
Citation: Zhou, X.; Duan, B.; Wu, X.;

Wang, P. SAViP: Semantic-Aware

Vulnerability Prediction for Binary

Programs with Neural Networks.

Appl. Sci. 2023, 13, 2271. https://

doi.org/10.3390/app13042271

Academic Editors: Chin-Shiuh Shieh,

Tarek Gaber and Shu-Chuan Chu

Received: 24 November 2022

Revised: 5 February 2023

Accepted: 7 February 2023

Published: 10 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

SAViP: Semantic-Aware Vulnerability Prediction for Binary
Programs with Neural Networks
Xu Zhou * , Bingjie Duan, Xugang Wu and Pengfei Wang

College of Computer, National University of Defense Technology, Changsha 410073, China
* Correspondence: zhouxu@nudt.edu.cn

Abstract: Vulnerability prediction, in which static analysis is leveraged to predict the vulnerabilities of
binary programs, has become a popular research topic. Traditional vulnerability prediction methods
depend on vulnerability patterns, which must be predefined by security experts in a time-consuming
manner. The development of Artificial Intelligence (AI) has yielded new options for vulnerability
prediction. Neural networks allow vulnerability patterns to be learned automatically. However,
current works extract only one or two types of features and use traditional models such as word2vec,
which results in the loss of much instruction-level information. In this paper, we propose a model
named SAViP to predict vulnerabilities in binary programs. To fully extract binary information,
we integrate three kinds of features: semantic, statistical, and structural features. For semantic
features, we apply the Masked Language Model (MLM) pre-training task of the RoBERTa model to
the assembly code to build our language model. Using this model, we innovatively combine the
beginning token and the operation-code token to create the instruction embedding. For the statistical
features, we design a 56-dimensional feature vector that contains 43 kinds of instructions. For the
structural features, we improve the ability of the structure2vec network to obtain the characteristic
of the network by emphasizing node self-attention. Through these optimizations, we significantly
increase the accuracy of vulnerability prediction over existing methods. Our experiments show that
SAViP achieves a recall of 77.85% and Top 100∼600 accuracies all above 95%. The results are 10% and
13% higher than those of the state-of-the-art V-Fuzz, respectively.

Keywords: vulnerability prediction; binary program; neural networks; software security

1. Introduction

The static analysis of binary programs is an important part of software security re-
search. While dynamic analysis methods need to execute the program repeatedly, static
methods can directly run security detection without executing the program, consequently
resulting in lower computational costs and time consumption. Moreover, while dynamic
methods are limited to only conducting security detection on executed running paths, static
methods are more comprehensive and consider the whole program.

Vulnerability prediction, in which static analysis is leveraged to predict program vul-
nerabilities, is an important component in software security testing. By doing predictions,
researchers can analyze the weakness of programs. In addition, a successful prediction
model can accelerate dynamic analysis. For example, the vulnerability prediction model
can be regarded as a better standard to choose seeds for directed fuzzer, which emphasizes
the most vulnerable part of programs and avoids useless time costs. However, traditional
static analysis is limited in a number of ways. Most methods of static analysis depend
on the definition of vulnerability patterns by security experts, which can be tedious and
time-consuming. Since these patterns are typically manually defined, it can be difficult
to automate this process, further leading to difficulty in applying it in large-scale pro-
grams. Moreover, many static analysis tools [1,2] are designed for source codes in specific
languages; for example, Reshift [3] only detects vulnerabilities for JAVA programs.

Appl. Sci. 2023, 13, 2271. https://doi.org/10.3390/app13042271 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13042271
https://doi.org/10.3390/app13042271
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0075-5003
https://doi.org/10.3390/app13042271
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13042271?type=check_update&version=1

Appl. Sci. 2023, 13, 2271 2 of 17

Considering these shortages, some researchers attempt to apply neural networks
in detecting vulnerabilities [4–10] for the following reasons. First, with a large number
of samples, the vulnerability patterns can be learned automatically by neural networks.
Second, neural networks can identify the deep, complicated features of programs, which
can be difficult to define as patterns even by experts. In addition, multiple types of
vulnerabilities can be detected simultaneously by neural network approaches. In contrast,
only one specific type of vulnerability can be detected once by using pattern-based methods.

However, current methods using neural networks in vulnerability prediction still
have limitations. P1: Most neural networks are designed to detect vulnerabilities in
source codes [4–6]. However, many software programs only provide binary files, which
have no source code available for security analysis [7]. This makes current methods
difficult to apply in actual software security testing. P2: The current methods lack effective
semantic features. The features of programs can be divided into three dimensions, semantic,
statistical, and structural features. However, existing binary-based methods extract only
one or two types of features, and most [11] only focus on semantic and structural features.
V-Fuzz [12] considers the value of statistical characteristics, but it lacks the ability to extract
semantic features. Moreover, it counts the respective quantities of all instructions, which
is redundant and results in an increase in overhead. In addition, it should be noticed
that most works [8,11] extract semantic features by utilizing word2vec [13], which only
produces word embeddings and leads to the loss of instruction-level information.

To address the aforementioned problems, we propose SAViP, a semantic-aware model
for vulnerability prediction in binary programs. As shown in Figure 1, we first disassemble
the binary programs and represent an assembly language-based function as a control
flow graph (CFG). Then, covert the CFG to an attributed control flow graph (ACFG)
and generate the function embedding. Finally, we make predictions in the light of the
embeddings. Overall, SAViP consists of three parts that separately model the semantic,
statistical, and structural features of binary programs.

mov [ebp+edx*4+buffer], 1
mov [ebp+i], 0
jmp short loc_45F879

cmp [ebp+i], 0Ah
jge short loc_45F891

mov edx, [ebp+ecx*4+buffer]
push edx
add esp, 4

jmp short loc_45F8A0

(a) CFG

[53,87,1,...,64]

[24,5,2,...,75]

[235,54,23,...,76] [8,4,87,...,63]

(b) ACFG

Figure 1. Two types of representation graphs for binary programs. CFG is the control flow graph for
assembly functions. ACFG is the vectorization of CFG. Each basic block in ACFG corresponds to a
feature vector of the CFG block.

For the semantic features, we introduce the pre-training task of the advanced natu-
ral language process (NLP) model RoBERTa [14] for assembly programs. We first use a
dynamic masking task in assembly files to learn better representations of the instructions.
We then employ the pre-trained model to extract the semantic features for each instruc-
tion. Considering that the operation code plays an essential role in the semantics of each
assembly instruction, we propose using a combination of the final hidden vectors of the
beginning token and the operation-code token. This design not only considers the entire
instructions but also places greater emphasis on the operation code. For the statistical fea-
tures, we design a 56-dimensional feature vector that contains 43 instructions. To reduce the
dimensionality of the statistical features, we choose only four types of instructions [15]: data
transfer, binary arithmetic, logical, and control transfer instructions. Our experiment shows
that these instructions contain most of the information regarding vulnerabilities. To com-
bine the structural features, i.e., the CFG of a given function, and the other two types of
features together, we utilize the ACFG [16] as the intermediate representation. Each node

Appl. Sci. 2023, 13, 2271 3 of 17

in the ACFG is the concatenated block vector of the corresponding semantic feature and
statistical feature. We finally improve the structure2vec [17] network by emphasizing node
self-attention. Through our designed graph neural network, each block node from a given
assembly function can fuse the information of its neighbors and learn the features of the
whole assembly function.

We conduct experiments on Juliet Test Suite v1.3 [18], a dataset that has been widely
used in vulnerability related works. Our proposed SAViP achieves a recall of 77.85% and
Top 100∼600 accuracies above 95%, which are 10 percentage points and 13 percentage
points, respectively, higher than those of the state-of-the-art V-fuzz model. We also de-
termine the best parameters that can balance model performance and time consumption
through comparative experiments. Moreover, our ablation study shows that the semantic
features contribute the most to the performance of SAViP.

In summary, our work makes the following contributions:

• We propose SAViP, a semantic-aware model for vulnerability prediction that utilizes
the semantic, statistical, and structural features of binary programs.

• To better extract semantic information from instructions, we introduce the pre-training
task of the RoBERTa model to assembly language and further employ the pre-trained
model to generate semantic embeddings for the instructions.

• Experiments show that our SAViP makes significant improvements over the previous
state-of-the-art V-fuzz (recall +10%) and achieves new state-of-the-art results for
vulnerability prediction.

2. Related Work
2.1. Vulnerability Prediction

Vulnerability prediction is an important research direction in software security. Tradi-
tional solutions use pattern-based methods, whose vulnerability patterns are defined prior
to detection. However, these methods are inefficient and have weak scalability. Recently,
deep learning methods have proven to be useful in this area, but as with traditional meth-
ods, there are some shortcomings in current approaches. First, most of the works are based
on source code [5,6,19], while in reality, application software is often closed source, and
acquisition of the source code can be difficult. Second, binary-based methods always lack
information and tend to be highly time-consuming.

A typical deep learning-based method [8] uses LLVM IR [20] and word2vec for word
embeddings. This method merges the word vectors in the function into an array and uses
a recurrent neural network (RNN) [21] for classification. However, the word2vec model
is a word embedding model; it cannot be used to discover the internal features at the
instruction level. Moreover, the model ignores statistical and structural features, and only
shallow semantic features are considered. The use of RNN also greatly increases the time
costs of model training and requires stronger hardware support. BVDetector [11] improves
upon this method by adding data flow and control flow analysis but still depends on the
word2vec model and RNN [22]. Furthermore, the method [8] and BVDetector [11] lack
positional information when extracting semantic features, while the positions of instructions
are important to instruction semantics. SAViP uses RoBERTa [14], a state-of-the-art NLP
model, to extract semantic features, which combines instruction semantics and positional
information and makes generated embeddings more comprehensive.

V-Fuzz [12] introduces the importance of prediction scores; by outputting the vulner-
ability probabilities of functions, it speeds up dynamic analysis [23–25]. The prediction
model of V-Fuzz uses structural and statistical features and obtains prediction scores
through a graph embedding network. The information from binary programs is retained to
a large extent with this design; however, the semantic features are totally ignored, which
makes V-Fuzz less robust against vulnerability variants. Moreover, V-Fuzz counts all of the
instructions of the x86 architecture, which creates an over-redundant feature vector.

Appl. Sci. 2023, 13, 2271 4 of 17

2.2. Intermediate Representation

To analyze a binary program, it is necessary to use an appropriate form of represen-
tation, that is, to convert the program into a form that is suitable for analysis. We can
concatenate all the basic blocks of a function to obtain its word vector array (as described
in [8]). However, this completely ignores the internal structure of the function and eas-
ily leads to a vector with excessively high dimensionality. Considering that we need to
combine semantic features, statistical features, and structural features, our model uses the
ACFG [16] as the intermediate representation of the function.

The ACFG is the vectorization of the CFG. Given the CFG of a function, as shown
in Figure 1a, if we obtain the vector representation of each basic block, we can use this
set of vectors to replace the basic block. The new graph obtained in this way, as shown
in Figure 1b, is called the ACFG. Although the ACFG vectorizes the basic block features,
it retains the structural features of the graph. When we train the ACFG, it can be divided
into a feature matrix and an adjacency matrix. We use these two matrices as the input of
the graph neural network (GNN) [26]. This representation method can not only focus on
the features of each basic block but also retain the connections (structural features) between
each basic block. Additionally, it can be applied well to various deep learning models.

2.3. Pre-Training Language Model

Google released the BERT [27] model, which is based on Transformer [28], and pro-
posed the first unsupervised, deep bidirectional NLP pre-training system. Through training
on 13G language-related data, unprecedented results were obtained. The most important
pre-training task in BERT is the Masked Language Model (MLM), which masks the token
in each training case with a probability of 15% and then uses the model to predict the token
at the mask position. However, BERT uses a static masking method in the MLM task; this
leads to tokens in some positions that cannot be trained as the masked tokens will not
change during the whole training process. The RoBERTa [14] model improved this by using
dynamic masking; this design increases the masking probability for each token. Due to the
short length of assembly instructions, the token at any position is important. Therefore,
we use the dynamic masking ability of RoBERTa to train a language model in our work to
extract the semantic features of the assembly instructions.

2.4. Graph Neural Network (GNN)

After obtaining the basic block features and transforming the CFG into an ACFG, it is
also necessary to extract the features of the entire ACFG, which involves the extraction of
graph features. Graphs are a commonly used representation approach; related problems
include node classification [29,30], link prediction [31,32], recommendation [33,34], etc.
These all require specific feature vectors to represent graphs or nodes. Graph embedding
algorithms and GNNs [26] are both effective methods to solve this problem.

The graph embedding algorithm aims to use a low-dimensional, dense vector to
represent the nodes in the graph while describing the structural characteristics of the graph
as best as possible. Classic examples of graph embedding algorithms include DeepWalk [35],
Node2Vec [36], GraRep [37], etc. GNNs are actually an extension of the graph embedding
algorithm, essentially referring to a type of deep learning-based method for processing
graph information.

The number of basic blocks included in the functions of assembly language is limited,
as is the size of the CFG; hence, we have no need to choose complex GNN algorithms.
The GNN we apply is an improved form of structure2vec [17] that can generate ACFG
embeddings. structure2vec is a classical, simple GNN model that can also be classified as a
massage passing framework. Through a number of iterations, it can transfer the features of
each node in the graph along the connections. The specific model design and algorithm
details will be introduced in the model design section.

Appl. Sci. 2023, 13, 2271 5 of 17

3. Vulnerability Prediction Model
3.1. Overview

To precisely predict vulnerabilities, we have to catch the characteristic of vulnerable
binary. To this end, we propose to obtain three kinds of features—the semantic features,
the statistical features, and the structural features—from binary programs to represent
vulnerabilities. We need to extract information of the three features from the binary
program. Figure 2 shows the structure of the entire model.

��������
��������
��������
��������

Binary File

mov edx, ebp
push edx
add esp, 4

mov edx, ebp
push edx
add esp, 4

CFG of a function

Graph Neural
Network

Output: P

Disassembly

ACFGStructural Features

Semantic Features

Statistical Features

Block Embeddings

Graph EmbeddingsAverage
Pooling

concatenate

Basic Blocks

Figure 2. The overall structure of SAViP. Semantic features are extracted by a pre-trained language
model. Block embedding is the concatenation of semantic and statistical features. The structural
feature is utilized in the graph neural network. Output P is the vulnerable probability of a function.

First, we use ida-python [38] (for IDA-PRO 7.0) to disassemble the binary program.
Second, the assembly instructions and statistical characteristics of all target functions need
to be extracted from the program. Among these, the selection of the target function will be
explained in the experiment section. We use networkx [39] to retain the control information
(structure information) of each function and the different attributes of each basic block
(including assembly instructions and statistical vectors); the assembly instructions are
collected for the subsequent semantic extraction step and will be used as the input of
the language model after tokenization. Third, after obtaining the outputs (instruction
embedding), we apply mean pooling to the outputs in the same basic block and form
semantic block embeddings. Then, we merge these embeddings with the statistical vectors
of the basic block to obtain the whole embedding of each basic block. All the block
embeddings in a function and the link between the basic blocks together form an ACFG.
The structural features will be input as an adjacency matrix in the following GNN. Although
we say the input of the GNN is an ACFG graph, the real input is a feature matrix and an
adjacency matrix. After passing the matrices through the GNN, they will finally go through
a softmax layer to obtain the vulnerability prediction score of each function.

Next, we introduce the specific design details for each kind of feature separately.

3.2. Semantic Features

We apply the pre-training task of the RoBERTa [14] model to extract the semantics of
assembly language. To train our language model on assembly language, we need to make
our own dataset and perform appropriate pre-training to obtain a suitable model.

3.2.1. Tokenization

First, to capture the deep features from assembly statements, we need to tokenize
the assembly instructions. We treat each instruction as a sentence; then, we standardize
them with our rules and decompose them into basic tokens. For the definition of the basic

Appl. Sci. 2023, 13, 2271 6 of 17

token, we do not consider only the operand or only the operand type; instead, we divide
the instructions more carefully, retaining richer information and keeping all of the opcodes
and registers. For numbers, if the length of the hexadecimal form is longer than 6, we unify
it as “〈addr〉”. If not, we regard it as meaningful and keep it. We then unify the variables as
“〈var〉”. For example, the instruction “mov [ebp+VAR_4] eax” is decomposed into “mov”,
“[”, “ebp”, “+”, “〈var〉”, “]”, and “eax” according to the rules.

After tokenizing the instructions, we obtain a set of standardized data that can be used
for pre-training.

3.2.2. Pre-Training

After tokenization, we use the MLM task to pre-train our language model. The task
replaces some of the tokens with “〈mask〉” in each epoch and trains the model to predict the
original token. In this way, the model can learn the deep internal features of instructions.
The MLM task needs specified inputs. According to the rules of the RoBERTa model,
the first token of each input must be the special token “〈s〉”, which marks the beginning
of the input. After the training, the embedding of this special token can be used as the
representation of the entire input. The last token entered is also a special token, “〈s〉”,
which corresponds to the start token and marks the end of the input. In addition, as
shown in Figure 3, we also need segmentation and position embeddings and then mix
the three tokens as the final input. Position embeddings are used to identify the position
of each token, while segmentation embeddings can identify different sentences in the
input. The mixed embeddings can enhance the model’s ability to represent tokens in
different situations.

EA EA EA EA EA EA EA EA EASegment Embeddings

Input

E! E1 E2 E3 E4 E5 E6 E7 E8Position Embeddings

E<s> Emov E[Eebp E+ E<var> E] Eeax E</s>Token Embeddings

<s> mov [ebp + <var>] eax </s>

Figure 3. Input embeddings of SAViP.

3.2.3. Dynamic Masking

While pre-training the model with data, we retain the MLM with dynamic masking.
In BERT, the masking of the MLM task is static, and all masks are generated during the
data processing stage. In all epochs, the masked token is fixed and will not be changed.
In other words, the tokens that can be trained are limited. In contrast, dynamic masking
delays the masking operation until the data are sent to the model, which can improve its
expressive ability. A comparison between dynamic and static masking is shown in Figure 4.
It is noteworthy that BERT replicates the sample 10 times, resulting in 10 different mask
positions. To facilitate comparison and display, only one position is shown in the figure.

Appl. Sci. 2023, 13, 2271 7 of 17

epoch 1 <s> <mask> [ebp + <var>] eax </s>

<s>mov [ebp + <var>] eax </s>

epoch 2

epoch 3

<s> <mask> [ebp + <var>] eax </s>

<s> <mask> [ebp + <var>] eax </s>

<s> <mask> [ebp + <var>] eax </s>

<s>mov [ebp + <var>] <mask> </s>

<s>mov [<mask> + <var>] eax </s>

epoch 4 <s> <mask> [ebp + <var>] eax </s> <s>mov [ebp + <mask>] eax </s>

(a) Static Masking (b) Dynamic Masking

Figure 4. Comparison between static masking and dynamic masking. Dynamic masking can mask
more positions than static masking.

3.2.4. Outputs

After obtaining the pre-trained model, a series of layer values in the model can be
obtained for each instruction. We regard the last hidden layer as the embedding. Among
them, the first vector in the hidden layer corresponds to the “〈s〉” token since it will be
added at the front end before the input. Hence, this vector can represent the characteristics
of the entire sentence. In addition, we consider the opcode to occupy a more important
position than the operands in the assembly instructions. Therefore, we concatenate the
embeddings of “〈s〉” and the opcode as the instruction embedding, as shown in Figure 5.
However, to build ACFGs, we need basic block embeddings. Therefore, we use mean
pooling to process all the instruction embeddings in a basic block; that is, the embeddings
of all instructions in a basic block are averaged to obtain the semantic embedding of each
basic block.

Last Hidden Layer

Token <s> mov [ebp + <var>] eax </s>

Instruction Embedding

Figure 5. Instruction embedding.

3.3. Statistical Features

Different from the complex semantic features which are hard for a computer to under-
stand, statistical information can directly represent some characteristics of the assembly
codes. As shown in Table 1, our statistical features mainly consist of three parts: instructions,
operands, and special strings.

First, for the choice of instructions, V-Fuzz [12] arbitrarily selects 244-dimensional
instruction-related features, resulting in a total feature count of 255 dimensions, which
greatly increases the difficulty of training the neural networks. To reduce training overhead,
improve efficiency, and avoid confusion caused by useless features, we should reduce
the number of instructions considered. Inspired by Gemini [40], we count the four most
common types of instructions: data transfer instructions, binary arithmetic instructions,
logical instructions, and control transfer instructions. These instructions tend to influence
memory and easily lead to vulnerabilities. Table 2 shows the details of the instruction list.

There are eight common operands in total. Each type of operand has a different
connotation, and we perform separate statistics on each of them. In addition, we pay
attention to five specific strings, “malloc,” “calloc”, “free”, “memcpy” and “memset”,
which are related to specific memory operations. The detection of these strings can help
guide the improvement of the ability of the model to detect memory-related vulnerabilities
in the evaluations.

Appl. Sci. 2023, 13, 2271 8 of 17

Table 1. List of statistical features.

Type Content Num

Instructions Num of each instruction in Table 2 43

Oprands

Num of void operands

8

Num of general registers
Num of direct memory references
Num of memory references using register contents
Num of memory references using register contents with displacement
Num of immediate operands
Num of operands accessing immediate far addresses
Num of operands accessing immediate near addresses

Strings

Num of strings “malloc”

5
Num of strings “callo”
Num of strings “free”
Num of strings “memcpy”
Num of strings “memset”

Total 56

In summary, we screen 43 instructions, 8 operand types, and 5 special strings, and
obtain a 56-dimensional vector of statistical features, and, thus, each basic block can also
be represented as a 56-dimensional vector containing statistical features. To verify the
effectiveness of reducing the dimensions of statistical features, we conduct a comparative
experiment in the experimental part of the paper. The experimental results demonstrate
that our new statistical objects can retain most characteristics and reduce time costs.

Table 2. Instruction List.

Type Detail Num

Data Transfer mov push pop 3Instructions

Binary Arithmetic adcx adox add adc sub sbb imul mul 14Instructions idiv div inc dec neg cmp

Logical Instructions and or xor not 4

Control Transfer jmp je jz jne jnz ja jnbe jae jnb jb jnae jbe 22Instructions jg jnle jge jnl jl jnge jle jng call leave

Total 43

3.4. Structural Features

For the graph, we use an improved structure2vec network. We train the network
through a labeled dataset so that it can unearth the structural information of the assembly
function. After obtaining the advanced node representation, we perform mean pooling on
the block embeddings in a graph and use the result as the graph embedding. Then, we
obtain the vulnerability probability for each function through a normalization layer and a
softmax layer. In general, this neural network is similar to a two-class classification, but
different from the latter, we need to output a value that is the probability that the function
will eventually be predicted as a vulnerability.

3.4.1. Model Structure

Next, we will describe the composition of the neural network in detail. Figure 6 shows
the overall flow of our improved GNN. F is the feature matrix, composed of all the basic
block feature vectors in ACFG; A is the adjacency matrix of the ACFG plus a self-loop. The
increase of the self-loop ensures that each basic block always maintains self-attention while
collecting information from its neighbors. Assuming that the ACFG has p nodes and the

Appl. Sci. 2023, 13, 2271 9 of 17

dimension of the block embedding is b ∗ 1, then F is a p ∗ b matrix, and A is a p ∗ p matrix.
In this GNN, we establish a matrix ϕ of dimension p ∗ e to extract the information of each
node, where e is the dimension of the final graph embedding vector. ϕ is initialized to a
matrix of zeros, that is, ϕ0. We update the node information by continuously calculating a
new ϕt as follows:

ϕt+1 = ξ(FW1 + σAϕ0) (1)

where W1 is a b ∗ e matrix, and σ is a neural network connected by d-layer fully connected
layers. In actual implementation, after each fully connected layer, a nonlinear layer needs
to be connected to improve the expressive ability of the model. ξ performs normalization
and rectification (via a ReLU) on the result of the summation. Note that the operations ξ
here cannot be omitted, as they can effectively prevent gradient dispersion and improve
the training effect. After T iterations, we obtain the latest graph feature matrix ϕT , the
dimensions of which are still p ∗ e, and then we can obtain the embedding of the ACFG
graph through transformation:

ϕg = W2[ρ(ϕT)]tr (2)

ρ is a mean pooling layer, and the dimension of the embedding after pooling becomes 1 ∗ e.
W2 is an e ∗ e matrix. Therefore, the final dimension of the graph embedding ϕg is e ∗ 1.
Afterward, to obtain the security and vulnerability scores, we transform ϕg to obtain a
two-dimensional vector Z = {z0, z1}

Z = W3 ϕtr
g (3)

where W3 is a 2 ∗ e matrix. At this time, there is no constraint between the two values of Z.
We next desire to obtain a meaningful output in the form {p, 1− p}:

Q = F (Z) (4)

In this equation, F performs a nonlinear transformation on Z. Among this, a softmax
layer and a normalization layer are used, and we can obtain the Q = {p, 1− p}, where p is
the final output and represents the probability of vulnerabilities in the ACFG graph.

!

[#$ #% #&]

()*

+ $ +
+ + $
+ + +

x1

x2

x3ACFG

,+

-
(

∑! / /

!

……

,1 2 ,3

4

567867

9/:$

:$

:%

:&

;<=> − @558

$ + +
+ $ +
+ + $

(

$ $ +
+ $ $
+ + $

,$

-
(

∑

Figure 6. Structure of the graph neural network. The input ACFG is divided into two matrices: a
feature matrix and an improved adjacency matrix with a self-loop. The output is the vulnerability
probability of the ACFG.

3.4.2. Model Training

To improve the ability to understand and distinguish secure and vulnerable functions,
we need to set the labels for the training dataset in advance. The label l can take on a value
of either 0 or 1, where 0 means the function is vulnerable, and 1 means it is secure. Given
that our network structure and purpose are similar to those of the classification problem,
we use the cross-entropy function to calculate the loss and update the model parameters
with a stochastic gradient descent method.

Appl. Sci. 2023, 13, 2271 10 of 17

4. Evaluation
4.1. Dataset

Almost all of the other works in vulnerability detection use the dataset processed by
themselves and their source code is not being published. However, to better evaluate our
work, we still try to reproduce the whole project of V-Fuzz and make a comparison with
it. Hence, we use the Juliet Test Suite (v1.3) [18] for our model training and testing, which
has been widely utilized in previous vulnerability-related studies [5,12,41]. This dataset
was released by the National Institute of Standards and Technology (NIST) in 2017 and
involves 118 different common weakness enumeration (CWE) entities and 64,099 cases. All
testcases are written in C/C++, and each function is labeled with “good” or “bad”, where
“good” mean “secure” and “bad” means “vulnerable”. Among the 118 CWE entities in the
Juliet Test Suite, we select 12 memory-related entities to better compare our model with
V-Fuzz, which uses the same CWEs. The Juliet Test Suite differentiates functions as “source”
and “sink”. Whereas source functions generate the data, sink functions utilize the data
and are more closely related to program crashes. Thus, we select the sink functions and
construct our dataset. The specific types of CWE and the number of labeled functions are
recorded in Table 3. To train the model for each type of vulnerability equally, we attempt to
include the same number of positive and negative cases in each CWE. If the total number
is less than the target number, we sample from the overall legacy data to complete the
dataset. Table 4 shows the data volume of each dataset. We extract a total of 22,000 positive
cases and 22,000 negative cases; the training set contains 18,000 of each, and the test and
development sets contain 2000 of each.

Table 3. Types of CWE.

CWE ID Type #Secure #Vulnerable Total

121 Stack Based Buffer Overflow 7947 9553 17,300
122 Heap Based Buffer Overflow 10,090 11,049 21,139
124 Buffer Under Write 3524 3894 7418
126 Buffer Over Read 2678 2672 5350
127 Buffer Under Read 3524 3894 7418
134 Uncontrolled Format String 11,120 8100 19,220
190 Integer Overflow 9300 5324 14,624
401 Memory Leak 5100 1884 6984
415 Double Free 2810 1786 4596
416 Use After Free 1432 544 1976
590 Free Memory Not On The Heap 3819 5058 8877
761 Free Pointer Not At Start 1104 910 2014

Total 62,448 54,468 116,916

4.2. Environment

We implement the model on PyTorch, which is widely used in deep learning tasks.
For the hardware configuration, we train the model on a server with an Intel Xeon CPU
E5-2680v3@2.50 GHz, one GeForce GTX 2080Ti GPU, and 94 GB memory.

Table 4. Dataset statistics.

Dataset #Secure #Vulnerable Total

ALL-DATA 62,448 54,468 116,916
TRAIN-DATA 18,000 18,000 36,000

DEV-DATA 2000 2000 4000
TEST-DATA 2000 2000 4000

Appl. Sci. 2023, 13, 2271 11 of 17

4.3. Evaluation Metrics

Since one of the most important proposed motivations of our model is to guide
dynamic analysis, we desire to use a higher score to reflect higher accuracy. In this way, we
could be confident when choosing the direction of dynamic analysis (e.g., seed mutation in
fuzzing) based on the score. Therefore, we use two metrics, accuracy, and recall, to evaluate
the model, which is defined in V-Fuzz. In this way, we can test the effectiveness of our
work and also make a better comparison with V-Fuzz.

First, we make explanations for these two metrics as follows. Suppose there are L
cases, in which the number of “vulnerable” cases is A and the number of “secure” cases is
L-A. Passing L cases into the model generates L scores (vulnerable probability). We sort
the scores in reverse order and take the first N scores. If the number of cases with the true
label of “vulnerable” is n among these N cases, we say that the K-N (e.g., K-100 or K-200)
accuracy is n/N. If we set N to A, the K-A accuracy is n′/N. Since A is the number of
“vulnerable” cases out of all cases, K-A is also defined as the recall rate.

4.4. Model Performance

According to the above metrics, the performance of our model on the validation set is
shown in Figure 7. Figure 7a shows the corresponding accuracies when we set different
values of K. The accuracy rapidly improves between epochs 0 and 20 and is essentially
maximum at 40 epochs, fluctuating around the maximum thereafter. Obviously, the smaller
the K value is, the higher the accuracy. This shows that our scores are meaningful: the
higher the score is, the higher the confidence in the prediction and the greater the probability
of vulnerabilities. In addition, the curves for K = 100∼1000 are all above 90% in the end,
while those for K = 100∼600 reach above 95%. Since there is no open source of V-Fuzz,
we implement the prediction model of V-Fuzz (according to the parameters in the paper)
and conduct experiments on the same dataset used for SAViP. Figure 7b shows the Top-K
accuracies for V-Fuzz. The accuracies for K = 100∼600 surpass 82%, indicating that SAViP
is 13% better than V-Fuzz. Figure 7c shows the comparison of the recall of the two models;
V-Fuzz reaches 0.6775, which is slightly better than its performance in the original paper;
this is because our standards for dataset labeling are not totally same with it. Figure 7c
clearly shows that the recall of our model and V-Fuzz increase in similar manners, and both
reach the highest value around epoch 40. Our recall increases from 50% to 78%, which is
11% higher than V-Fuzz. These comparisons indicate that our model makes improvements
over the state-of-the-art V-Fuzz.

In addition, we distinguish the performance of each CWE. To assess the confidence for
the highest-scoring data, we take the K-10 accuracy for each CWE. Figure 8 shows the K-10
accuracy and recall of SAViP and the recall of V-Fuzz for each CWE. The two dashed lines in
the figure are the 95% accuracy baseline and the 78% recall baseline. We can see that, for the
K-10 accuracy, only CWE134 and CWE401 reach 95% and 90% accuracy, respectively, while
the rest reach 100%. This shows that our model exhibits high confidence in the vulnerability
scores, which means that a high-scoring function has a high probability of possessing
vulnerability. In terms of the recall rate, SAViP performs better than V-Fuzz for all of
the CWEs. More specifically, for SAViP, 6 CWEs possess a recall higher than the baseline
(i.e., the recall overall), while the recall of the other 6 CWEs is lower. This shows that the
performance of our model is balanced; that is, the overall performance improvement over
V-Fuzz does not originate from the extreme performances of individual CWEs.

Appl. Sci. 2023, 13, 2271 12 of 17

(a) Top-K Accuracies for SAViP (b) Top-K Accuracies for V-Fuzz

(c) Recall comparison

Figure 7. Performance comparison of SAViP and V-Fuzz. For both the Top-K accuracies and recall,
SAViP performs better than V-Fuzz.

Figure 8. Model performance for different CWEs. The Top 10 accuracy of SAViP reaches 100% except
for CWE134 and CWE401. For recall, SAViP outperforms V-Fuzz for all CWEs.

Summary: SAViP outperforms the state-of-the-art approach V-Fuzz in vulnerability
prediction with a large margin. It can automatically predict vulnerabilities without prior
knowledge predefined by security experts, which reduces the burden on researchers.

4.5. Ablation Study

Although we have demonstrated the effectiveness of our model, it is also important
to determine which feature contributes the most to the result. To this end, we conduct an
ablation study to analyze the role of each kind of feature. We evaluate the results from two
perspectives: recall and the average training time per epoch. Figure 9 shows the training
curves under different settings, and Table 5 provides a more direct representation of their
differences with various evaluation metrics. The column called GAP shows the impact
of each missing feature on the recall rate of model testing, using percentages to increase
the contrast.

From the results, removing semantic features (SM-F) reduces the recall by 8.8%, which
shows that this part of the model improves recall the most. However, it is also the most
time-consuming part, as the training time difference for an epoch reaches 6.18 s. The
addition of statistical features (STA-F) and structural features (STR-F) has similar effects
on performance, with recall differences of less than 5%. However, structure feature ex-
traction involves the GNN, which leads to more time consumption (5 s) than statistical
feature extraction.

Appl. Sci. 2023, 13, 2271 13 of 17

Figure 9. Results of the ablation study. The graph shows that the most significant contribution to our
model was made by semantic features.

Table 5. Ablation Study.

Model Recall Time (s)DEV TEST GAP

SAViP 0.782 0.7785 0 18.04
without SM-F 0.701 0.6905 −8.8% 11.86
without STA-F 0.7515 0.7445 −3.4% 16.56
without STR-F 0.745 0.7325 −4.6% 13.015

As mentioned above, the ablation study shows that semantic features contribute
the most to our vulnerability prediction model. This proves that semantic learning can
penetrate deeply into basic blocks and can extract more complex details than statisti-
cal information.

4.6. Parameter Analysis

In the process of exploring the best parameter settings, we regard recall as the most
important evaluation metric. For parameters with similar recall values, the training time is
used as the second evaluation index. We average the total time for 150 epochs to obtain the
time for one epoch.

4.6.1. Semantic Features

We apply the pre-training task from RoBERTa to extract assembly semantics and obtain
instruction embeddings and then the semantic embedding of basic blocks. Instruction
embeddings are similar to sentence embeddings in natural language; they are commonly
obtained by selecting vector corresponding to the first special token “〈s〉” as the sentence
embedding. Considering the importance of opcodes in assembly language, we concatenate
“〈s〉” with the vector of opcodes. To demonstrate the correctness of this procedure, we
distinguish several different RoBERTa settings for comparison. Table 6 and Figure 10a show
the specific setting differences and the final experimental results. Among them, we also
test the effects of different embedding dimensions (32, 64, 128, and 128) and compare the
results when the subsequent designs are exactly the same. The result shows that, when
64 dimensions are used as the word embedding size, the result of using both “〈s〉” and
opcode is better than using either alone. When the two are used alone, the recall and time
consumption are very similar, indicating that the implicit features in these two are similar
but complementary. This demonstrates the superiority of our design. In the testing of the

Appl. Sci. 2023, 13, 2271 14 of 17

embedding dimension, we can see that the higher the dimension, the higher the recall is,
but the longer the time consumed. To balance the recall and time costs, we choose 64 as the
final word embedding size.

Table 6. Language model experiments.

Model Semantic Content Word Embedding Size Recall Time (s)DEV TEST

RoBERTa-s 〈s〉 64 0.7655 0.7585 16.145
RoBERTa-o opcode 64 0.7515 0.751 16.12
RoBERTa-32 〈s〉 + opcode 32 0.763 0.7575 13.41

RoBERTa-64(SAViP) 〈s〉 + opcode 64 0.782 0.7785 18.04
RoBERTa-128 〈s〉 + opcode 128 0.791 0.7845 22.685
RoBERTa-256 〈s〉 + opcode 256 0.813 0.8065 36.415

4.6.2. Statistical Features

In the model design section, we introduce the details of the 56-dimensional feature
vectors. We compare this design with V-Fuzz, which uses all of the instructions. According
to the Software Developer’s Manual [15] released by Intel in March 2020, we set a total of
280-dimensional vectors for the latter. Table 7 (Statistical Size) and Figure 10b show the
recall and the corresponding training time comparison generated by the two cases. We
find that, although the recall obtained for the latter is slightly higher, the time costs are
greatly increased. We consider spending 50% more time for less than 1% improvement to
be illogical, so we use the 56-dimensional solution.

Table 7. Parameter experiments.

Parameter Value Recall Time (s)DEV TEST

Statistical Size 56 0.782 0.7785 18.04
280 0.789 0.7845 27.535

Depth

0 0.743 0.7405 13.66
1 0.766 0.7665 16.865
2 0.782 0.7785 18.04
3 0.769 0.767 19.89
4 0.753 0.752 21.475
5 0.75 0.742 22.3

Iteration

1 0.7425 0.74 14.895
2 0.7665 0.7615 16.45
3 0.782 0.7785 18.04
4 0.7725 0.775 19.305
5 0.778 0.7775 21.03

Self-Loop True 0.782 0.7785 18.04
False 0.744 0.7415 14.355

Appl. Sci. 2023, 13, 2271 15 of 17

(a) Recall for different RoBERTa settings. (b) Recall for different statistical attributes n.

(c) Recall for different depths d. (d) Recall for different iterations T.

(e) Recall in the presence or absence of the self-loop.

Figure 10. Results for different training settings.

4.6.3. Structural Features

• Depth Table 7 (Depth) and Figure 10c show the influence of different neural network
depths d in the model. By setting the number of fully connected layers d (d = 0∼5),
we observe that the recall reaches its maximum value when d is 2. We believe that the
reason is that an excessively deep network structure will result in feature dispersion,
leading to worse results. Therefore, we choose 2 as the final depth of the network in
the GNN.

• Iteration In the GNN, we need to perform certain iterations to optimize the parame-
ters. We set T to 1, 2, 3, 4, and 5 to observe the impact of iterations on the network.
Table 7 (Iteration) and Figure 10d show the differences in the recall for different situa-
tions. The recall obtained in cases where T >= 3 are very similar, but the larger T is,
the greater the time cost. We infer that the scale is not sufficiently large to require deep
iterations; for our functions, three hops are sufficient for the basic blocks to collect the
information of their neighbors. Therefore, we set T to 3 as the number of iterations of
the GNN.

• Self-Loop To ensure the block embeddings always focus on themselves while collect-
ing network information, we add a self-loop to the ACFG before the GNN starts. Table 7
(Self-Loop) and Figure 10e show the effect of this step on the results. The experimental
results show that, after adding the self-loop, the recall is increased by 3.7%. This shows
that the addition of a self-loop can improve the ability of the GNN to extract structural
features well.

In summary, after multiple experimental verifications, we set the word embedding
vector size to 64 and merge the embeddings of “〈s〉” and the opcode as the instruction
embedding. We design a vector of 56 dimensions to represent statistical features. In the

Appl. Sci. 2023, 13, 2271 16 of 17

GNN, we set the network depth to 2 and the number of iterations to 3. In addition, in terms
of implementation details, we set the batch size to 32, the initial learning rate to 0.01, and
attenuation is performed every 50 epochs.

5. Conclusions

In this paper, we propose a vulnerability prediction model that extracts three kinds
of features—the semantic, the statistical, and the structural features—to represent vulner-
ability characteristics. For the semantic features, we apply the MLM pre-training task of
the RoBERTa model to assembly language to train our language model and then generate
instruction embeddings through it. To combine more comprehensive semantics, we design
a 56-dimensional statistical feature and a structural feature to integrate instruction counts
and CFG structures. We implement this prediction model as a prototype named SAViP.
Experiments show that SAViP outperforms the state-of-the-art method V-Fuzz in vulnera-
bility prediction by 10% and 13% in recall and accuracy, respectively. SAViP automatically
predicts vulnerabilities without prior vulnerability patterns predefined by security ex-
perts, which provides an effective method to detect vulnerabilities and reduces the burden
on researchers.

Author Contributions: Methodology, X.Z.; Software, B.D. and X.W.; Formal analysis, P.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National University of Defense Technology Research
Project (ZK20-17, ZK20-09), the National Natural Science Foundation China (62272472, 61902405),
the HUNAN Province Natural Science Foundation (2021JJ40692), the National Key Research and
Development Program of China under Grant No. 2021YFB0300101, and the National High-level
Personnel for Defense Technology Program (2017-JCJQ-ZQ-013).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. SonarQube. Available online: https://www.sonarqube.org/ (accessed on 7 January 2022).
2. DeepScan. Available online: https://deepscan.io/ (accessed on 7 January 2022).
3. Reshift Security. Available online: https://www.reshiftsecurity.com/ (accessed on 7 January 2022).
4. Wang, S.; Liu, T.; Tan, L. Automatically Learning Semantic Features for Defect Prediction. In Proceedings of the 2016 IEEE/ACM

38th International Conference on Software Engineering, Austin, TX, USA, 14–22 May 2016; pp. 297–308.
5. Li, Z.; Zou, D.; Xu, S.; Ou, X.; Jin, H.; Wang, S.; Deng, Z.; Zhong, Y. VulDeePecker: A deep learning-based system for vulnerability

detection. In Proceedings of the 25th Network and Distributed System Security Symposium, San Diego, CA, USA, 18–21 February
2018; pp. 1–15.

6. Wang, S.; Liu, T.; Nam, J.; Tan, L. Deep Semantic Feature Learning for Software Defect Prediction. IEEE Trans. Softw. Eng. 2020, 46,
1267–1293. [CrossRef]

7. Luo, Z.; Wang, P.; Wang, B.; Tang, Y.; Xie, W.; Zhou, X.; Liu, D.; Lu, K. VulHawk: Cross-architecture Vulnerability Detection with
Entropy-based Binary Code Search. In Proceedings of the 2023 Network and Distributed System Security Symposium, San Diego,
CA, USA, February 2023.

8. Zheng, J.; Pang, J.; Zhang, X.; Zhou, X.; Li, M.; Wang, J. Recurrent Neural Network Based Binary Code Vulnerability Detection. In
Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence, Hong Kong, China,
20–22 December 2019; pp. 160–165.

9. Han, W.; Pang, J.; Zhou, X.; Zhu, D. Binary vulnerability mining technology based on neural network feature fusion. In
Proceedings of the 2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering
(AEMCSE), Wuhan, China, 22–24 April 2022; pp. 257–261.

10. Duan, B.; Zhou, X.; Wu, X. Improve vulnerability prediction performance using self-attention mechanism and convolutional neural
network. In Proceedings of the International Conference on Neural Networks, Information, and Communication Engineering
(NNICE), Guangzhou, China, June 2022.

11. Tian, J.; Xing, W.; Li, Z. BVDetector: A program slice-based binary code vulnerability intelligent detection system. Inf. Softw.
Technol. 2020, 123, 106289. [CrossRef]

12. Li, Y.; Ji, S.; Lyu, C.; Chen, Y.; Chen, J.; Gu, Q. V-Fuzz: Vulnerability-Oriented Evolutionary Fuzzing. arXiv 2019, arXiv:1901.01142.
13. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781.

https://www.sonarqube.org/
https://deepscan.io/
https://www.reshiftsecurity.com/
http://doi.org/10.1109/TSE.2018.2877612
http://dx.doi.org/10.1016/j.infsof.2020.106289

Appl. Sci. 2023, 13, 2271 17 of 17

14. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D. Roberta: A robustly optimized bert pretraining approach. arXiv 2019,
arXiv:1907.11692.

15. Intel. Available online: https://software.intel.com/en-us/articles/intel-sdm (accessed on 7 January 2022).
16. Feng, Q.; Zhou, R.; Xu, C.; Cheng, Y.; Testa, B.; Yin, H. Scalable graph-based bug search for firmware images. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications Security, New York, NY, USA, 24–28 October 2016;
pp. 480–491.

17. Dai, D.H.; Dai, B.; Song, L. Discriminative embeddings of latent variable models for structured data. In Proceedings of the
International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 2702–2711.

18. Software Assurance Reference Dataset. Available online: https://samate.nist.gov/SRD/testsuite.php (accessed on 7 January 2022).
19. Zou, D.; Wang, S.; Xu, S.; Li, Z.; Jin, H. µVulDeePecker: A Deep Learning-Based System for Multiclass Vulnerability Detection.

IEEE Trans. Dependable Secur. Comput. 2021, 18, 2224–2236. [CrossRef]
20. LLVM Compiler Infrastructure. Available online: https://llvm.org/docs/LangRef.html (accessed on 7 January 2022).
21. Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent neural network regularization. arXiv 2014, arXiv:1409.2329.
22. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H. Learning phrase representations using RNN

encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.
23. Rawat, S.; Jain, V.; Kumar, A.; Cojocar, L.; Giuffrida, C.; Bos, H. VUzzer: Application-aware Evolutionary Fuzzing. In Proceedings

of the 25th Network and Distributed System Security Symposium, San Diego, CA, USA, 26 February–1 March 2017; Volume 17,
pp. 1–14.

24. Zhang, G.; Zhou, X.; Luo, Y.; Wu, X.; Min, E. Ptfuzz: Guided fuzzing with processor trace feedback. IEEE Access 2018, 6,
37302–37313. [CrossRef]

25. Song, C.; Zhou, X.; Yin, Q.; He, X.; Zhang, H.; Lu, K. P-fuzz: a parallel grey-box fuzzing framework. Appl. Sci. 2019, 9, 5100.
[CrossRef]

26. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826.
27. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
28. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, AN. Attention is all you need. In Proceedings of the

Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4 December 2017; pp. 5998–6008.
29. Kumar, S.; Chaudhary, S.; Kumar, S.; Yadav, R.K. Node Classification in Complex Networks using Network Embedding

Techniques. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems, Coimbatore,
India, 10–12 June 2020; pp. 369–374.

30. Mithe, S.; Potika, K. A unified framework on node classification using graph convolutional networks. In Proceedings of the 2020
Second International Conference on Transdisciplinary AI, Irvine, CA, USA, 21–23 September 2020; pp. 67–74.

31. Deylami, H.A.; Asadpour, M. Link prediction in social networks using hierarchical community detection. In Proceedings of the
2015 7th Conference on Information and Knowledge Technology, Urmia, Iran, 26–28 May 2015; pp. 1–5.

32. Abbasi, F.; Talat, R.; Muzammal, M. An Ensemble Framework for Link Prediction in Signed Graph. In Proceedings of the 2019
22nd International Multitopic Conference, Islamabad, Pakistan, 29–30 November 2019; pp. 1–6.

33. Ting, Y.; Yan, C.; Xiang-wei, M. Personalized Recommendation System Based on Web Log Mining and Weighted Bipartite Graph.
In Proceedings of the 2013 International Conference on Computational and Information Sciences, Shiyang, China, 21–23 June
2013, pp. 587–590.

34. Suzuki, T.; Oyama, S.; Kurihara, M. A Framework for Recommendation Algorithms Using Knowledge Graph and Random
Walk Methods. In Proceedings of the 2020 IEEE International Conference on Big Data, Atlanta, GA, USA, 10–13 December 2020;
pp. 3085–3087.

35. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014.

36. Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016.

37. Cao, S.; Lu, W.; Xu, Q. Grarep: Learning graph representations with global structural information. In Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, 18–23 October 2015.

38. Hex-Rays. Available online: https://www.hex-rays.com/products/ida/ (accessed on 7 January 2022).
39. Networkx. Available online: https://networkx.org/ (accessed on 7 January 2022).
40. Xu, X.; Liu, C.; Feng, Q.; Yin, H.; Song, L.; Song, D. Neural network-based graph embedding for cross-platform binary code

similarity detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas,
TX, USA, 30 October–3 November 2017; pp. 363–376.

41. Han, W.; Joe, B.; Lee, B.; Song, C.; Shin, I. Enhancing memory error detection for large-scale applications and fuzz testing. In
Proceedings of the 25th Network and Distributed System Security Symposium, San Diego, CA, USA, 18–21 February 2018; pp. 1–47.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://software.intel.com/en-us/articles/intel-sdm
https://samate.nist.gov/SRD/testsuite.php
http://dx.doi.org/10.1109/TDSC.2019.2942930
https://llvm.org/docs/LangRef.html
http://dx.doi.org/10.1109/ACCESS.2018.2851237
http://dx.doi.org/10.3390/app9235100
https:// www.hex-rays.com/products/ida/
https://networkx.org/

	Introduction
	Related Work
	Vulnerability Prediction
	Intermediate Representation
	Pre-Training Language Model
	Graph Neural Network (GNN)

	Vulnerability Prediction Model
	Overview
	Semantic Features
	Tokenization
	Pre-Training
	Dynamic Masking
	Outputs

	Statistical Features
	Structural Features
	Model Structure
	Model Training

	Evaluation
	Dataset
	Environment
	Evaluation Metrics
	Model Performance
	Ablation Study
	Parameter Analysis
	Semantic Features
	Statistical Features
	Structural Features

	Conclusions
	References

