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Abstract: As the most common method to detect pavement cracks, manual detection has uncontrol-
lable factors such as low efficiency, inconsistent standards and easy to be interfered with by external
forces, so it is not suitable for pavement crack detection in today’s intricate traffic network. In order
to improve the efficiency of pavement repair and reduce the labor cost of the repair process, this
paper proposes an intelligent pavement crack detection and repair algorithm. The algorithm uses
image numerical parameters to classify cracks with different geometric features and extracts texture
geometric features of various types of cracks based on different filtering strategies. It solves the
problem that traditional single filtering algorithms are difficult to extract features according to the
different characteristics of the collected image, which leads to the loss of information. Finally, the
algorithm establishes a mathematical model for efficient trajectory planning combined with the nozzle
size of the crack-repairing machine. In this paper, the robustness and efficiency test of the algorithm is
carried out on the pavement image dataset with various types of cracks, and the experiment is carried
out on the intelligent pavement crack detection and repair prototype, which verifies the accuracy and
reliability of the planned trajectory.

Keywords: crack detection; pavement repair; computer vision; intelligent trajectory planning; cate-
gorical feature extraction

1. Introduction

As a complex of intricate engineering facilities, motor vehicle lanes require constant
maintenance and repair to ensure a high-quality and safe traffic environment. Crack
detection utilizes the type, length, and severity of cracks to quantify the condition of
the pavement, analyze the cause of the deterioration of the road condition, and is the
best indicator for assessing whether the road needs preventive maintenance treatment.
Carrying out crack detection at the initial stage is conducive to the proper maintenance
of the pavement, so as to save a large amount of cost of repairing in the later stage.
According to the degree of manual intervention required, crack detection methods can
be divided into manual detection, semi-automatic detection and automatic detection [1].
Even though many scholars have proposed automatic crack detection models, manual
detection methods are still the most common in practice. Nevertheless, due to the limitation
of manpower, there are many unavoidable problems in manual detection methods, which
make it difficult to detect the details of cracks consistently. Therefore, in today’s increasingly
developed traffic system, manual detection methods are no longer suitable for large-scale
road maintenance projects.

In the past decades, the government and scientific research institutions have made
great efforts to build an automated pavement crack detection system. Safaei et al. [2] pro-
posed a comprehensive crack extraction algorithm based on local threshold, morphological
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manipulation and preprocessing to extract the crack image of pavement damage and calcu-
late the crack width. The researchers also used other methods based on autocorrelation
screening, such as two-dimensional pavement image crack detection method based on the
weighted neighborhood pixel segmentation algorithm, and Gaussian cumulative density
function(CDF) as an adaptive threshold to overcome the disadvantage of fixed threshold in
noisy environment [3]. Aiming at the problems of low crack image recognition rate and
difficult classification, Ouyang et al. [4] proposed a crack recognition method based on
image enhancement and image segmentation. Akagic et al. [5] proposed a crack detection
method based on the Otsu thresholding method and image segmentation, which does not
need to know the morphological characteristics of cracks in advance, but uses the spatial
distribution characteristics of crack pixels to analyze the image. Nevertheless, for complex
and diverse pavement crack detection work, such traditional detection algorithms based on
image segmentation algorithms have problems of low efficiency and poor robustness [6].

Machine learning methods can efficiently and accurately classify images through
image spatial distribution, color tone, pixels and other features before specific crack identi-
fication, so are more and more frequently used to solve pavement crack detection problems.
Othman et al. [1] proposed an improved Otsu-Canny edge detection algorithm, and the
crack detection based on the adaptive multi-resolution threshold technology improved
the accuracy of crack extraction. Sari et al. [7] proposed a method for identifying cracks
in asphalt pavement based on Support Vector Machine and Otsu thresholding method.
As an efficient feature extraction technology, Hough transformation is also very helpful
to solve the problem of crack identification. By comparing a variety of edge detection,
Kaur et al. [8] proposed a crack detection method based on Canny-Prewitt operator and
Hough transformation, and proved that the algorithm has the best robustness and efficiency
through experiments. Nasser [9] proposed a road trajectory fitting method based on Hough
space transformation and the K-means clustering algorithm, which greatly reduces the
number of feature points while fitting the trajectory efficiently. Neural network is the core
of trainable algorithm for crack detection, which has advantages over threshold-based
techniques and morphological tools. Now, many scholars have proposed to train complex
neural networks to obtain a model that can accurately identify pavement cracks and fit the
trajectory [10-12]. However, although these methods could provide extremely fine fitting
effect, the main drawback of learning-based approaches is that the build learning step is
usually accompanied by a tricky manual labeling step, which does not provide fast and
fully automatic analysis compared to image segmentation-based methods [2].

Most crack identification algorithms today have relatively single scene quality require-
ments for the processed image features. However, affected by objective factors such as light
and shooting angle, the crack images identified by the machine inevitably have different
contrasts, textures and shades. At present, there is still a lack of a systematic pavement
crack detection and trajectory planning algorithm, which can balance high accuracy and
fast execution efficiency, and is not limited to the complex manual labeling work of the
dataset. In order to solve this problem, this paper proposes an intelligent pavement crack
detection and repair algorithm. The algorithm establishes a targeted filtering model for
different types of crack feature images, and realizes intelligent trajectory planning based
on the Hough space transformation and K-Means clustering algorithm. Through a large
number of experiments, we find that under the condition of fixed size, the crack images
collected by the camera can be divided into two types according to the morphological
characteristics of the main crack and the distribution characteristics of the noise, namely the
high-density noise wide crack type and the low-density noise narrow crack type. According
to this, the algorithm firstly performs global variance calculation on the binarized original
crack image and accurately classifies two typical crack features based on the threshold dis-
crimination method. For the high-density noise wide crack type images which tend to have
wide main cracks and dense noise distribution, the algorithm uses the median filter and
Otsu thresholding method, which greatly eliminates the image dense noise groups while
retaining the main crack feature relatively completely. For the low-density noise narrow
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crack type images which tend to have narrow main cracks and scattered noise distribution,
the algorithm accurately extracts the crack features through the eight-neighborhood maxi-
mum connected component extraction algorithm, thus avoiding the loss of narrow crack
feature information caused by strong filtering. After crack feature extraction operation, the
algorithm uses Hough space transformation and K-Means clustering algorithm to establish
a mathematical model that can be combined with the nozzle size of the crack repair model
for efficient trajectory planning. Finally, the robustness test of the algorithm is carried out
on pavement image dataset containing various types of cracks, and experiments are carried
out on the intelligent pavement crack detection and repair prototype to verify the accuracy
and reliability of its planned trajectory.

2. Research Significance

This paper aims to propose an intelligent pavement crack detection and repair algo-
rithm, which can establish a targeted filtering model for different types of crack feature
images to extract the main crack feature quantity more completely, and establish a mathe-
matical model for efficient trajectory planning based on the crack feature quantity combined
with the crack repair model nozzle size.

3. Intelligent Pavement Crack Detection and Repair Algorithm
3.1. Algorithmic Framework

In this paper, an intelligent pavement crack detection and repair algorithm is proposed.
The algorithm consists of four parts to realize pavement crack feature identification and
trajectory planning, and its framework is shown in Figure 1. First, the algorithm calls the
system camera to capture the scene images with a fixed size, and performs a preliminary
binarization operation on the images collected by the camera one by one at the system
terminal to obtain the binarized crack image. For the binarized scene image, the algorithm
adopts the threshold discrimination method, and compares the preset threshold with the
global variance of the pixel matrix, and then divides the corresponding original crack image
into a high-density noise wide crack type and a low-density noise narrow crack type. The
algorithm proposes targeted filtering policies for the two types of graphs, respectively. For
the high-density noise wide crack type image, the algorithm extracts the original image
again, smoothes the texture features of the original image based on the median filtering
method, and uses the Otsu threshold algorithm to eliminate the dense noise group and
capture the main crack feature. For the low-density noise narrow crack type image, the
algorithm obtains the binarized crack image based on the Otsu thresholding algorithm
and uses the eight-neighborhood maximum connected component extraction algorithm
to achieve accurate extraction of fine crack features. In the Hough space transformation
stage, the algorithm performs Canny edge detection and Hough lines fitting on the feature-
extracted image and collects all the endpoints of the fitted feature lines. Finally, according
to the complexity of the crack shape, the algorithm uses the K-Means clustering algorithm
to divide the fitting feature endpoint set into several clusters, and connects each cluster
center in the output stage to form a crack repair trajectory.
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Figure 1. Algorithm Framework.

3.2. Image Filtering Stage

In the image filtering stage, the algorithm firstly calls the system camera to take
pictures of the cracks and upload them to the system terminal for subsequent analysis.
Since the image signal of the camera sensor is easily affected by pulse currents, analog-to-
digital converter or bit transmission errors occur, and the crack scene image collected by
the camera usually contains a lot of salt and pepper noise. However, the pavement crack
repair algorithm based on traditional morphological segmentation methods such as the
Otsu thresholding method and histogram equalization method only uses a single mode of
filtering method and is difficult to establish a highly adaptive filtering model for different
types of crack images. In order to solve this problem, the algorithm divides the original
crack images into two categories as shown in Figure 2 according to the distribution of the
probability density function and the relative size of the main crack feature. Namely, high-
density noise wide crack type image and low-density noise narrow crack type image, and
we purpose the targeted filtering policies for these two types of crack images, respectively.

Sparse-Noise
Image

Figure 2. Camera image classification based on targeted filtering policies.
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3.2.1. Image Classification Policy Engine

Due to unstable environmental conditions such as light, angle and background tone,
the relative size of the main crack feature points and noise points contained in the images
collected by the system camera, and the degree of noise dispersion is often uncontrol-
lable, which in turn affects the subsequent image filtering and feature extraction. In 2021,
Sheerin er al. [13] conducted an integrated analysis of mainstream crack detection and
classification techniques, and proposed the necessary conditions for a pavement crack
feature identification algorithm. That is, the morphological characteristics of cracks and
noise clusters in different types of scene images should be comprehensively considered,
and a targeted filtering model should be established. Accordingly, we experimented with
global variance calculation on multiple crack images. Figure 3 shows the comparison of
the original binarization effect of the two types images, while Table 1 shows the global
variance calculation results of the images. After a large number of experiments, we found
that under the condition of fixed size, the image in Figure 3a has relatively narrow cracks
and the noise distribution of this type of image after binarized is also relatively scattered,
meanwhile, the global variance of the calculated pixel matrix is usually in the range of
0-300 as shown in Table 1. However, the image in Figure 3b has a relatively wide crack and
the noise distribution of this type of image after binalization is concentrated on the edge
side of the crack. The amount of noise of this type is much larger than that of the narrow
crack type image, and the global variance of the calculated pixel matrix is usually greater
than 800. Therefore, for a certain size of the crack scene binarized image, the threshold
discrimination method is introduced as the image classification policy engine, and 500
is selected as the appropriate classification threshold. According to the difference of the
global variance value of the pixel matrix, the image is divided into high-density noise wide
crack type and low-density noise narrow crack type, and the corresponding processing

strategies are adopted, respectively.
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Figure 3. Comparison of the original binarization effect. (a) indicates the effect for wide crack type,
(b) indicates which for narrow crack type.

Table 1. Global Variance Calculation Results.

High Density Noise Wide Crack Type Low Density Noise Narrow Crack Type

Sample Samplel Samplell Samplelll SampleIV Samplel Samplell Samplelll SampleIV
Global Variance Value 898.5224  947.9831 806.3760  1124.1458 129.5714  116.9045  287.2469 221.6327

3.2.2. Wide Crack Feature Extraction Policy

In road repair work, high-density noise wide crack type images are a common type of
image captured by system cameras. In this type of image, the main crack is often thick, and
dense noise points are commonly distributed at both ends, which brings a certain degree
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of difficulty to the extraction of main crack features. In general, there are the following
feature extraction methods for crack scene images: 1. Otsu thresholding method [5];
2. Image enhancement combined with segmentation methods [7]; 3. Canny operator
edge detection [8]; 4. grayscale morphological filter [14]; 5. histogram equalization [15];
6. median filter [16]. However, the above traditional filtering methods are all based on
pixel neighborhood feature values to filter images indiscriminately. Applying it directly
to filter this type of image is prone to the situation that the noise group and the feature
cannot be separated or the crack feature is damaged during filtering. Therefore, in order
to filter the dense noise point groups and retain the main crack feature, the algorithm in
this paper combines the median filter and the Otsu thresholding method, and proposes a
feature extraction policy for high-density noise wide crack type images.

High density noise wide crack type images have Tamura features with large rough-
ness, small contrast and scattered directions. Compared with its opposite category, the
cooccurrence variance of its Gray-level Co-occurrence Matrix is larger, so it is not suit-
able to directly use traditional morphological segmentation method for filtering [17]. The
algorithm in this paper firstly uses the median filter method to smooth the original im-
age texture, neutralizes the image roughness, and greatly reduces the possibility of noise
clustering. The median filter replaces each pixel in the image with the median value of
the sequence of its eight neighborhoods, so that the surrounding pixels are close to the
real value, thereby eliminating isolated noise point. As shown in Figure 4, the algorithm
uses a 3 x 3 two-dimensional rectangular sliding window to sort the pixel values in the
window to generate a monotonically increasing data sequence. The filtering effect is shown
in Figure 5. The median filter can smooth the texture of the original crack image on the
basis of retaining the main crack feature to the maximum extent.

10 9 4 7 2 10 9 4 7 2

4 31 12 23 30 31+12+23+43+1+32+7+3+43 =23 4 31 12 23 30
9

5 43 1 32 8 :> 5 43 | 238 | 32 8

54 7 3 43 4 54 7 3 83 4

23 | 76 | s6 | 45 9 23 | 76 | 86 | 45 9

Figure 4. Median filtering sliding window.

Figure 5. Comparison of median filtering.

After median filtering, the image has already have good contrast and regularity. At
this time, the traditional morphological segmentation method can be used to accurately
extract the main crack feature. The algorithm uses the Otsu thresholding method to binarize
the image. By setting the threshold to maximize the variance between the crack and the
background class, a binarized image that only contains crack features is obtained [18]. As
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shown in Figure 6, the Otsu thresholding method accurately removes all the noise groups
in this type of crack image, and retains the main crack feature relatively completely. This
paper verifies the reliability of the model by comparing the actual effects of various feature
extraction and combination methods, as shown in Figure 7.

e

Figure 6. Otsu thresholding method processing results.

L{“\- Feus

e -
Morphological Filter

/‘/“

o &
1 IAYE R
Median Filter & GS Morphological Median Filter & OTSU
Filter

Figure 7. Feature extraction effect comparison.

3.2.3. Narrow Crack Feature Extraction Policy

Corresponding to the high-density noise wide crack type image, the low-density noise
narrow crack type image is another common collected scene image, which has the char-
acteristics of long and narrow main cracks and scattered noise distribution. Nevertheless,
compared with wide crack images, the feature size of cracks in this type of image is similar
to the size of noise points, and there is a risk of filtering noise points and feature points
together by using the same feature extraction policy. Therefore, it is necessary to design a
feature extraction policy for this type of image, which can filter the sparsely distributed
salt and pepper noise without losing the feature quantity of fine cracks. The algorithm
in this paper binarizes the original image by the Otsu thresholding method, and uses the
eight-neighborhood maximum connected component extraction algorithm to extract the
features of the narrow crack sparse noise type image.

In order to ensure that the feature quantity of the narrow crack would not be affected
by the filtering algorithm to the greatest extent, this paper proposes a maximum connected
component extraction algorithm based on the pixel features of the eight neighborhoods
of the image. Based on the sparse distribution of image noise, the algorithm extracts the
largest area connected component to achieve image filtering without feature loss. The
algorithm flow is as shown in Figure 8, which could be divided into 5 steps.
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(i)

(i)
(iii)

(iv)

\

Algorithm Begin \—b{
2

Establish a label matrix of the same size and a one-dimensional array for storing the
area size of each connected component according to the pixel matrix of the incoming
image.

Traverse the pixel points of the binarized image row by row or column by column to
obtain their pixel values.

If the values of the four adjacent pixels at the upper left of the traversed pixel are not
all 0, assign the same label value to the pixel and the adjacent pixels that are not 0, and
record the number of consecutive pixels currently traversed. The working principle
of the algorithm is shown in Figure 9.

Loop through the pixel matrix until the adjacent pixels of the traversed pixels are all 0,
treat the pixel set with the same label value as a connected component, store its area
in the area array, and update the label value to record the next connected components.
Traverse the image multiple times until the elements of the label matrix and the area
array would no longer change. Retrieve the largest area value in the area array, which
corresponding connected component is just the desired crack feature quantity.
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Figure 8. Flowchart of the eight-neighborhood maximum connected component extraction algorithm.

253 255

255 255

Figure 9. Principle of connected component labeling.

The execution result of the algorithm is shown in Figure 10. The algorithm removes

the scatteredly distributed noise points in the original image while completely retaining
the narrow crack feature.
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Figure 10. Narrow crack filtering results.

3.3. Canny Marginalization and Hough Space Transformation

In the image filtering stage, for the high-density noise wide crack type image and the
low-density noise narrow crack type image collected by the system camera, the algorithm
adopts corresponding feature extraction policies, respectively, and obtains a binarized
image containing only crack features. In order to further fit the crack to obtain the coordinate
points of the repair trajectory, the algorithm uses the Canny edge detection algorithm to
extract the edge of the binarized image, and adopts the polar coordinate Hough space
transformation method to perform the Hough straight lines fitting on the feature lines of
the edged crack image.

The Hough space transformation, as a very important method for detecting the shape
of discontinuous point boundaries, transforms the image coordinate space into the pa-
rameter space, and realizes the fitting of straight lines and curves. The algorithm in this
paper adopts the generalized polar coordinate Hough space transformation [19], and the
algorithm flow is as follows:

a. The algorithm uses the normal form to represent each line in the image coordinate
space: r = xcosf + ysinf , where r represents the distance from the origin of the
coordinate system to the straight line, and 0 represents the angle formed by the
coordinate point and the x-axis. Therefore, in Hough space, any straight line can be
represented by a (r,0) parameter pair and points on the same line have the same
(r,0) parameter pair. If many feature points in a parameter space hold the same (7, 0)
parameter pair, it means that in the Cartesian coordinate system the corresponding
number of feature points in are collinear. After this step, each line in the binarized
image is represented in the form (7, ).

b.  For each coordinate point in the parameter space, the algorithm counts the corre-
sponding (7, 0) parameter pair in the Hough space, then we could establish an array
which contains the count values of all (r,0) parameter pairs.

c.  The algorithm uses a voting mechanism to traverse the (r,0) parameter pairs corre-
sponding to all feature points with non-zero pixel values in the image matrix, and
vote for the model parameters. When there are feature points with the same (r,0) ,
the corresponding parameter pair is increased by one vote. After the execution of this
step, we can obtain the global statistics of the parameter pairs, so that the parameter
pairs with high statistical times can be set as the contour lines recognized by the
Hough space algorithm.

d.  Anappropriate threshold is set according to the size of the pixel matrix and the (7, 0)
parameter pair with a high number of votes is retained, and the corresponding straight
line constitute the Hough space fitting line set of the image.
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The Hough space transformation uses the global characteristics of the image to connect
the edge pixels and form a closed boundary of the region. While directly performing Hough
space line fitting on the binarized crack feature image will introduce a lot of unnecessary
redundant calculations. In order to achieve the best fitting effect, the algorithm introduces
the Canny edge detection algorithm to marginalize the crack feature image in the early
stage of Hough line fitting.

The Canny edge detection algorithm is a multi-level edge detection algorithm, which
smooths the image through Gaussian filtering, calculates the image intensity gradient,
performs non-maximum suppression of the gradient amplitude and double threshold
processing to achieve the optimal edge detection of the image [20]. Since in the image
filtering stage, the algorithm has performed filtering operations according to different types
of crack feature images, the Canny operator introduced in the algorithm would only include
the operation of calculating image gradient and non-maximum suppression. The Canny
algorithm would firstly introduce the x-direction convolution operator Sy and y-direction
convolution operator S, as shown in Equation (1), and calculate dy , d by Equation (2) for
each pixel in the image matrix. Then the algorithm would calculate the image gradient
magnitude M(x, y) according to Equation (3), and finally get the gradient direction angle 6
by Equation (4). The specific mathematical model for calculating the image gradient 0, is
shown in Equations (1)—(4), where Equation (1) represents the convolution operators in the
x and y directions, respectively, and Equations (2)—(4) represent the process of calculating
the image gradient direction angle through the convolution operator.

s=[2 0 s[4

dx = f(x,y) X Sx, dy = f(x,y) x S, @)

M(x,y) = /B(x,) +d3(x,y) = dx(x,y)] +dy(x,y) )
brs = arctan(ji) @

After obtaining the image intensity gradient, the algorithm performs non-maximum
suppression on the amplitude along the gradient direction to eliminate the non-edge point
set. The specific process is as follows:

i.  Through the image coordinate angle, the edge directions are divided into four direc-
tions: vertical, horizontal, 45°, and 135°. The corresponding gradients are also four
directions orthogonal to the edge direction.

ii.  For a horizontal edge, its gradient is vertical, and the gradient direction angle satisfies:
Op € [—22.5°,22.5°] U [157.5°,180°] U [—180°, —157.5°] ; for a 135°edge, its gradient is
45°, and the gradient direction angle satisfies: 6 € [22.5°,67.5°] U [—-157.5°, —112.5°];
for a vertical edge, its gradient is in the horizontal direction, and the gradient direction
angle satisfies:fy; € [67.5°,112.5°] U [—-112.5°, —67.5°] ; while for a 45° edge, its
gradient is 135°, and the gradient direction angle satisfies: 6); € [112.5°,157.5°] U
[—67.5°, —22.5°].

iii. Asshown in Figure 11, along the above-mentioned four types of gradient directions,
the algorithm compares the value of the traversed pixel with the values of its neigh-
borhood. For each pixel traversed by the algorithm, if its pixel value is the maximum
value in the neighborhood centered on it, its pixel value is retained, otherwise, its
pixel value is set to 0.

After processing by the Canny edge detection operator, the algorithm uses the Hough
space transformation to perform a line fitting operation on the boundary of the image crack
feature, and the obtained fitting trajectory is shown in Figure 12.



Appl. Sci. 2023, 13, 2241

11 of 19

00
_450 +§
90°
b F.N 4
~ q 'y
\450
Oo

Figure 11. Schematic diagram of non-maximum suppression.

Canny Marginalization Hough Lines fitting

Figure 12. Canny operator & Hough line fitting results.

3.4. K-Means Clustering and Fitting Trajectory Output

In real road crack inspection work, the shape of the camera-collected image is often
uncertain, resulting in different lengths and widths of crack features. However, the Hough
space line fitting algorithm would include all the feature points located inside the crack
boundary one by one into the statistical category. For cracks with larger widths, directly
using the line set fitted by the algorithm as the coordinates of the repair trajectory is prone
to the situation of trajectory redundancy as shown in Figure 12. To solve this problem,
this paper proposes a trajectory-fitting method based on the K-Means clustering algorithm,
which can significantly reduce the number of trajectory endpoints while efficiently fitting
the crack feature.

The K-Means clustering algorithm is a clustering algorithm based on the Euclidean
distance of feature endpoints. Its core idea is to determine that the closer the distance
between two targets, the greater the similarity. By iterative calculating Equations (5), each
point in the endpoint set is divided into corresponding clusters by the algorithm [21], where
S represents the set of all cluster center points while S; represents the ith cluster divided
by the algorithm, and x represents the coordinates of any feature point located in cluster S;.

k k
argminy_ Y ||x — u|[* = argmin Y |S;| x VarS; (5)
S i=1xeS; S i=1

The trajectory fitting process based on the K-Means clustering algorithm proposed in this
paper is shown in Figure 13.
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The K-Means algorithm performs cluster analysis on all trajectory endpoints generated
in the Hough space line fitting process, and divides the endpoint set into a corresponding
number of clusters according to the morphological complexity of the crack, as shown in
Figure 14.
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Figure 14. Cluster crack feature endpoint collection.

Finally, the algorithm identifies the k cluster centers obtained as the endpoints of
the road repair trajectory, and connects them end to end based on the shortest Euclidean
distance of the endpoints of the trajectory to obtain the complete fitting trajectory. The
fitting results are shown in Figure 15.

Wide Crack Narrow Crack

Figure 15. Algorithm fitting results.
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4. Experimental Design
4.1. Construction of the Intelligent Pavement Crack Detection and Repair Prototype

In order to verify the efficiency of the algorithm in this paper, a motion control card,
servo driver, servo motor, laser sensor, high-definition camera and laptop computer were
used to build an intelligent pavement crack detection and repair prototype. As shown in
Figure 16, the prototype consists of two parts: a servo motor with three axes and a screw
rod with one axis. The activity range of the servo motor is 1500 mm x 400 mm x 500 mm,
and each active axis is equipped with three laser ranging sensors with an effective range of
8000 mm and an accuracy of 1 mm, including two limit sensors and one origin sensor. The
mechanical parameters of the equipment are shown in Table 2. The prototype is controlled
by a four-axis high-precision motion control card, as shown in Figure 17. The x, y, and z axes
correspond to the feed axes of the three motion directions of the servo motor, respectively,
and the fourth axis screw is used to move the original station of the crack image. The
original crack image is placed in the lead screw tray, and the side end of the tray is equipped
with a laser sensor. The servo motor can be positioned to the workpiece coordinate system
through the laser sensor, and the crack scene image can be identified and captured by the
high-definition camera at the front of the motor and uploaded to the model terminal, so as
to perform the fitting of the road repair trajectory. The specific equipment parameters of
the prototype are shown in Table 3.

Z—Axis Laser Sensor
Y-AXis Laser Sensor
X—Axis Laser Sensor

Limit Sensor ————— 2 74 y -
X—Axis Servo Driver I Limit Sensor

Limit Sensor - I Lim
Y-Axis Servo Driy i : Limit Sensor

1500.00mm

limit range of activity

1620.00mm 7L Origin Sensor
Forth Axis Servo Driver

Limit Sensor

Limit Sensor

limit range of activity

1590. 00mm Wlimit range of activity

Figure 16. Prototype design drawing.

Table 2. Prototype Mechanical Parameters.

Parameters Description
Sensor Type BL-100NZ-485
X-axis Origin Sensor Location 250 mm (from the left limit sensor)
Y-axis Travel Range 150 mm (from the left limit sensor)
Z-axis Travel Range 50 mm (from the left limit sensor)
W-axis Travel Range 250 mm (from the left limit sensor)
Laser-type 635 nm
Sensor measurement accuracy 1 mm

Pulse volume of servo motor 1412.7 (pulse volume /ms)
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Table 3. Prototype equipment parameter.

Equipment Model
Four-axis motion control card Googoltech GT2-400-ACC2-VB-G-A
High-definition camera Hikvision B12- V2-I(POE)
Servo driver Delta-China ASDA-B2-0721-B 750W

Figure 17. Intelligent pavement crack detection and repair prototype.

4.2. Experimental Results and Analysis

In this paper, the robustness, efficiency and accuracy of the algorithm are compre-
hensively tested through the terminal algorithm simulation fitting verification and the
experimental prototype actual scene verification.

4.2.1. Algorithm Simulation Fitting Verification

In the terminal algorithm simulation fitting verification stage, this paper uses 30 crack
sample images captured by the high-definition camera of the prototype during the actual
operation for analysis. Each group of experimental samples was collected under different
scene conditions such as walls and pavements. The crack lengths, widths, colors and shade
depths contained in each image also varies. At the same time, in order to standardize the
measurement fitting results, manual ground truth labeling was carried out for all the 30
crack sample images selected. Part of the experimental results is shown in Figure 18. The
algorithm can accurately extract and identify trajectories for both types of camera images
under light and dark backgrounds.

Type 1: Wide Crack with Dark Type I1: Wide Crack with Light Type III1: Narrow Crack with Type IV: Narrow Crack with
Background Background Dark Background Light Background

o

Original
Image

Otsu Image

Trajectory
Ground
Truth

Algorithm
Fitting
Result

Figure 18. Dataset fitting results.
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The crack repair work has high requirements for the recognition accuracy and execu-
tion efficiency of the automatic algorithm. Therefore, in order to comprehensively reflect
the advancement of the proposed algorithm with the traditional recognition method based
on morphological segmentation and the recognition method based on deep learning, the
algorithm proposed is compared with the algorithm in the literature [5,12] in terms of
recognition accuracy and computational efficiency. The detailed analysis of this stage is
as follows.

Algorithm Accuracy Analysis

In order to measure the performance in accuracy between the pavement crack repair
trajectory fitted by the algorithm and the real crack feature, the RMSE metric is selected
as the evaluation metric of the algorithm fitting effect. By calculating and comparing the
RMSE values between the labeled ground truth and the fitted trajectory lines in the sample
crack image, the accuracy of each algorithm can be comprehensively analyzed, and the
results are shown in Figure 19.

450

®—® Literature[5]'s Algorithm
B Literature[12]'s Algorithm
99 Our Algorithm

400

350

300

RMSE

250

200} =

150

100

0 5 10 15 20 25 30
Sample Number

Figure 19. Algorithms accuracy comparison results.

Algorithm Execution Efficiency Analysis

In order to evaluate the performance in execution efficiency between the proposed
algorithm and the algorithm in the literature [5,12], this paper takes the above-labeled crack
image dataset as the target, and calculates the time cost required by the proposed algorithm
and the algorithm in the literature [5,12] to identify crack images with different complexity,
respectively, and the results are shown in Figure 20.
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Figure 20. Algorithms execution efficiency comparison results.

Performance Analysis

Through the above performance analysis and comparison results, it can be seen that the
proposed algorithm has relatively excellent performance, which proves the advancement
of the proposed algorithm. Although the algorithm of literature [12] is slightly better than
the algorithm of this literature in terms of accuracy, the time cost of the algorithm in the
literature [12] is much higher than that of the proposed algorithm when dealing with
the same samples. On the other hand, our proposed algorithm holds a similar execution
efficiency with the algorithm of paper [5] while a better fitting accuracy compared to it. In
summary, at the cost of a small performance overhead, the proposed algorithm basically
meets the requirements of crack repair work, and is more suitable for the actual scene of
pavement crack repair work.

4.2.2. Experiment Verification

The built intelligent pavement crack detection and repair prototype is used to verify
the fitting effect of the algorithm in this paper in practical application scenarios. After
completing the camera calibration and establishing the workpiece coordinate system, a
crack scene image would be placed on the screw tray of the prototype, and the crack image
would be captured by the front-end camera of the servo motor and uploaded to the model
terminal. After algorithm processing, the servo motor receives the coordinate points of the
feedback crack repair trajectory and is controlled by the motion control card to drive a fixed
2mm gray marker to draw a fitting trajectory in the scene image to simulate the real crack
repair work. Finally, this paper evaluates the accuracy of the algorithm by analyzing the
radial distance error between the trajectory points drawn by the servo motor and the real
crack feature points during the operation of the prototype.

As shown in Figure 21, the fitted trajectory drawn by the servo motor is highly
coincident with the feature of the scene crack image. In order to compare the accuracy
of the algorithm fitting horizontally, this paper selects 7 cluster centers generated during
the K-Means clustering process as the fitting trajectory endpoints for each experiment
and uses the orthogonal distance to the original crack feature as the evaluation metric
for the accuracy of the fitted trajectory. Table 4 summarizes the radial errors between the
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fitting track points of the five images used in the experiment and the real crack feature.
The calculation method of the radial error is as follows: with the clustering feature points
generated by the algorithm as the center of the circle, a circle is made which is tangent to
the actual repair trajectory marked in the binarized crack image (the actual repair trajectory
is the ground truth pre-marked in the robustness test of the algorithm), and the radius of
the circle is the radial error between the fitting point and the feature point of the actual
repair trajectory. It can be seen from the table that almost all the errors between the fitted
7 feature endpoints and the original crack feature are less than the radial range of 2 mm,
while the nozzle diameter of the pavement repair prototype is within the range of 2-10 mm,
which further reflects the accuracy and stability of the algorithm in this paper in the actual
model application.

Crack Type 1 Crack Type 3 Crack Type 4

Crack Type 5

Figure 21. Prototype crack fitting experiment results.

Table 4. Radial error of fitted trajectory points.

Crack Type 1 Type 1 Type 1 Type 1 Type 1 Type 1 Typel  Average Error  Accyracy

Image (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

Crack 1.624 1.858 0.855 1.825 2.601 1.724 1.023 1.644 100%

Type 1

Crack 1.530 1.942 0.874 1.005 1.429 0.743 0.962 1.212 85.8%

Type 1

Crack 1211 1.047 0.753 0.969 1.953 1.277 0.857 1.152 100%

Type 1

Crack o,
0.742 0.249 1.105 0.791 0.412 0.363 0.693 0.622 100%

Type 1

Crack 0.653 1.673 1.692 2.052 1.559 0.901 0.612 1.306 85.8%

Type 1

5. Conclusions

To deal with the dilemma of the balance between the high accuracy and the execution
efficiency of the crack detection algorithm, this paper proposes an intelligent pavement
crack detection and repair algorithm based on the morphological characteristics of image
cracks and noise. The algorithm uses the global variance of the pixel matrix as the policy en-
gine, adopts targeted processing policies for different types of crack images, and efficiently
generates high-precision fitting trajectories. The main contributions of this paper to the
research on crack detection, regarding the proposed method, are as follows: (1) Firstly, the
crack images collected under different environmental conditions are effectively classified,
and feature extraction strategies are proposed for each type of crack image, which greatly
reduces the amount of data and necessary calculation; (2) For high-density noise wide crack
type image, median filter and Otsu algorithm are combined to solve the problem that the
high-density noise group and the main crack feature can not be separated by using Otsu
algorithm alone, and the crack detection accuracy is improved; (3) For the low-density
noise narrow crack type image, an eight-neighborhood maximum connected component
extraction algorithm is proposed, which can effectively remove all the sparse distribution
noise and realize the lossless extraction of the main crack feature; (4) In the trajectory fitting
stage, the Hough space transformation is combined with the K-Means clustering algorithm,
which greatly eliminated the generation of redundant trajectories and improved the exe-
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cution efficiency of the algorithm. Finally, through the simulation and fitting verification
of the terminal algorithm and the actual scene verification of the experimental prototype,
the robustness, efficiency and accuracy of the algorithm are comprehensively tested. In the
future, a crack trajectory fitting algorithm that is more efficient and more suitable for real
road repair application scenarios will be designed and implemented for complex network
crack images and diversified noise backgrounds.
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