In addition, the RHSODL-
AMD algorithm can be extended to deal with crime data prediction and Ethereum fraud
transactions.

Author Contributions: Methodology, A.A.; Formal analysis, S.A. and S.S.; Resources, F.A.; Funding
acquisition, N.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2023R333), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Figure 10. Comparative CT analysis of the RHSODL-AMD.

5. Conclusions

In this research work, we have developed the RHSODL-AMD technique for the effec-
tual classification of Android malware from benign applications, thereby accomplishing
cybersecurity. The presented technique primarily exploited the API calls and most signifi-
cant permissions, which resulted in effective discrimination between the good ware and
malware applications. Next, an optimal subset of features can be chosen by the RHSO-FS
technique. Finally, the Adamax optimizer with the ARAE model is employed for Android
malware detection, which helps to generate more precise and reliable outcomes in the
classification of Android applications. The simulation outcome of the RHSODL-AMD
approach was carried out utilizing the Andro-AutoPsy dataset. The experimental result
demonstrates the improvement of the RHSODL-AMD algorithm over existing approaches,
with a maximum accuracy of 99.05%. Thus, the proposed model can be employed for an
accurate Android malware classification process. In the future, the performance of the
RHSODL-AMD technique can be improved by the use of a metaheuristics-based hyperpa-
rameter tuning process. In addition, it is necessary to conduct a validation using a dataset
consisting of recently released applications. In addition, the RHSODL-AMD algorithm can
be extended to deal with crime data prediction and Ethereum fraud transactions.

Author Contributions: Methodology, A.A.; Formal analysis, S.A. and S.S.; Resources, F.A.; Funding
acquisition, N.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2023R333), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable. This article does not contain any studies
with human participants performed by any of the authors.

Appl. Sci. 2023, 13, 2172 17 of 18

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article as no datasets were
generated during the current study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, K.; Xu, S.; Xu, G.; Zhang, M.; Sun, D.; Liu, H. A Review of Android Malware Detection Approaches Based on Machine

Learning. IEEE Access 2020, 8, 124579–124607. [CrossRef]
2. Zhao, S.; Li, S.; Qi, L.; Xu, L.D. Computational Intelligence Enabled Cybersecurity for the Internet of Things. IEEE Trans. Emerg.

Top. Comput. Intell. 2020, 4, 666–674. [CrossRef]
3. Dovom, E.M.; Azmoodeh, A.; Dehghantanha, A.; Newton, D.E.; Parizi, R.M.; Karimipour, H. Fuzzy pattern tree for edge malware

detection and categorization in IoT. J. Syst. Archit. 2019, 97, 1–7. [CrossRef]
4. Sicato, J.C.S.; Sharma, P.K.; Loia, V.; Park, J.H. VPNFilter Malware Analysis on Cyber Threat in Smart Home Network. Applied

Sciences 2019, 9, 2763. [CrossRef]
5. Shah, Y.; Sengupta, S. A survey on Classification of Cyber-attacks on IoT and IIoT devices. In Proceedings of the 11th IEEE Annual

Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 28–31 October 2020;
pp. 406–413. [CrossRef]

6. Ali, S.; Bhargava, A.; Saxena, A.; Kumar, P. A Hybrid Marine Predator Sine Cosine Algorithm for Parameter Selec-tion of Hybrid
Active Power Filter. Mathematics 2023, 11, 598. [CrossRef]

7. Aziz, R.M.; Mahto, R.; Goel, K.; Das, A.; Kumar, P.; Saxena, A. Modified Genetic Algorithm with Deep Learning for Fraud
Transactions of Ethereum Smart Contract. Appl. Sci. 2023, 13, 697. [CrossRef]

8. Inayat, U.; Zia, M.F.; Mahmood, S.; Khalid, H.M.; Benbouzid, M. Learning-Based Methods for Cyber Attacks Detection in IoT
Systems: A Survey on Methods, Analysis, and Future Prospects. Electronics 2022, 11, 1502. [CrossRef]

9. Aziz, R.M.; Hussain, A.; Sharma, P.; Kumar, P. Machine learning-based soft computing regression analysis ap-proach for crime
data prediction. Karbala Int. J. Mod. Sci. 2022, 8, 1–19. [CrossRef]

10. Aziz, R.M.; Baluch, M.F.; Patel, S.; Kumar, P. A machine learning based approach to detect the Ethereum fraud transactions with
limited attributes. Karbala Int. J. Mod. Sci. 2022, 8, 139–151. [CrossRef]

11. Smmarwar, S.K.; Gupta, G.P.; Kumar, S.; Kumar, P. An optimized and efficient android malware detection framework for future
sustainable computing. Sustain. Energy Technol. Assess. 2022, 54, 102852. [CrossRef]

12. Sharma, R.M.; Agrawal, C.P. MH-DLdroid: A Meta-Heuristic and Deep Learning-Based Hybrid Approach for Android Malware
Detection. Int. J. Intell. Eng. Syst 2022, 15, 425–435.

13. Jebin Bose, S.; Kalaiselvi, R. An optimal detection of android malware using dynamic attention-based LSTM classifier. J. Intell.
Fuzzy Syst. 2018, 34, 1277–1288. [CrossRef]

14. Alzubi, O.A.; Alzubi, J.A.; Al-Zoubi, A.M.; Hassonah, M.A.; Kose, U. An efficient malware detection approach with feature
weighting based on Harris Hawks optimization. Clust. Comput. 2022, 25, 2369–2387. [CrossRef]

15. Bhagwat, S.; Gupta, G.P. Android Malware Detection Using Hybrid Meta-heuristic Feature Selection and Ensemble Learning
Techniques. In International Conference on Advances in Computing and Data Sciences; Springer: Cham, Germany, 2022; pp. 145–156.

16. Elkabbash, E.T.; Mostafa, R.R.; Barakat, S.I. Android malware classification based on random vector functional link and artificial
Jellyfish Search optimizer. PLoS ONE 2021, 16, e0260232. [CrossRef]

17. Şahin, D.Ö.; Kural, O.E.; Akleylek, S.; Kılıç, E. A novel permission-based Android malware detection system using feature
selection based on linear regression. Neural Comput. Appl. 2021, 29, 245–262. [CrossRef]

18. Jerbi, M.; Dagdia, Z.C.; Bechikh, S.; Said, L.B. On the use of artificial malicious patterns for android malware detection. Comput.
Secur. 2020, 92, 101743. [CrossRef]

19. Bhattacharya, A.; Goswami, R.T.; Mukherjee, K. A feature selection technique based on rough set and improvised PSO algorithm
(PSORS-FS) for permission based detection of Android malwares. Int. J. Mach. Learn. Cybern. 2019, 10, 1893–1907. [CrossRef]

20. Dhabal, G.; Gupta, G. Towards Design of a Novel Android Malware Detection Framework Using Hybrid Deep Learning
Techniques. In Soft Computing for Security Applications; Springer: Singapore, 2023; pp. 181–193.

21. Kim, J.; Ban, Y.; Ko, E.; Cho, H.; Yi, J.H. MAPAS: A practical deep learning-based android malware detection system. Int. J. Inf.
Secur. 2022, 21, 725–738. [CrossRef]

22. Fallah, S.; Bidgoly, A.J. Android malware detection using network traffic based on sequential deep learning models. Softw. Pract.
Exp. 2022, 52, 1987–2004. [CrossRef]

23. Rathore, H.; Sahay, S.K.; Nikam, P.; Sewak, M. Robust android malware detection system against adversarial attacks using
q-learning. Inf. Syst. Front. 2021, 23, 867–882. [CrossRef]

24. Padhi, B.K.; Chakravarty, S.; Naik, B.; Pattanayak, R.M.; Das, H. RHSOFS: Feature Selection Using the Rock Hyrax Swarm
Optimization Algorithm for Credit Card Fraud Detection System. Sensors 2022, 22, 9321. [CrossRef] [PubMed]

25. Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long short-term memory neural network for traffic speed prediction using remote
microwave sensor data. Transp. Res. C, Emerg. Technol. 2015, 54, 187–197. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3006143
http://doi.org/10.1109/TETCI.2019.2941757
http://doi.org/10.1016/j.sysarc.2019.01.017
http://doi.org/10.3390/app9132763
http://doi.org/10.1109/UEMCON51285.2020.9298138
http://doi.org/10.3390/math11030598
http://doi.org/10.3390/app13020697
http://doi.org/10.3390/electronics11091502
http://doi.org/10.33640/2405-609X.3197
http://doi.org/10.33640/2405-609X.3229
http://doi.org/10.1016/j.seta.2022.102852
http://doi.org/10.3233/JIFS-220828
http://doi.org/10.1007/s10586-021-03459-1
http://doi.org/10.1371/journal.pone.0260232
http://doi.org/10.1007/s00521-021-05875-1
http://doi.org/10.1016/j.cose.2020.101743
http://doi.org/10.1007/s13042-018-0838-1
http://doi.org/10.1007/s10207-022-00579-6
http://doi.org/10.1002/spe.3112
http://doi.org/10.1007/s10796-020-10083-8
http://doi.org/10.3390/s22239321
http://www.ncbi.nlm.nih.gov/pubmed/36502020
http://doi.org/10.1016/j.trc.2015.03.014

Appl. Sci. 2023, 13, 2172 18 of 18

26. Kong, X.; Li, X.; Zhou, Q.; Hu, Z.; Shi, C. Attention recurrent autoencoder hybrid model for early fault diagnosis of rotating
machinery. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [CrossRef]

27. Xiao, B.; Liu, Y.; Xiao, B. Accurate state-of-charge estimation approach for lithium-ion batteries by gated recurrent unit with
ensemble optimizer. IEEE Access 2019, 7, 54192–54202. [CrossRef]

28. Jang, J.W.; Kang, H.; Woo, J.; Mohaisen, A.; Kim, H.K. Andro-AutoPsy: Anti-malware system based on similarity matching of
malware and malware creator-centric information. Digit. Investig. 2015, 14, 17–35. [CrossRef]

29. Lee, J.; Jang, H.; Ha, S.; Yoon, Y. Android Malware Detection Using Machine Learning with Feature Selection Based on the Genetic
Algorithm. Mathematics 2021, 9, 2813. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TIM.2021.3051948
http://doi.org/10.1109/ACCESS.2019.2913078
http://doi.org/10.1016/j.diin.2015.06.002
http://doi.org/10.3390/math9212813

	Introduction
	Literature Review
	The Proposed Model
	Feature Extraction
	Algorithmic Procedure of RHSO-FS Technique
	Malware Detection Using ARAE Model
	Hyperparameter Tuning

	Performance Validation
	Conclusions
	References

