Time Domain Analysis of NB-IoT Signals
Abstract
:1. Introduction
2. NB-IoT: Radio Interface
- In-band mode: NB-IoT signal occupies one PRB within the LTE signal bandwidth.
- Guard-band mode: the NB-IoT signal occupies one of the PRBs within the unused guard band in the LTE bandwidth.
- Stand-alone mode: the NB-IoT signal occupies the spectrum released by the GSM. In this case, the NB-IoT signal still uses 180 kHz of the 200 kHz assigned to the GSM carrier, with 10 kHz of guard band on both sides of the spectrum.
- the NPBCH channel is transmitted on subframe # 0, typically on symbols # 3 ÷ 13
- the NPSS signal is transmitted on subcarriers # 0 ÷ 10 of subframe # 5, and typically on symbols # 3 ÷ 13
- the NSSS signal is transmitted on subframe # 9 of even frames only, typically on symbols # 3 ÷ 13
3. Italian Technical Standard CEI 211-7/E: Extrapolations Techniques
4. Materials and Methods
5. Results
5.1. Time Domain Analysis of NB-IoT Subcarriers
5.2. Comparison between Power Measurements of NRS in Time and Code Domains
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Internet of Things Forecast, Ericsson Mobility Report; Ericsson: Stockholm, Sweden, 2016.
- Patel, K.K.; Patel, S.M. Internet of Things-IOT: Definition, Characteristics, Architecture, Enabling Technologies, Application & Future Challenges. Int. J. Eng. Sci. Comput. 2016, 6, 6122–6131. [Google Scholar] [CrossRef]
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef]
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun. Surv. Tutor. 2017, 19, 855–873. [Google Scholar] [CrossRef]
- Sinha, R.S.; Wei, Y.; Hwang, S. A survey on LPWA technology: LoRa and NB-IoT. ICT Express 2017, 3, 14–21. [Google Scholar] [CrossRef]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Ikpehai, A.; Adebisi, B.; Rabie, K.M.; Anoh, K.; Ande, R.E.; Hammoudeh, M.; Gacanin, H.; Mbanaso, U.M. Low-Power Wide Area Network Technologies for Internet-of-Things: A Comparative Review. IEEE Internet Things J. 2019, 6, 2225–2240. [Google Scholar] [CrossRef]
- Chaudari, B.S.; Zennaro, M.; Borkar, S. LPWAN Technologies: Emerging Application Characteristics, Requirements, and Design Considerations. Future Internet 2020, 12, 46. [Google Scholar] [CrossRef]
- Rastogi, E.; Saxena, N.; Roy, A.; Shin, D.R. Narrowband Internet of Things: A Comprehensive Study. Comput. Netw. 2020, 173, 107209. [Google Scholar] [CrossRef]
- Buurman, B.; Kamruzzaman, J.; Karmakar, G.; Islam, S. Low-Power Wide-Area Networks: Design Goals, Architecture, Suitability to Use Cases and Research Challenges. IEEE Access 2020, 8, 17179–17220. [Google Scholar] [CrossRef]
- Migabo, E.M.; Djouani, K.; Kurien, A.M. The Narrowband Internet of Things (NB-IoT) Resources Management Performance State of Art, Challenges, and Opportunities. IEEE Access 2020, 8, 97658–97675. [Google Scholar] [CrossRef]
- Ogbodo, E.U.; Abu-Mahfouz, A.M.; Kurien, A.M. A Survey on 5G and LPWAN-IoT for Improved Smart Cities and Remote Area Applications: From the Aspect of Architecture and Security. Sensors 2022, 22, 6313. [Google Scholar] [CrossRef] [PubMed]
- Kanj, M.; Savaux, V.; Le Guen, M. A Tutorial on NB-IoT Physical Layer Design, Communications Surveys and Tutorials. IEEE Commun. Soc. 2020, 22, 2408–2446. Available online: https://hal.science/hal-02952155 (accessed on 24 May 2021).
- Technical Standard 211-7/E; Guide for the Measurement and the Evaluation of Electromagnetic Fields in the Frequency Range 10 kHz–300 GHz, with Reference to Human Exposure. Annex E: Measurement of the Electromagnetic Field from Base Stations for Mobile Communication Systems (2G, 3G, 4G, 5G). Comitato Elettrotecnico Italiano: Milan, Italy, 2019.
- Physical Channels and Modulation (Release 13, v13.9.0). Technical Report, 3GPP; 3GPP TS 36.211; 3GPP: Alpes-Maritimes, France, 2018.
- User Equipment (UE) Radio Transmission and Reception (Release 13, v13.9.0). Technical Report, 3GPP; 3GPP TS 36.101; 3GPP: Alpes-Maritimes, France, 2017.
- Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio Transmission and Reception (Release 13, v13.9.0). Technical Report, 3GPP; 3GPP TS 136.104, LTE; 3GPP: Alpes-Maritimes, France, 2017.
- Physical Layer Procedures (Release 13, v13.9.0). Technical Report, 3GPP; 3GPP TS 36.213; 3GPP: Alpes-Maritimes, France, 2018.
- User Equipment (UE) Radio Access Capabilities (Release 13, v13.9.0). Technical Report, 3GPP; 3GPP TS 36.306; 3GPP: Alpes-Maritimes, France, 2018.
- Physical Layer Measurements (Release 13, v13.5.0). Technical Report, 3GPP; 3GPP TS 36.214; 3GPP TS 36.306; 3GPP: Alpes-Maritimes, France, 2017.
- Radio Resource Control (RRC): Protocol Specification (Release 13, v13.9.1). Technical Report, 3GPP; 3GPP TS 36.331; 3GPP: Alpes-Maritimes, France, 2018.
- Multiplexing and Channel Coding (Release 13, v13.8.0). Technical Report, 3GPP; 3GPP TS 36.212; 3GPP TS 36.306; 3GPP: Alpes-Maritimes, France, 2018.
- Physical Channels and Modulation (Release 14,v14.9.0). Technical Report, 3GPP; 3GPP TS 36.211; 3GPP: Alpes-Maritimes, France, 2019.
- User Equipment (UE) Radio Transmission and Reception (Release 14, v14.9.0). Technical Report, 3GPP; 3GPP TS 36.101; 3GPP: Alpes-Maritimes, France, 2019.
- Physical Layer Procedures (Release 14, v14.9.0). Technical Report, 3GPP; 3GPP TS 36.213; 3GPP: Alpes-Maritimes, France, 2019.
- Radio Resource Control (RRC): Protocol Specification (Release 14, v14.9.0). Technical Report, 3GPP; 3GPP TS 36.331; 3GPP: Alpes-Maritimes, France, 2019.
- Physical Channels and Modulation (Release 15,v15.9.0). Technical Report, 3GPP; 3GPP TS 36.211; 3GPP TS 36.331; 3GPP: Alpes-Maritimes, France, 2019.
- Physical Layer Procedures (Release 15, v15.9.0). Technical Report, 3GPP; 3GPP TS 36.213; 3GPP: Alpes-Maritimes, France, 2019.
- Radio Resource Control (RRC): Protocol Specification (Release 15, v15.9.0). Technical Report, 3GPP; 3GPP TS 36.331; 3GPP: Alpes-Maritimes, France, 2020.
- GSM Association. NB-IoT Deployment Guide to Basic Feature Set Requirements; GSM Association: London, UK, 2019; Available online: https://www.gsma.com/iot/wp-content/uploads/2019/07/201906-GSMA-NB-IoT-Deployment-Guide-v3.pdf (accessed on 24 May 2021).
- Wang, Y.P.E.; Lin, X.; Adhikary, A.; Grovlen, A.; Sui, Y.; Blankenship, Y.; Bergman, J.; Razaghi, H.S. A primer on 3GPP narrowband Internet of Things. IEEE Commun. Mag. 2017, 55, 117–123. [Google Scholar] [CrossRef]
- 4G/LTE-LTE NB. Available online: http://www.sharetechnote.com/html/Handbook_LTE_NB_FrameStructure_DL.html (accessed on 24 May 2021).
- Ratasuk, R.; Tan, J.; Mangalvedhe, N.; Ng, M.H.; Ghosh, A. Analysis of NB-IoT Deployment in LTE Guard-Band. In Proceedings of the IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Schlienz, J.; Raddino, D. Narrowband Internet of Things Whitepaper; Application Note 1MA266_2e; Rohde & Schwarz: Munich, Germany, 2019. [Google Scholar]
- Pavoncello, S.; Franci, D.; Grillo, E.; Coltellacci, S. NB IoT: Valutazione preliminare del campo elettromagnetico irradiato ed impatto sui modelli estrapolativi proposti nella guida tecnica CEI 211-7/E. In Proceedings of the XXXVII Congresso Nazionale AIRP di Radioprotezione, Bergamo, Italy, 17–19 October 2018. [Google Scholar]
LTE Bandwidth | 3 MHz | 5 MHz | 10 MHz | 15 MHz | 20 MHz |
---|---|---|---|---|---|
PRB indices | 2, 12 | 2, 7, 17, 22 | 4, 9, 14, 19, 30, 35, 40, 45 | 2, 7, 12, 17, 22, 27, 32, 42, 47, 52, 57, 62, 67, 72 | 4, 9, 14, 19, 24, 29, 34, 39, 44, 55, 60, 65, 70, 75, 80, 85, 90, 95 |
LTE Bandwidth | 5 MHz | 10 MHz | 15 MHz | 20 MHz |
---|---|---|---|---|
NB-IoT anchor carrier offset with respect to LTE carrier | ±2392.5 ±2407.5 | ±4597.5 ±4702.5 ±4792.5 ±4807.5 ±4897.5 | ±6892.5 ±6907.5 ±6997.5 ±7102.5 ±7192.5 ±7207.5 ± 7297.5 ±7402.5 | ±9097.5 ±9202.5 ±9292.5 ± 9307.5 ±9397.5 ±9502.5 ±9592.5 ±9607.5 ±9697.5 ±9802.5 ±9892.5 ±9907.5 |
Link | Type | Name | Function |
---|---|---|---|
Uplink | Channels | NPUSCH | Transmission of user data/control informations |
NPRACH | Transmission of preambles for access requests | ||
Signals | DMRS | Channel estimation | |
Downlink | Channels | NPBCH | Transmission of MIB |
NPDCCH | Transmission of control/scheduling informations | ||
NPDSCH | Transmission of data | ||
Signals | NPSS | Time and frequency synchronization | |
NSSS | Cell ID detection | ||
NRS | Channel estimation and signal strength measurements | ||
NPRS | Positioning service |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barellini, A.; Bracci, B.; Licitra, G.; Silvi, A.M. Time Domain Analysis of NB-IoT Signals. Appl. Sci. 2023, 13, 2242. https://doi.org/10.3390/app13042242
Barellini A, Bracci B, Licitra G, Silvi AM. Time Domain Analysis of NB-IoT Signals. Applied Sciences. 2023; 13(4):2242. https://doi.org/10.3390/app13042242
Chicago/Turabian StyleBarellini, Andrea, Barbara Bracci, Gaetano Licitra, and Alberto Maria Silvi. 2023. "Time Domain Analysis of NB-IoT Signals" Applied Sciences 13, no. 4: 2242. https://doi.org/10.3390/app13042242
APA StyleBarellini, A., Bracci, B., Licitra, G., & Silvi, A. M. (2023). Time Domain Analysis of NB-IoT Signals. Applied Sciences, 13(4), 2242. https://doi.org/10.3390/app13042242