Size Preference of Live Fish Prey in the Pellet-Consuming Pikeperch
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Experimental Fish and Environment
2.3. Behavior Testing
2.4. Statistical Analysis
3. Results
3.1. Foraging Clusters and Their Influence on Patterns of Predatory Behavior
3.2. The Effect of Foraging Clusters and Predation Success on the Number of Attempts for Prey of Different Sizes within the Tests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Policar, T.; Stejskal, V.; Kristan, J.; Podhorec, P.; Svinger, V.; Blaha, M. The effect of fish size and stocking density on the weaning success of pond-cultured pikeperch Sander lucioperca L. juveniles. Aquacult. Int. 2013, 21, 869–882. [Google Scholar] [CrossRef]
- Rodger, H.D.; Phelps, N.B.D. Percid fish health and disease. In Biology and Culture of Percid Fishes; Springer: Dordrecht, The Netherlands, 2015; pp. 799–813. [Google Scholar]
- Policar, T.; Blecha, M.; Křišťan, J.; Mráz, J.; Velíšek, J.; Stará, A.; Stejskal, V.; Malinovskyi, O.; Svačina, P.; Samarin, A.M. Comparison of production efficiency and quality of differently cultured pikeperch (Sander lucioperca L.) juveniles as a valuable product for ongrowing culture. Aquacult. Int. 2016, 24, 1607–1626. [Google Scholar] [CrossRef]
- Ende, S.S.; Larceva, E.; Bögner, M.; Lugert, V.; Slater, M.J.; Henjes, J. Low turbidity in recirculating aquaculture systems (RAS) reduces feeding behavior and increases stress-related physiological parameters in pikeperch (Sander lucioperca) during grow-out. Transl. Anim. Sci. 2021, 5, txab223. [Google Scholar] [CrossRef] [PubMed]
- Näslund, J. Reared to become wild-like: Addressing behavioral and cognitive deficits in cultured aquatic animals destined for stocking into natural environments—A critical review. Bull. Mar. Sci. 2021, 97, 489–538. [Google Scholar] [CrossRef]
- Blecha, M.; Kristan, J.; Policar, T. Adaptation of intensively reared pikeperch (Sander lucioperca) juveniles to pond culture and subsequent re-adaptation to a recirculation aquaculture system. Turk. J. Fish. Aquat. Sci. 2016, 16, 15–18. [Google Scholar] [CrossRef]
- Zakęś, Z.; Szczepkowski, M.; Szczepkowska, B.; Kowalska, A.; Kapusta, A.; Jarmołowicz, S.; Piotrowska, I.; Kozłowski, M.; Partyka, K.; Wunderlich, K.; et al. Effects of stocking earthen ponds with pikeperch (Sander lucioperca (L.)) fingerlings reared in recirculating aquaculture systems-effects of Fish size and the presence of predators. Bulg. J. Agric. Sci. 2015, 21 (Suppl. S1), 5–11. [Google Scholar]
- Salena, M.G.; Turko, A.J.; Singh, A.; Pathak, A.; Hughes, E.; Brown, C.; Balshine, S. Understanding fish cognition: A review and appraisal of current practices. Anim. Cogn. 2021, 24, 395–406. [Google Scholar] [CrossRef]
- Molnár, T.; Csuvár, A.; Benedek, I.; Molnár, M.; Kabai, P. Domestication affects exploratory behaviour of pikeperch (Sander lucioperca L.) during the transition to pelleted food. PLoS One 2018, 13, e0196118. [Google Scholar] [CrossRef]
- Ahlbeck, I.; Holliland, P.B. Rearing environment affects important life skills in pikeperch (Sander lucioperca). Boreal. Environ. Res. 2012, 17, 291–304. [Google Scholar]
- Feiner, Z.S.; Höök, T.O. Environmental biology of Percid fishes. In Biology and Culture of Percid Fishes; Springer: Dordrecht, The Netherlands, 2015; pp. 799–813. [Google Scholar]
- Specziár, A. Size-dependent prey selection in piscivorous pikeperch Sander lucioperca and Volga pikeperch Sander volgensis shaped by bimodal prey size distribution. J. Fish Biol. 2011, 79, 1895–1917. [Google Scholar] [CrossRef]
- Braithwaite, V.A.; Ahlbeck Bergendahl, I. The Effects of Early Life Experience on Behavioural Development in Captive Fish Species. In The Welfare of Fish; Kristiansen, T., Fernö, A., Pavlidis, M., van de Vis, H., Eds.; Animal Welfare Book Series; Springer: Cham, Switzerland, 2020; pp. 111–128. [Google Scholar] [CrossRef]
- Conrad, J.L.; Weinersmith, K.L.; Brodin, T.; Saltz, J.B.; Sih, A. Behavioural syndromes in fishes: A review with implications for ecology and fisheries management. J. Fish Biol. 2011, 78, 395–435. [Google Scholar] [CrossRef] [PubMed]
- Magnhagen, C. Behaviour of Percid fishes in the wild and its relevance for culture. In Biology and Culture of Percid Fishes; Springer: Dordrecht, The Netherlands, 2015; pp. 799–813. [Google Scholar]
- Berlinghieri, F.; Panizzon, P.; Penry-Williams, I.L.; Brown, C. Laterality and fish welfare—A review. Appl. Anim. Behav. Sci. 2021, 236, 105239. [Google Scholar] [CrossRef]
- Brown, C.; Gardner, C.; Braithwaite, V.A. Population variation in lateralized eye use in the poeciliid Brachyraphis episcopi. Proc. R. Soc. B Biol. Sci. 2004, 271 (Suppl. S6), S455–S457. [Google Scholar] [CrossRef] [PubMed]
- Arechavala-Lopez, P.; Cabrera-Álvarez, M.J.; Maia, C.M.; Saraiva, J.L. Environmental enrichment in fish aquaculture: A review of fundamental and practical aspects. Rev. Aquac. 2022, 14, 704–728. [Google Scholar] [CrossRef]
- Thomas, M.; Reynaud, J.G.; Ledoré, Y.; Pasquet, A.; Lecocq, T. Enrichment in a Fish Polyculture: Does it Affect Fish Behaviour and Development of Only One Species or Both? Appl. Sci. 2022, 12, 3674. [Google Scholar] [CrossRef]
- Thomas, M.; Lecocq, T.; Abregal, C.; Nahon, S.; Aubin, J.; Jaeger, C.; Wilfart, A.; Schaeffer, L.; Ledoré, Y.; Puillet, L.; et al. The effects of polyculture on behaviour and production of pikeperch in recirculation systems. Aquac. Rep. 2020, 17, 100333. [Google Scholar] [CrossRef]
- Lepič, P.; Buřič, M.; Hajíček, J.; Kozák, P. Adaptation to pelleted feed in pikeperch fingerlings: Learning from the trainer fish over gradual adaptation from natural food. Aquat. Living Resour. 2017, 30, 8. [Google Scholar] [CrossRef]
- Pěnka, T.; Malinovskyi, O.; Imentai, A.; Kolářová, J.; Kučera, V.; Policar, T. Evaluation of different feeding frequencies in RAS-based juvenile pikeperch (Sander lucioperca) aquaculture. Aquaculture 2023, 562, 738815. [Google Scholar] [CrossRef]
- Turesson, H.; Brönmark, C. Foraging behaviour and capture success in perch, pikeperch and pike and the effects of prey density. J. Fish Biol. 2004, 65, 363–375. [Google Scholar] [CrossRef]
- Turesson, H.; Persson, A.; Brönmark, C. Prey size selection in piscivorous pikeperch (Stizostedion lucioperca) includes active prey choice. Ecol. Freshw. Fish 2002, 11, 223–233. [Google Scholar] [CrossRef]
- Colchen, T.; Dias, A.; Gisbert, E.; Fontaine, P.; Pasquet, A. The onset of piscivory in a freshwater fish species: Analysis of behavioural and physiological traits. J. Fish Biol. 2020, 96, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Malinovskyi, O.; Veselý, L.; Yanes-Roca, C.; Policar, T. The effect of water temperature, prey availability and presence of conspecifics on prey consumption of pikeperch (Sander lucioperca). Czech J. Anim. Sci. 2022, 67, 465–473. [Google Scholar] [CrossRef]
- Molnár, T.; Urbányi, B.; Benedek, I. Impact of exploration behavior, aptitude for pellet consumption, and the predation practice on the performance in consecutive live prey foraging tests in a piscivorous species. Anim. Cogn. 2023. accepted. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.; Davidson, T.; Laland, K. Environmental enrichment and prior experience of live prey improve foraging behaviour in hatchery-reared Atlantic salmon. J. Fish Biol. 2003, 63, 187–196. [Google Scholar] [CrossRef]
- Brown, C.; Markula, A.; Laland, K. Social learning of prey location in hatchery-reared Atlantic salmon. J. Fish Biol. 2003, 63, 738–745. [Google Scholar] [CrossRef]
- Diana, M.J.; Diffin, B.J.; Einfalt, L.M.; Wahl, D.H. Effect of rearing experience on the survival, growth, and behavior of hatchery-reared largemouth bass. N. Am. J. Fish. Manag. 2018, 38, 794–802. [Google Scholar] [CrossRef]
- Reid, A.L.; Seebacher, F.; Ward, A.J.W. Learning to hunt: The role of experience in predator success. Behaviour 2010, 147, 223–233. [Google Scholar] [CrossRef]
- Ellis, T.E.; Hughes, R.N.; Howell, B.R. Artificial dietary regime may impair subsequent foraging behaviour of hatchery-reared turbot released into the natural environment. J. Fish Biol. 2002, 61, 252–264. [Google Scholar] [CrossRef]
- Czerniawski, R.; Domagała, J.; Krepski, T.; Pilecka-Rapacz, M. The effect of the live diet given to hatchery-reared fry of the European grayling (Thymallus thymallus) on their survival and growth in the wild. Turk. J. Fish. Aquat. Sci. 2015, 15, 633–638. [Google Scholar] [CrossRef]
- Szendrey, T.A.; Wahl, D.H. Effect of feeding experience on growth, vulnerability to predation, and survival of esocids. N. Am. J. Fish. Manag. 1995, 15, 610–620. [Google Scholar] [CrossRef]
- Wahl, D.H.; Einfalt, L.M.; Hooe, M.L. Effect of experience with piscivory on foraging behavior and growth of walleyes. Trans. Am. Fish. Soc. 1995, 124, 756–763. [Google Scholar] [CrossRef]
- Reiriz, L.; Nicieza, A.G.; Braña, F. Prey selection by experienced and naive juvenile Atlantic salmon. J. Fish Biol. 1998, 53, 100–114. [Google Scholar] [CrossRef]
- Wintzer, A.P.; Motta, P.J. A comparison of prey capture kinematics in hatchery and wild Micropterus salmoides floridanus: Effects of ontogeny and experience. J. Fish Biol. 2005, 67, 409–427. [Google Scholar] [CrossRef]
- Caldentey, P.; Brennan, N.P.; Heimann, T.; Gardiner, J.M. Prey capture kinematics of wild and hatchery juvenile common snook Centropomus undecimalis. Bull. Mar. Sci. 2021, 97, 539–558. [Google Scholar] [CrossRef]
- Gill, A.B. The dynamics of prey choice in fish: The importance of prey size and satiation. J. Fish Biol. 2003, 63, 105–116. [Google Scholar] [CrossRef]
- Dörner, H.; Hülsmann, S.; Hölker, F.; Skov, C.; Wagner, A. Size-dependent predator–prey relationships between pikeperch and their prey fish. Ecol. Freshw. Fish 2007, 16, 307–314. [Google Scholar] [CrossRef]
- SPSS Inc. Released SPSS Statistics for Windows; Version 17.0; SPSS Inc.: Chicago, IL, USA, 2008. [Google Scholar]
- Braithwaite, V.A. Cognitive ability in fish. In Fish Physiology: Behaviour and Physiology of Fish; Sloman, K.A., Balshine, S., Wilson, R.W., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2006; pp. 1–29. [Google Scholar]
- Krause, J.; Loader, S.P.; McDermott, J.; Ruxton, G.D. Refuge use by fish as a function of body length–related metabolic expenditure and predation risks. Proc. R. Soc. Lond B Biol. Sci. 1998, 265, 2373–2379. [Google Scholar] [CrossRef]
- Rubio-Gracia, F.; García-Berthou, E.; Guasch, H.; Zamora, L.; Vila-Gispert, A. Size-related effects and the influence of metabolic traits and morphology on swimming performance in fish. Curr. Zool. 2020, 66, 493–503. [Google Scholar] [CrossRef]
- Toscano, B.J.; Gownaris, N.J.; Heerhartz, S.M.; Monaco, C.J. Personality, foraging behavior and specialization: Integrating behavioral and food web ecology at the individual level. Oecologia 2016, 182, 55–69. [Google Scholar] [CrossRef]
- Langerhans, R.B.; Goins, T.R.; Stemp, K.M.; Riesch, R.; Araujo, M.S.; Layman, C.A. Consuming costly prey: Optimal foraging and the role of compensatory growth. Front. Ecol. Evol. 2021, 8, 603387. [Google Scholar] [CrossRef]
- Dill, L.M. Adaptive flexibility in the foraging behavior of fishes. Can. J. Fish. Aquat. Sci. 1983, 40, 398–408. [Google Scholar] [CrossRef]
Source | Sum of Squares | df | Mean Square | F | Significance | |
---|---|---|---|---|---|---|
Intercept | Hypothesis | 30234735.979 | 1 | 30234735.979 | 73.643 | <0.001 |
Error | 12799195.988 | 31.175 | 410559.769 | |||
Cluster | Hypothesis | 2883535.320 | 1 | 2883535.320 | 4.778 | 0.045 |
Error | 9252524.205 | 15.331 | 603512.348 | |||
ID | Hypothesis | 12606404.223 | 28 | 450228.722 | 0.693 | 0.803 |
Error | 9489677.867 | 14.616 | 649261.982 | |||
Cluster × ID | Hypothesis | 9353114.714 | 15 | 623540.981 | 4.047 | 0.001 |
Error | 4159963.083 | 27 | 154072.707 |
Predation | |||||
---|---|---|---|---|---|
Unsuccessful | Small | Medium | Large | Total | |
Cluster 1 | 63 | 20 | 15 | 8 | 106 |
Cluster 2 | 17 | 3 | 12 | 14 | 46 |
Total | 80 | 23 | 27 | 22 | 152 |
Captured Prey | Attempted Fish | Number of Tests with an Attempt of | Total Attempts | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
Small | Small | 0 | 10 | 10 | 2 | 0 | 0 | 0 | 1 | 43 |
Medium | 17 | 6 | 2 | 0 | 1 | 1 | 0 | 0 | 19 | |
Large | 14 | 3 | 2 | 2 | 1 | 0 | 0 | 0 | 17 | |
Total | 31 | 19 | 14 | 4 | 2 | 1 | 0 | 1 | 79 | |
Medium | Small | 17 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 7 |
Medium | 0 | 15 | 4 | 3 | 3 | 0 | 2 | 0 | 56 | |
Large | 12 | 6 | 4 | 0 | 0 | 0 | 0 | 0 | 14 | |
Total | 29 | 26 | 9 | 3 | 3 | 0 | 2 | 0 | 77 | |
Large | Small | 14 | 3 | 4 | 2 | 0 | 0 | 0 | 0 | 17 |
Medium | 9 | 10 | 4 | 1 | 1 | 2 | 0 | 0 | 35 | |
Large | 0 | 7 | 2 | 7 | 4 | 0 | 1 | 1 | 61 | |
Total | 23 | 20 | 10 | 10 | 5 | 2 | 1 | 1 | 113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedek, I.; Molnár, T. Size Preference of Live Fish Prey in the Pellet-Consuming Pikeperch. Appl. Sci. 2023, 13, 2259. https://doi.org/10.3390/app13042259
Benedek I, Molnár T. Size Preference of Live Fish Prey in the Pellet-Consuming Pikeperch. Applied Sciences. 2023; 13(4):2259. https://doi.org/10.3390/app13042259
Chicago/Turabian StyleBenedek, Ildikó, and Tamás Molnár. 2023. "Size Preference of Live Fish Prey in the Pellet-Consuming Pikeperch" Applied Sciences 13, no. 4: 2259. https://doi.org/10.3390/app13042259
APA StyleBenedek, I., & Molnár, T. (2023). Size Preference of Live Fish Prey in the Pellet-Consuming Pikeperch. Applied Sciences, 13(4), 2259. https://doi.org/10.3390/app13042259