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Abstract: Transformer models have achieved great results in the field of computer vision over the
past 2 years, drawing attention from within the field of remote sensing. However, there are still
relatively few studies on this model in the field of remote sensing. Which method is more suitable for
remote-sensing segmentation? In particular, how do different transformer models perform in the
face of high-spatial resolution and the multispectral resolution of remote-sensing images? To explore
these questions, this paper presents a comprehensive comparative analysis of three mainstream
transformer models, including the segmentation transformer (SETRnet), SwinUnet, and TransUnet,
by evaluating three aspects: a visual analysis of feature-segmentation results, accuracy, and training
time. The experimental results show that the transformer structure has obvious advantages for
the feature-extraction ability of large-scale remote-sensing data sets and ground objects, but the
segmentation performance of different transfer structures in different scales of remote-sensing data
sets is also very different. SwinUnet exhibits better global semantic interaction and pixel-level
segmentation prediction on the large-scale Potsdam data set, and the SwinUnet model has the highest
accuracy metrics for KAPPA, MIoU, and OA in the Potsdam data set, at 76.47%, 63.62%, and 85.01%,
respectively. TransUnet has better segmentation results in the small-scale Vaihingen data set, and
the three accuracy metrics of KAPPA, MIoU, and OA are the highest, at 80.54%, 56.25%, and 85.55%,
respectively. TransUnet is better able to handle the edges and details of feature segmentation thanks
to the network structure together built by its transformer and convolutional neural networks (CNNs).
Therefore, TransUnet segmentation accuracy is higher when using a small-scale Vaihingen data set.
Compared with SwinUnet and TransUnet, the segmentation performance of SETRnet in different
scales of remote-sensing data sets is not ideal, so SETRnet is not suitable for the research task of
remote-sensing image segmentation. In addition, this paper discusses the reasons for the performance
differences between transformer models and discusses the differences between transformer models
and CNN. This study further promotes the application of transformer models in remote-sensing image
segmentation, improves the understanding of transformer models, and helps relevant researchers
to select a more appropriate transformer model or model improvement method for remote-sensing
image segmentation.

Keywords: transformer; multihead attention; remote-sensing image segmentation; deep learning;
SwinUner; TransUnet; SETRnet; visual classification

1. Introduction

The semantic segmentation of images using computers has a wide range of application
scenarios in remote sensing, medicine [1], agriculture [2,3], and other fields. The semantic
segmentation of remote-sensing images is an important part of processing and analyzing
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remote-sensing data and is one of the most widely used areas of remote-sensing appli-
cations [4–6]. The accurate and rapid acquisition of remote-sensing image classification
is important for urban management, resource investigation, environmental monitoring,
natural disaster assessment, and military reconnaissance. This is because it provides man-
agers with a source of information for more-robust decision-making [7,8]. For example,
Misbah et al., used remote sensing to detect nitrogen, phosphorus, and potassium elements
in widely grown crops in Africa for the purpose of protecting the environment while
increasing food production [9]. Sataer et al., analyzed the remotely sensed images of Miami
Park cliffs at the edge of East Lake Michigan to study the factors of park cliff deformation
and prevent disasters from cliff landslides [10]. However, the rich and complex features in
remote-sensing images have been a challenge for segmentation.

Early semantic segmentation methods rely mainly on manual visual interpretation
to classify remote-sensing images, which not only is time-consuming and laborious but
also relies heavily on experience for classification accuracy. As the resolution of remote-
sensing images continues to develop, image-element-based and object-oriented semantic
segmentation methods are becoming widely used [11]. The image-element-based method
makes full use of mainly the spectral reflection information of remotely sensed features
for classification, but it lacks a consideration of the relationship between adjacent image
elements [12]. Object-oriented methods are used for classification in the framework of
object-based image analysis [13], and the problems with such methods are that they are
prone to noise, and the classification scale of different features is difficult to determine [14].
Owing to the improvement of computer technology, machine learning has also been
applied to the research of remote-sensing image segmentation [15]. Different from the
previous methods, machine learning extracts a large number of remote-sensing image
features by different classifiers, further reducing the problem of using a human interference.
The main methods include decision trees, support vector machines (SVMs), and random
forests (RF) [16]. For example, Ujjwal et al., used a large number of different advanced
support vector machines to fully learn previously unlabelable data with a view to providing
guidance for the ensuing research on remote-sensing applications [17]. Du et al., used two
effective methods, random forest and rotation forest, for classification in order to fully learn
the texture features of polarimetric synthetic aperture radar remote-sensing images [18].
Although machine learning has significantly improved in efficiency and accuracy, this
improvement applies only to its ability to extract the shallow-feature information of remote-
sensing images. The efficiency and the accuracy of classification are still low when faced
with complex remote-sensing images [19,20].

Deep-learning methods have powerful and fast modeling capabilities that can improve
segmentation by using the spectral information and texture features of remote-sensing
images [21]. In remote-sensing image semantic segmentation, using convolutional neural
networks (CNNs) is a popular deep-learning method that has significantly better image
semantic segmentation capability than previous methods and has been widely used in both
academic and industrial fields [22]. Thanks to its excellent ability to express high-level
semantic features, CNN and its derivatives have shown potential in many image semantic
segmentation tasks. For example, the feature pyramid module and the attention-feature-
aggregation module are combined to improve the feature-learning capability of a CNN
and to accomplish the task of the semantic segmentation of high-resolution remote-sensing
images [23]. The segmentation of building data from high-resolution imagery and LiDAR
data use gated residual refinement networks [24], build a multichannel deep convolutional
neural network to learn remote-sensing information in different bands, and further improve
the segmentation of urban land-use features [25]. It can be seen that CNN often performs
semantic segmentation in remote-sensing images with high spatial and spectral resolution,
and it has achieved remarkable results. However, CNNs tend to perform generally in
the face of different scales of feature learning, and many improved methods have been
proposed, such as the spatial pyramid pooling model, the jump link structure, and the
multiscale feature fusion model [26–28]. However, the segmentation results still have issues,



Appl. Sci. 2023, 13, 2261 3 of 21

which are due to the inability of CNNs to fully learn contextual semantic information and
retain more spatial features [29].

Recently, the transformer model has achieved excellence in the field of semantic seg-
mentation. Compared with CNNs, this module has a more outstanding ability to learn
global semantic information [30,31]. The transformer model was originally used, and
achieved remarkable results, in the field of natural language processing [32]. Researchers
began to apply the transformer model to the study of image semantic segmentation. The
vision transformer is the first example of the transformer model applied to image classifi-
cation. Although the researchers found that the classification accuracy of the transformer
method was significantly better than that of the CNN method, it ultimately did not com-
plete the image segmentation task. The segmentation transformer (SETR) is an improved
model based on the vision transformer, and it has been applied to, and has performed well
in, segmentation tasks [33]. Although SETR proves that the transformer is competent for
the image semantic segmentation task, it comes at an expensive cost. Because of this, the
Swin Transformer uses the hierarchical transformer model to obtain multiscale features
and effectively reduce computational effort [34]. TransUnet learns the features of the input
image with CNNs and then inputs the feature-learning results into the transformer model,
effectively combining the advantages of both the CNNs and transformer models [35].

Transformers have been widely used in image semantic segmentation tasks. However,
their use in the field of remote-sensing images can be improved. Key questions include the
following: (1) Which method is more suitable for remote-sensing segmentation? (2) How
well does the transformer perform in remote-sensing images at different scales? (3) How
do different transformer models perform in the face of high-spatial resolution and the
multispectral resolution of remote-sensing images? To address these issues, three-channel
and four-channel remote-sensing images are used as the data set in this study, in which the
NIR band data are added. By comparing different transformer models from the perspective
of segmentation accuracy and training time, the results of this study are beneficial to the
selection and understanding of transformer models and provide a reference for future
researchers with a view to promoting the development of fine segmentation tasks for
remote-sensing images.

2. Methods
2.1. Transformer Model

The transformer model, a network architecture first proposed by Vaswani et al., in
2017 [36], is a network that eschews recursion and convolution and is based entirely on
attention mechanisms, as shown in Figure 1.

Specifically, the transformer model is still a network structure from encoder to de-
coder, but with the abandonment of recursion and convolution, a multihead self-attention
mechanism is added to the encoder and decoder modules, respectively. The multihead
self-attention mechanism is a key component of the transformer model in that the multi-
head attention mechanism is able to capture remote dependencies between elements and
to encode interactions between sequential tokens. As shown in Figure 2b, the multihead
self-attention mechanism allows the model to jointly attend to information from different
subspaces at different locations. The objective of the multihead attention mechanism is to
simultaneously perform multiple parallel attention functions. A single attention (Figure 2a)
function can be represented as a function consisting of a query and a set of keys and values
corresponding to an output, where the query, key, value, and output are all represented as
vectors. The input is composed of a query and key with dimension dk and a value with
dimension dv. The dot product of the query is calculated by using all the keys divided by√

dk, and the weights of the values are obtained by the function. During the calculation,
the attention function of a set of queries is simultaneously computed, which is defined
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as a matrix Q. The keys and values are defined as matrices K and V, respectively, and the
attention function can be expressed as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (1)
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The multihead self-attention module can acquire information from different represen-
tation subspaces at different locations. This cannot be done with single-head attention. The
output of the multihead attention module can be expressed as follows:

MultiHead(Q, K, V) = Concat( head1, . . . , headh)WO (2)

whereheadi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(3)

The multihead self-attention mechanism plays a crucial role in the transformer model
that can not only improve the efficiency of remote-sensing image classification but also
more accurately acquire the global and local features of remote-sensing images. How-
ever, if the network does not contain an attention layer, the model-based network cannot
be implemented unless the network is changed, which defeats the original purpose of
experimenting with high efficiency and accuracy.

2.2. SETRnet (Segmentation Transformer)

The segmentation transformer SETRnet is the first representative model of the vision-
transformer-based semantic segmentation proposed by Zheng et al., in 2021 [33]. The
structure of SETRnet is shown in Figure 3.
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SETRnet abandons the stacked convolutional feature-extraction method in the encoded
layer and instead uses the transformer-only feature-extraction method. In the model, the
images are first sliced, and then all the two-dimensional image slices are considered as a
one-dimensional sequence and fed into the network as a whole. The input one-dimensional
series will become a one-dimensional feature-embedding series. In each layer, the input of
attention consists of a query, key, and value triad computed by Zl−1 ∈ RL×C (where L is
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the sequence length and C is the hidden channel size). The computed query, key, and value
triad can be expressed as follows:

query = Zl−1wQ, key = Zl−1wK, value = Zl−1wV (4)

where WQ, WK, WV ∈ RC×d are the learnable parameters of the 3 linear projection layers
and d is the dimensionality of (query, key, value). Then the attention function of SETRnet
can be expressed as follows:

SA
(

Zl−1
)
= Zl−1 + softmax

(
Zl−1WQ(ZWK)

>
√

d

)(
Zl−1WV

)
(5)

The output of SETRnet’s multihead self-attention (MSA) module is converted by
an multilayer perceptron (MLP) module with residual jumps; the structure is shown
in Figure 4.

Zl = MSA
(

Zl−1
)
+ MLP

(
MSA

(
Zl−1

))
∈ RL×C (6)
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SETRnet’s decoder is designed with three methods, namely plain upsampling (naïve),
progressive upsampling (PUP), and multilevel feature fusion (MLA). SETRnet constructs a
new semantic segmentation model from a new perspective. Compared with the traditional
semantic segmentation model, SETRnet models the global context in each layer of the
encoder by using the transformer as the encoder, which effectively obtains the global context
information and removes the semantic segmentation network’s dependence on convolution.



Appl. Sci. 2023, 13, 2261 7 of 21

2.3. SwinUnet

SwinUnet is a transformer-based network proposed by Cao et al., in 2021 [37]. Swi-
nUnet consists of an encoder, a channel, a decoder, and a jump connection, as shown in
Figure 5.
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Inspired by the Unet network, SwinUnet is designed with a symmetric decoder with
a patch extension layer based on the Swin Transformer. Unlike the traditional multihead
self-attention (MSA), the Swin Transformer module is built based on a shifted window.
Figure 6 shows the structure of the Swin Transformer module, which consists of LayerNorm
(LN) layers, a multihead self-attention module, a residual connection, and a two-layer MLP
with Gaussian error linear units (GELUs) nonlinearity. The window-based multihead self-
attention module (W-MSA) and the translational window-based multihead self-attention
(SW-MSA) module are used in two consecutive Swin Transformer modules, respectively.
For such a modular composition, the continuous Swin Transformer can be expressed
as follows:

ẑl = W −MSA
(

LN
(

zl−1
))

+ zl−1 (7)
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zl = MLP
(

LN
(

ẑl
))

+ ẑl (8)

ẑl+1 = SW −MSA
(

LN
(

zl
))

+ zl (9)

zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1 (10)
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ẑl and zl denote the output of the (S)W-MSA module and the MLP module of the lth
block, respectively. Then the attention function can be expressed as follows:

Attention(Q, K, V) = softmax
(

QKT
√

d
+ B

)
V (11)

where Q, K, and V ∈ RM2×d denote the matrix of queries, keys, and values; M2 and d denote
the number of patches in the window and the dimension of the query or key, respectively;
and B comes from the bias matrix B̂ ∈ R(2M−1)×(2M+1)

.
SwinUnet successfully puts the transformer module into the encoder and decoder, and

together with the jump connection of the Unet network, the SwinUnet network can more
quickly and comprehensively acquire the global and local feature information of images,
avoiding the limitation of the CNN model, which cannot acquire global and long-range
feature information.

2.4. TransUnet

TransUnet is a network proposed by Chen et al., in February 2021 [35]; unlike the
SwinUnet network structure based entirely on the transformer, the encoder in the TransUnet
network does not use a pure transformer but instead uses a hybrid CNN-transformer model.
The network structure is shown in Figure 7. TransUnet is a network proposed by Chen
et al., in February 2021 [35]; unlike the SwinUnet network structure based entirely on the
transformer, the encoder in the TransUnet network does not use a pure transformer but
instead uses a hybrid CNN-transformer model. The network structure is shown in Figure 7.

TransUnet first uses CNN as a feature extractor to generate the input feature maps.
This is when the patch-embedding module extracts 1 × 1 patches from the feature map
generated by the CNN, rather than from the original map. The transformer encoder in the
TransUnet network consists of the L-layer MSA and MLP modules (as shown in Figure 8),
so the output of the lth layer can be expressed as follows:

z′` = MSA(LN(z`−1)) + z`−1 (12)

z` = MLP
(
LN
(
z′`
))

+ z′` (13)

where LN(·) denotes the layer normalization operator and z` indicates the encoded image.
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By combining the CNN and transformer into the encoder, TransUnet not only avoids
the limitations of the CNN method in acquiring remote relational features, thanks to
convolutional operations, but also avoids the problem of coarse segmentation results,
thanks to the transformer’s excessive focus on modeling between global contexts.

2.5. Accuracy Comparison of Models

In order to verify which transformer model is more suitable for remote-sensing image
segmentation, three aspects of the segmentation results, the segmentation accuracy, and
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the training time of three transformer models in two data sets, namely the Vaihingen data
set and Potsdam data set, were compared.

2.6. Training Time Comparison of Models

For the consumption of training time for the three transformer models, this study will
compare the analysis on the basis of the training time of the three models in two data sets,
namely the Vaihingen data set and Potsdam data set (Tables 1 and 2), with time in seconds.

3. Experiment and Results
3.1. Experimental Setup

In this study, the network is constructed using the Pytorch framework and Python
language, on an Intel(R) Xeon(R) Gold 5218 CPU with a GeForce RTX 2080Ti GPU. The
Adam optimizer is used to optimize the training process; the learning rate of each model
is the same 3 × 10−4; and the number of iterations is set to 40. The learning rate of each
model is the same 3 × 10−4; the number of epochs is set to 40; and the image size is set to
224 × 224.

3.1.1. Data Set

In order to better compare the segmentation effect of transformers on remote-sensing
data sets at different scales, the experimental data were obtained from the state-of-the-art
airborne image data sets Vaihingen data set and Potsdam data set, provided by ISPRS. The
Vaihingen data set and Potsdam data set have the same type of features and different scales.

Vaihingen data set: Vaihingen is a relatively small village located in Germany with
a number of detached buildings and small multistory buildings. The Vaihingen data
set contains 33 remote-sensing images of different sizes covering an area of 1.38 km2 in
Vaihingen. The spatial resolution of the top image and DSM is 9 cm, and each image has
four bands: near-infrared, red, green, and blue. We cropped 33 remote-sensing images of
different sizes into small images with a size of 224 × 224, and the cropped images were
divided into a training set, a validation set, and a test set according to the ratio of 8:1:1. The
percentage of each type of feature in the data set is shown in Figure 9.
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Potsdam data set: Potsdam is a city with a long history of large buildings, narrow
streets, and a dense settlement structure. The Potsdam data set contains 38 remotely sensed
images of the same size (6000 × 6000) covering an area of 3.42 km2 in Potsdam. The spatial
resolution of the top image and DSM is 5 cm, and each image has four bands: near-infrared,
red, green, and blue. Similarly, we cropped 38 remote-sensing images of the same size into
small images with a size of 224 × 224, and the cropped images were divided into a training
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set, a validation set, and a test set according to the ratio of 8:1:1. The percentage of each
type of feature in the data set is shown in Figure 10.
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3.1.2. Metrics

The segmentation-extraction results of different transformer models can be evaluated
on the basis of both subjective and objective aspects [38]. The subjective aspects include
whether the segmentation-extraction results of the remote-sensing image features are
complete and whether the segmentation edges of the features are clear and consistent. The
objective aspect can be quantitatively calculated on the basis of the evaluation criteria, and
afterward, the model classification accuracy can be assessed. The following criteria were
used in this study mainly to evaluate the classification performance of the three transformer
models for the data in the training data set.

F1 score: the F1 score is a metric to evaluate the model proposed on the basis of
precision and recall, which explains the extent to which the true value overlaps with the
predicted outcome pixels. The F1 score also serves as a summed average of precision and
recall as a whole, as defined below:

F1score = 2 · Recall · Precision
Recall + Precision

(14)

Recall =
TP

TP + FN
(15)

Precision =
TP

TP + FP
(16)

where TP is a positive sample predicted by the model as a positive class, FP is the negative
sample predicted by the model as a positive class, and FP is the negative sample predicted
by the model as a positive class.

Overall classification accuracy (OA): the ratio of the number of correctly classified
samples to the number of all samples can be defined as follows.

OA =
TP + TN

TP + FN + FP + TN
(17)

TN is the negative sample predicted by the model as the negative class.
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Mean intersection and merge ratio (MIoU): the MIoU is the calculation of the ratio of
the intersection of two sets of true values to the merged set of predicted values, and it is a
global evaluation of the image classification results, as defined below.

MIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(18)

Kappa coefficient: the Kappa coefficient can be used to measure classification accuracy
and also to test consistency. In practical classification problems, the Kappa coefficient is
often used as an indicator to evaluate the “bias” of the model if the consistency between
samples is poor. If Po is the overall classification accuracy and if the number of real samples
in each category is a1, a2 , . . . , ac, the predicted number of samples in each category is b1,
b2 , . . . , bc, and the total number of samples is n, then Pe is the consistency error.

pe =
a1 × b1 + a2 × b2 . . . ac + bc

n× n
(19)

kappa =
po − pe

1− pe
(20)

3.2. Result
3.2.1. Metrics Visual Analysis of Classification Results

In order to better analyze the gap between the three transformer models in terms of
segmentation details, partially cropped images in the two data sets were selected for the
analysis of segmentation results in this study. The segmentation results of the Vaihingen
and Potsdam data sets are shown in Figures 11 and 12, respectively.

In the first set of results from the Vaihingen data set, the SETRnet, SwinUnet, and
TransUnet networks all showed missegmentation at the junction of impervious surfaces and
trees. At the junction of buildings and low vegetation, SwinUnet showed fragmentation.

In the second set of results, all three networks showed errors at the junction of trees
and impervious surfaces in the upper right corner, but SETRnet and SwinUnet showed
more classification errors. The classification results of TransUnet were more complete
overall, and the contours were more clearly continuous among the three networks.

In the third set of results, SETRnet better segmented the area compared with SwinUnet
and TransUnet but misclassified at the junction of low vegetation and trees. TransUnet was
the only network that correctly distinguished low vegetation from trees, while SwinUnet
showed edge jaggedness.

In the fourth set of results, SETRnet and SwinUnet could not well identify the vehicles,
resulting in broken classification results and distorted contours for both networks for vehi-
cles. TransUnet well identified the vehicle contours, but there were also misclassifications
at the junction of vehicles and low vegetation.

The four sets of segmentation results show that when features exist in proximity to
each other, especially when such relationships exist between large-area features and small-
area features, the transformer model cannot segment well to deal with the relationships
between such features, and it often misclassifies small-area features into large-area features.
At the same time, we can see that there are great differences between the three models
for vehicle segmentation. TransUnet is the best for vehicle segmentation in terms of both
vehicle profile and number, SwinUnet is the second best, and SETRnet is the worst.

The first set of results in the Potsdam data set show severe fragmentation and profile
breakage in SETRnet. TransUnet misclassified within the low vegetation area, while Swin-
Unet was successful in identifying the low vegetation and separating the low vegetation
from the impervious surface.

The second set of results indicated a clear error for TransUnet at the junction of road
and background, while SETRnet and SwinUnet were classified as complete. SETRnet
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showed a wavy profile in the low vegetation area with the background area, and SwinUnet
showed a jagged profile.
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In the third set of results, SwinUnet was more complete and accurate in its overall
classification than SETRnet and TransUnet were. TransUnet did not identify vehicles well,
and SETRnet misclassified impervious surface areas and low vegetation areas.

The segmentation results in the figure show that SwinUnet has the best segmentation
in the large-scale Potsdam data set, followed by SETRnet and then by TransUnet. TransUnet
exhibits a very different segmentation result from the Vaihingen data set, with large feature
confusion and more segmentation fragmentation. It instead indicates that the method
combining a CNN with a transformer is not suitable for large-scale remote-sensing data
sets. In the face of large-scale data sets, a CNN combined with the transformer method face
the explosion of feature information when extracting and processing feature information,
owing to its strong local feature-extraction ability, which leads to a poor segmentation effect.
The better segmentation effect of SwinUnet compared with SETRnet also indicates that
the method of the local attention enhancement of a transformer in the face of large-scale
data can effectively improve the ability of a transformer to extract global and local feature
information. Among the four sets of segmentation results, different degrees of shadows
exist on different features within the original image, and among the three models, only
SwinUnet can better reduce the shadow effect and segment the features, while the other
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two models produced more incorrect segmentation for the shadow part, but SETRnet
produced less of this situation compared with TransUnet. This situation may be due to
the transformer’s insufficient learning ability for shadows. At the same time, we can see a
significant improvement in the segmentation effect of SwinUnet and SETRnet for vehicles
in the Potsdam data set. It shows that with the expansion of the data set scale, the sample
size of the ground objects increases, and the segmentation accuracy of the transformer for
small-scale ground objects also increases.
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3.2.2. Training Time Comparison

Table 1 shows the training time of the three models in the Vaihingen data set. From
the table, it can be seen that SwinUnet has the shortest training time, SETRnet follows, and
TransUnet has the longest training time. In each epoch, SwinUnet’s time is 36.79 s and
79.75 s faster compared with SETRnet and TransUnet, respectively.
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Table 1. Training time of the Vaihingen data set.

Method SETRnet SwinUnet TransUnet

Time(s) 4401.1 2929.7 6119.4

Average time(s) 110.03 73.24 152.99

Table 2 shows the training time of the three models for the Potsdam data set. From the
table, we can see that the respective training times of SwinUnet and TransUnet are basically
equal, and both are faster than SETRnet by more than 10,000 s, which is faster than 300 s
per epoch, on average.

Table 2. Training time of the Potsdam data set.

Method SETRnet SwinUnet TransUnet

Time(s) 38,877.1 26,405.7 27,399.3

Average time(s) 971.93 660.14 684.98

3.2.3. Accuracy Comparison of Results

The classification results in the Vaihingen data set test were collated and statistically
compared with the accuracy evaluation results of the three models, as shown in Table 3.
In the comparison, TransUnet had the highest precision in all categories except for the
tree category, where SETRnet had the highest precision. In the comparison of recall,
SETRnet and SwinUnet were the highest in the low vegetation and impervious surfaces
categories, respectively. TransUnet had the highest recall in the rest of the categories. In
the F1 score comparison, TransUnet had the highest F1 value in all the categories. In the
Kappa comparison, SETRnet was 73.80%, SwinUnet was 77.50%, and TransUnet was the
highest, at 80.54%. TransUnet in MIoU was the highest, at 56.25%, an improvement of
8.57% and 4.77% relative to SETRnet and SwinUnet, respectively. In the OA comparison,
TransUnet remained the highest, at 85.55%, with SETRnet and SwinUnet at 80.50% and
83.29%, respectively.

Table 3. Evaluation table of classification results in the Vaihingen data set. The bolded numbers are
the models with the best performance in terms of accuracy.

Method Category Precision Recall F1 Score Kappa MIoU OA

SETRnet

Impervious surfaces 79.30% 85.46% 82.26%

73.80% 47.68% 80.50%

Building 87.94% 83.53% 85.68%
Low vegetation 61.40% 78.88% 69.05%
Tree 89.74% 76.53% 82.61%
Car 70.35% 19.67% 30.75%
Clutter/background 0.00% 0.00% 0.00%

SwinUnet

Impervious surfaces 83.60% 85.58% 84.58%

77.50% 51.48% 83.29%

Building 88.53% 87.87% 88.20%
Low vegetation 67.52% 74.01% 70.62%
Tree 87.94% 84.68% 86.28%
Car 68.66% 29.83% 41.59%
Clutter/background 0.00% 0.00% 0.00%

TransUnet

Impervious surfaces 84.83% 85.33% 85.01%

80.54% 56.25% 85.55%

Building 89.19% 89.77% 89.48%
Low vegetation 73.65% 76.93% 75.26%
Tree 89.67% 89.04% 89.35%
Car 84.27% 44.90% 58.59%
Clutter/background 0.00% 0.00% 0.00%
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The classification results in the Potsdam data set test were collated and statistically
compared with the accuracy evaluation results of the three models, as shown in Table 4.
In the comparison of precision, SETRnet had the highest accuracy in the impervious
surfaces category, SwinUnet had the highest accuracy in both car and clutter/background
categories, and TransUnet had the highest accuracy in the building, low vegetation and tree
item categories. In the recall comparison, SETRnet’s accuracy was highest in the building
and clutter/background categories, SwinUnet’s accuracy was highest in the low vegetation
and tree categories, and TransUnet’s accuracy was highest in the impervious surfaces
and car categories. In the F1 score comparison, SETRnet obtained the highest accuracy
in the building category, SwinUnet in the impervious surfaces, low vegetation, and tree
categories, and TransUnet in the car category. In the Kappa comparison, SwinUnet’s
accuracy was the highest, at 76.47–4.4% and 8.29% higher than SETRnet and TransUnet,
respectively. SwinUnet’s accuracy was still the highest in MIoU, at 63.62%, while SETRnet’s
and TransUnet’s accuracies were 59.97% and 58%, respectively. In the comparison of OA,
SwinUnet remained the highest, at 85.01%, with an improvement of 6.5% and 9.25% relative
to the OA values of SETRnet and TransUnet, respectively.

Table 4. Evaluation table of classification results in the Potsdam data set. The bolded numbers are
the models with the best performance in terms of accuracy.

Method Category Precision Recall F1-Score Kappa MIoU OA

SETRnet

Impervious surfaces 79.79% 78.52% 79.15%

72.07% 59.97% 78.57%

Building 82.60% 91.60% 86.87%
Low vegetation 75.70% 75.81% 75.76%
Tree 78.69% 75.79% 77.22%
Car 81.73% 70.11% 75.48%
Clutter/background 57.67% 43.70% 49.72%

SwinUnet

Impervious surfaces 77.50% 90.51% 83.50%

76.47% 63.62% 85.01%

Building 89.98% 82.71% 86.19%
Low vegetation 79.34% 82.38% 80.83%
Tree 85.91% 78.41% 81.99%
Car 86.52% 72.43% 78.85%
Clutter/background 73.67% 35.99% 48.36%

TransUnet

Impervious surfaces 61.12% 91.52% 73.36%

68.18% 58.00% 75.76%

Building 90.13% 68.86% 78.07%
Low vegetation 83.90% 72.67% 77.88%
Tree 86.33% 71.98% 78.50%
Car 83.33% 75.43% 79.19%
Clutter/background 57.52% 42.10% 48.62%

3.2.4. Kappa Coefficient Effect Size Test

To demonstrate that the experimental results in the two data sets are not chance events,
the Kappa coefficients of the models in the two data sets are therefore tested for effect sizes.
The results are shown in Table 5. Cohen’s d reflects the degree of difference between two
aggregates after they are affected by something, and the larger the effect size, the greater
the degree of difference. Generally, 0.2 ≤ d < 0.5 is called a small effect, 0.5 ≤ d < 0.8 is
called a medium effect, and d ≥ 0.8 is called a large effect. As can be seen in Table 3, the
Cohen’s d value for the Kappa coefficient in both data sets is 0.795, which is a medium
effect and very close to the large effect. This also indicates that the experimental results in
both data sets are not chance events and are statistically significant.



Appl. Sci. 2023, 13, 2261 17 of 21

Table 5. Kappa coefficient effect scale.

Data Set Kappa Average
Difference

Standard Value
of Difference Cohen’s d

Vaihingen data set
SETRnet 73.80%

0.05 0.063 0.794

SwinUnet 77.50%
TransUnet 80.54%

Potsdam data set
SETRnet 72.07%
SwinUnet 76.47%
TransUnet 68.18%

3.2.5. Training Process of Different Transformers

The whole training process of SwinUnet was relatively stable, the accuracy value
shows a steady increase, and the loss value shows a steady decrease (Figure 13). There are
fluctuations in both SETRnet and TransUnet; however, all the models converged after about
the 25th epoch. Among them, fluctuations occurred at the beginning of the training for
SETRnet. The final accuracy and loss values of SETRnet were the worst. TransUnet showed
optimal results directly after the wave. This shows that SwinUnet is more robust and less
difficult to train. The training result of TransUnet is better than the SwinUet and SETRnet
models, but the training difficulty is relatively high. It is necessary to set the appropriate
learning rate and simultaneously adjust the training strategy, including the epoch, learning
rate decay strategy, etc.
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3.2.6. Comparison of CNNs

Figure 14 shows the comparison results of transformers and Unet [27], DeepLab
V3+ [39], and MAnet (multiscale attention net) [40] for the Vaihingen data set segmentation
results. SwinUnet and SETRnet were significantly better than CNN for large-scale feature
segmentation, which further proves that a transformer is beneficial to improve the large-
scale feature-learning ability [41]. Regarding the case of feature confusion, SwinUnet
had fewer such occurrences, and the problem of feature misclassification confusion is
commonly found in CNNs, mainly because the feature-extraction ability of convolution is
not as good as that of transformers. However, the segmented edges in both transformer
networks appear to be less fine than those of convolutional networks, and even the results
of TransUnet containing a CNN are better than those of the other two transformers. This
indicates that the transformer still needs improvement in edge-extraction capability, and it
is necessary to improve the spatial feature-information-learning capability.
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4. Discussion

In the Potsdam data set experiment, SwinUnet was more suitable for the feature-
segmentation extraction of large-scale remote-sensing images, while TransUnet performed
relatively poorly. The overall accuracy performance of TransUnet was inferior to the
other models. This is because the whole network structure of SwinUnet is built using a
transformer, which can improve the interaction ability of the global semantic information
of the model. Moreover, the fusion of features at different scales by jump linking enhances
the model’s ability to segment predictions at the pixel level [42]. Using the Vaihigen data
set experiment, TransUnet not only had the best overall accuracy performance but also
had the highest accuracy for different features. This is because the encoder constructed
by the transformer of SwinUnet is still inferior to CNN for small-scale image feature
extraction in the small-scale case. However, TransUnet is a combination of CNN and
a transformer that enhances the transformer and accelerates its convergence by using
appropriate convolutional bias to obtain more local feature information. Thus, TransUnet
has better segmentation results in the Vaihingen data set and better segmentation details
and contours for features [43]. Therefore, before selecting a transformer, it should be
considered according to the remote-sensing image scale. SwinUnet was preferential for
large-scale images and TransUnet for smaller-scale images, while SETRnet was not suitable
as a remote-sensing image segmentation network. Meanwhile, the comparison experiment
between a transformer and a CNN proves that a transformer is inferior to a CNN for the
segmentation of edge features. However, it is significantly better than a CNN for large-scale
feature segmentation. This situation may be related to the fact that a transformer itself
focuses too much on the global features, resulting in ignoring some edge features.

5. Conclusions

In this study, we investigated which transformer model is more suitable for remote-
sensing image feature segmentation by evaluating the performance of different transformer
models. In this study, first, three transformer models were briefly described, and the
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network structure of the transformer model was separately constructed. In this study,
experiments were conducted on two data sets, namely the Vaihingen and Potsdam data
sets, and the SETRnet, SwinUnet, and TransUnet models were compared by conducting a
visual analysis of feature-segmentation results and by assessing their accuracy and training
time. The three models were further discussed and analyzed with CNNs. This research will
aid in the understanding of different transformer models and the selection of more-suitable
transformer models for remote-sensing image feature segmentation in future experiments.
The results indicated that SwinUnet performed better on the large-scale Potsdam data set
thanks to its excellent global semantic interaction and pixel-level segmentation prediction
ability. TransUnet benefits from its network structure jointly constructed by a transformer
and a CNN, and it has the highest accuracy on the small-scale Vaihingen data set. Compared
with SwinUnet and TransUnet, SETRnet is not suitable for the segmentation extraction
of remote-sensing image features. At the same time, the experimental results also show
that a transformer has obvious advantages for the segmentation of large-scale objects, but
the pure transformer structure is not suitable for remote-sensing image segmentation. For
different scales of remote-sensing data, researchers need to choose appropriate transformer
models and improve methods.

In the future, we should pay more attention to the following two areas. First, the
transformer model’s ability to extract the edges of features is insufficient. We should
address the issue of the transformer model’s overly focusing on the semantic relationship
between using the global details and ignoring the edge details. Second, we should invest
in expanding the application of different transformer models in the segmentation and
extraction of remote-sensing image features and further verify their effectiveness.
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