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Abstract: The stability and Hopf bifurcation of gene expression models with a mechanism of delayed
state feedback are considered. An effective algorithm for the calculations on the delay stable interval
of the equilibrium point, the direction, and stability of the bifurcating periodic solution is also
proposed. The τ-decomposition strategy is applied to tackle the issue of local stability, and the
explicit formula for the delay stable interval is provided. In addition, the asymptotical behaviors of
the bifurcation solutions are investigated by the center manifold theorem and normal form theory. The
direction and stability of the Hopf bifurcation are determined naturally. In addition, a subtle bilinear
form of the adjoint system is proposed to calculate the bifurcation parameters directly. Finally, the
correctness and effectiveness of our results and algorithm are verified by typical numerical examples.
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1. Introduction

Gene expression refers to the interaction and restriction between genes, which in-
volves the growth and development rules, morphological, and structural characteristics,
and biological functions of plants and animals. If people master the mechanism of gene
regulation and understand the concept of gene expression, it means they have mastered
a key to unlock the secrets of biology. During the process of gene expression, a series of
complex interactions occur between genes and proteins, which inevitably involve time
delays between transcription and translation, resulting in the equilibrium and oscillation
of the system. During this process, genes produce proteins, which in turn inhibit gene
expression. We refer to this feedback as gene expression [1].

The model studied in this paper is similar to the literature [2]. As the first step
in gene expression, transcription is catalyzed and regulated by DNA-dependent RNA
polymerases whose function is to transfer genetic information from DNA strands to RNA
strands. Numerous proteins called transcription factors are involved in the regulation
of transcription. The mRNA generated by transcription acts as a blueprint for protein
synthesis during translation. Translation is another and final step in gene expression that
leads to protein synthesis. The protein then diffuses back into the nucleus, inhibiting
transcription. Specifically, cells can regulate the levels of mRNA and protein concentrations
by turning on and off specific gene transcription as a process, also known as feedback
repression, in which gene expression is regulated by its own protein products. This feedback
mechanism occurs when the protein returns to the nucleus to stop the transcription of its
own mRNA by binding to the promoter site of the gene. Previous findings have shown
that there are time delays in this feedback mechanism. These delays naturally occur as
transcriptional delays (the time required for a gene to be copied into mRNA) and translation
delays (the time required for the ribosome to translate mRNA into protein). Furthermore,
it is sufficient for this article to consider only transcriptional time delays. Among them,
the diagram of gene transcriptional translation is given in the first section of [2], making it
more visual.
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How to determine time delay in gene expression and their mechanisms in gene reg-
ulatory networks, and how to better regulate them, has naturally become a hot topic for
many molecular biologists, systems biologists, and computational biologists. Goodwin [3]
first studied the negative feedback gene expression model and simulated the differential
equations governing enzyme synthesis by feedback inhibition, and the results showed the
existence of nonlinear oscillations. Mackey [4] linked the occurrence of diseases with bifur-
cation dynamics and believed that there was a large class of dynamic diseases, which could
control the operation of the system normally in the physiologic boundary area producing
pathological behavior. It proved that there were periodic and non-periodic dynamics in
the mathematical model of the physiologic system. Hori and Kim [5] investigated the
conditions for the existence of periodic oscillations in large-scale cyclic gene regulatory net-
works, proved the local instability of the equilibrium point using the Poincaré–Bendixson
theorem for cyclic systems, and proposed that systems can be composed of any number of
genes in a large-scale cyclic gene regulatory network. John [6] considered a protein that
repressed the transcription of its genes, noting that time delays cause negative feedback
control to repeatedly overshoot and drop to steady state. We were inspired by the literature
on the center manifold theorem. Wei and Yu [2] investigated the dynamics of a gene ex-
pression model with time delay and established the global existence of periodical solutions
by using the center manifold theorem. Cao and Jiang [7] selected the transcription rate
as the bifurcation parameter and performed nonlinear analysis by the center manifold
theorem to verify the stability of the system at the critical value of the parameter. Wang
and Yang [8] considered only time delay as a bifurcation parameter to study the gene
regulatory network model, and determined explicit formulas for Hopf bifurcation direction
and stability using the center manifold theorem. It was observed that noise plays a role
in stabilizing an otherwise unstable oscillatory system. Djilali and Bentout [9] analyzed
the behavior of the diffusive predator prey model using the regular form and establish
the stability of the flush-periodic and non flush periodic solutions generated by the Hopf
bifurcation. Soufiane and Touaoula [10] give sufficient conditions for the global asymptotic
stability of free equilibrium related to the fundamental reproduction number. In addition,
the global asymptotic stability in the presence of local equilibrium points is proved by using
the Liapunov generalized function. Rand [11] gave an explicit expression for the radius
of the limit cycle arising from Hopf bifurcation in a class of first-order differential delay
equations with constant coefficients by Lindstedt’s method. Verdugo and Rand [1] applied
the first-order nonlinear Lindstedt’s method he had previously studied in the model of
gene transcription and protein synthesis and obtained a closed approximate expression of
vibration amplitude and frequency. Alfifi [12] studied the solution of the one-dimensional
reaction-diffusion equation by the Galerkin technique and investigated the effect of the
free parameters in this model, and the results showed that they can destabilize or stabilize
the solution of the equation. In addition, Lindstedt’s method in the perturbation theory
is applied in the study of bifurcation. Verdugo [13] analyzed a delay differential equation
with negative feedback, obtained amplitude and frequency using the multiple scale method
of nonlinear analysis, and studied the importance of a balanced ratio between the synthesis
rate and degradation rate in the presence of the periodical solution. Das and Chatterjee [14]
studied the small perturbation problem of time–delay differential equations approximating
Hopf bifurcation points and demonstrated the effectiveness of multi-scale methods. Li
and Liu [15] proposed that time delay can change the level of Hes1 protein concentration,
and pointed out that high steady-state Hes1 is susceptible to time delay, which excites
oscillatory behavior. Shih and Yang [16] applied a factorization method to the characteristic
polynomial of the bifurcation point of the negative feedback model to obtain the frequency
of Hopf bifurcation, and then determined the stability of the periodic solution of Hopf
bifurcation. Eva and Ileana [17] took the fractional order as the bifurcation parameter and
proposed that Hopf bifurcation occurs only when the number of suppressor genes is odd
based on the stability analysis. For further understanding, please refer to [18–29].
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There are basically two types of genetic network models, namely Boolean (or discrete)
models and differential equation models (or continuous models). In this paper, the differ-
ential equation model is chosen to describe the concentration of gene products in terms
of variables more accurately and to provide more detailed information on the behavior of
nonlinear dynamics.

Inspired by the above work, this paper studies a gene expression model:

Ṁ(t) = k
1+(P(t−τ)/p0)n − µM(t)

Ṗ(t) = M(t)− dP(t)
(1)

where M(t) and P(t) represent the density of mRNA and protein, k is the initiation rate of
transcription in the absence of the associated protein, µ and d denote the degradation rates
of mRNA and protein, respectively, τ is the node delay caused by transcription, and n is
called Hill coefficients.

The model is derived from [23] and can be traced back to [30,31]. The time dependence
of the variables is shown explicitly in [31], but the delay differential equation in the text is
not solved analytically, but only numerically. It is only based on some numerical simulations
and does not give a rigorous mathematical proof of the Hopf bifurcation, and the direction
of the Hopf bifurcation is not discussed in the paper. In addition, the effect of transcriptional
parameters on the system was not considered in [23].

In this paper, we discuss the effect of transcription parameters for time delay, which
we use as a static delay state feedback control gain. We adopt the τ-decomposition method,
which can quickly and accurately solve the equilibrium point and critical delay of the
system. The results show that the critical value of delay is related to the static state delay
feedback control. In the nonlinear part of the system, the center manifold theorem is
combined with this paper, different from the nonlinear methods in other papers, such as
Lindstedt’s method, perturbation method, or multiple scale method; these methods are
more complicated and require a great deal of calculation. This paper encapsulates and
simplifies the formulation based on the center manifold theorem. It can make the analysis
of the nonlinear part clearer and more concise.

The remainder of this article is organized as follows: In Section 2, we make a prelimi-
nary analysis of the system and give a brief description of the τ-decomposition method.
In Section 3, we have two conclusions, one is the linear part, and we use τ-decomposition
to analyze the distribution of the characteristic equations associated with this model and
obtain the existence of local Hopf bifurcations. In addition, the other is the nonlinear part,
which uses the center manifold theorem to determine the direction of the Hopf bifurcation
and the stability of the bifurcation period. In Section 4 section, numerical examples and
simulation plots are given to confirm our theoretical results. Finally, in Section 5, we discuss
our findings.

2. Problems Statement and Preliminaries

In this section, the main focus is on the introduction of the basic theory of the equations.
The main goal of this section is to give a friendly introduction to the mathematical theory
behind the rest of the paper. In this section, we will focus on the τ-decomposition method.
Before introducing the method, we also focus on giving an explanation of the linearization
part of the system.

2.1. Initial Knowledge Preparation

It is not difficult to prove that the system has a unique equilibrium point (Me, Pe). The
equilibrium point is found by making both equations of the system equal to zero. The
calculation process uses the zero point theorem, derivatives, etc. The specific procedure
is not described in this section. Introducing two new variables m(t) = M(t)− Me and
p(t) = P(t)− Pe, system (1) becomes
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ṁ(t) = k
1+((p(t−τ)+Pe)/p0)n − µ(m(t) + Me)

ṗ(t) = m(t) + Me − d(p(t) + Pe)
(2)

It can be seen that Equation (2) is modeled based on Equation (1) by moving the
equilibrium point of the system to the origin.

In general, it is very important to consider the linear part of the system, and we study
the local stability of the system by the linear equation of the system and consider the Hopf
bifurcation on this basis. Therefore, for the study of the linear part of the system, it is
necessary to turn system (2) into system (3), and we have the following matrix to represent
the linear part of the system:

ṁ(t) = −µm(t)− Kp(t− τ)
ṗ(t) = m(t)− dp(t)

(3)

within the static delayed state feedback control gain K = knβ

Pe(1+β)2 , and β = (Pe/p0)
n.

The system (3) can be written as the following matrix equation:

u̇(t) = Au(t) + Bu(t− τ) (4)

within

A =

[
−µ 0
1 −d

]
, B =

[
0 −K
0 0

]
and u(t) =

[
m(t)
p(t)

]
and the corresponding characteristic polynomial of Equation (4) is

P(λ) = det(λI − A− Be−τλ) (5)

Substituting the values of the matrix into Equation (5), we can obtain the characteristic
polynomial of the system, which is

P(λ) = λ2 + (µ + d)λ + µd + Ke−τλ (6)

A sufficient and necessary condition for the stability of the above linear system is that
all eigenvalues lie on the left half-plane of the complex plane. In terms of the calculation of
the stability interval of the system with delay, we consider the τ-decomposition strategy to
be an efficient computational method.

2.2. On the τ-Decomposition Strategy

For the analysis of local asymptotic stability of time delay systems, the τ-decomposition
strategy is a better choice. This strategy takes the time delay as the variable parameter, first
divides the delay τ-axis into intervals with essentially the same stability characteristics
within each interval, and then determines the stability switch by the crossover behavior at
the endpoints of the interval.

The τ-decomposition strategy has two main points. The first is to compute the pure
imaginary roots (PIR) corresponding to the characteristic polynomial.

The characteristic equation can be simply written as follows by introducing polynomi-
als A(·) and C(·) to represent the characteristic polynomial

P(λ) = A(λ) + C(λ)e−τλ = 0 (7)

Let λ = ±ωj be substituted in Equation (7), and we have the following two equations:{
A(ωj) + C(ωj)e−τωj = 0
A(−ωj) + C(−ωj)eτωj = 0

deriving the formula about eτωj
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eτωj = − C(−ωj)
A(−ωj),

then

|A(ωj)|2 = |C(ωj)|2 (8)

where Equation (8) indicates that the two modal values are equal.
Another purpose is to determine whether the intersection of endpoints is stable or not.

This is related to the direction of the crossover on each PIR. Assume that the positive roots
ω1, ω2, . . . , ωp of P(λ) = 0 are distinct and let ω1 > ω2 > . . . > ωp > 0. Then, the crossing
direction at the largest root ω1 is always to the right; at ω2, it is always to the left, and so on.
If there is only one positive root ω1, we see that all crossings are to the right. If there are
two positive roots ω1 and ω2, the crossings are to the right at ω1 but to the left at ω2 [18].

3. Main Results

In this section, we study two aspects, which are local stability analysis and Hopf
bifurcation. In one of them, in the study of local stability, we obtain the values of specific
critical time lags. In addition, in the study of Hopf bifurcation, we focus on the direction
and type as well as the stability of the solution.

3.1. Local Stability and Hopf Bifurcation

In this subsection, we focus on the stability of the system at the equilibrium point and
the conditions required for a Hopf bifurcation to occur. The discussion of local stability
first requires us to obtain the value of the critical time delay. As described above in the first
work on the τ-decomposition method, we need to compute the pure imaginary roots. For
the pure imaginary roots of the system, we give the following lemma.

Lemma 1. Assuming that K > µd, the transcendental equation has only one purely imaginary
root (PIR), where

ω0 = (
1
2
(−µ2 − d2 +

√
(µ2 − d2)2 + 4K2))

1
2 (9)

Proof of Lemma 1. The characteristic polynomial of the system (3) is

P(λ) = λ2 + (µ + d)λ + µd + Ke−τλ

Introducing A and C concerning λ to represent the characteristic polynomial,

A(λ) = λ2 + (µ + d)λ + µd, C(λ) = K

Since conjugated complex roots appear symmetrically, we only need to consider
positive pure imaginary roots, set λ = ωj, and we can obtain

A(ωj) = −ω2 + (µ + d)ωj + µd, C(ωj) = K

We use the method to obtain the following equation:

ω4
0 + µ2ω2

0 + d2ω2
0 + µ2d2 − K2 = 0

and the solution of this equation is

ω0 = (
1
2
(−µ2 − d2 +

√
(µ2 − d2)2 + 4K2))

1
2

Thus, we obtain the result in (9).
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On the other hand, the cross direction around ω0 j is always to the right, which is
explicitly mentioned in the exposition of the τ-decomposition method. Therefore, as for
the local stability of system in (3), it is stated below.

Theorem 1. The equilibrium point (Me, Pe) of system (3) is exponentially stable for τ ∈ [0, τ0),
and τ0 is a Hopf bifurcation point, within

τ0 =
θ0

ω0
(10)

in which θ0 = ∠(ω2
0 + (µ + d)ω0 j− µd), ∠ is arg (argument of a complex number). Moreover,

τ0 is a Hopf bifurcation point for the system in (3).

Proof of Theorem 1. Lemma 1 tells us that there is only one pair of jω0 in the characteristic
polynomial, which is the root of the characteristic equation, and then we have

−ω2
0 + (µ + d)ω0 j + µd + Ke−τ0ω0 j = 0

We can obtain an expression for eτ0ω0 j

eτ0ω0 j =
K

ω2
0 − (µ + d)ω0 j− µd

Furthermore, the following formula can be obtained:

τ0ω0 = −∠(ω2
0 − (µ + d)ω0 j− µd)

Therefore,

τ0 =
∠(ω2

0 + (µ + d)ω0 j− µd)
ω0

Thus, we obtain the result in (10). On the other hand, we will explain the reason why
τ0 is a Hopf bifurcation point.

At τ = τ0, it only corresponds to a pair of pure imaginary roots ±ω0 j. In addition,
when τ → τ−0 , all roots lie on the left half plane, but when τ = τ0, the root lies on the
imaginary axis, at this time, all other roots lie on the left half plane, that is, Re(τ0) < 0.
Moreover, since there is only one pair of the pure imaginary root, the crossing direction
must be to the right, so we think α

′
(0) > 0.

3.2. Direction and Stability of Bifurcating Periodic Solutions

In this section, we will consider the bifurcation solution of the system (1). In addition,
we use the time delay τ as a bifurcation parameter. The system Equation (1) can be rewritten
by Taylor expansion as follows:

ṁ(t) = −Kp(t− τ)− µm(t) + h2 p2(t− τ) + h3 p3(t− τ)
ṗ(t) = m(t)− dp(t)

(11)

We could write system (11) as the matrix form

u̇(t) = Au(t) + Bu(t− τ) + F (12)

within,

F =

[
f1
f2

]
=

[
h2 p2(t− τ) + h3 p3(t− τ)

0

]
within h2 = βn(βn−n+β+1)

2(β+1)3 p2
e

, h3 = βn[6βn(1+β)(n−1)−(n−1)(n−2)(1+β)2−6(βn)2]

6(β+1)4 p3
e

.
In order to apply Hopf bifurcation theorem, it is necessary to turn Equation (12) to

abstract differential equations, and the notation ut(θ) is introduced:
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ut(θ) = u(t + θ) =

[
m(t + θ)
p(t + θ)

]
, − τ ≤ θ ≤ 0 (13)

Equation (13) can induce the differential operator:

Lut(θ) =


dut(θ)

dθ , − τ ≤ θ < 0∫ 0
−τ dη(θ)ut(θ), θ = 0

(14)

where L is a continuous linear function mapping C into R2, and η is an 2× 2 matrix function
of bounded variation

dη(θ) = [Aδ(θ) + Bδ(θ + τ)]dθ

and, within δ(·), is the Dirac delta function.
It should be noted that, in the form of the following inner product [19], we can derive

the conjugate linear operator of this linear operator

< µ∗, υ >= µ̄∗T(0)υ(0) +
∫ 0

−τ
µ̄∗T(ξ + τ)Bυ(ξ) (15)

and the conjugate linear operator is shown below

L∗u∗t (θ) =


− du∗t

dθ , − τ ≤ θ < 0∫ 0
−τ dηT(θ)u∗t (−θ), θ = 0

(16)

with

dηT(θ) = [ATδ(θ) + BTδ(θ + τ)]dθ

Therefore, Equation (14) serves as the boundary value condition of the differential
operator, and the following abstract differential equation can be derived

u̇(t) = Lut + Fut (17)

within, the nonlinear part in Equation (17) goes

F(ut) =


[

0
0

]
, − τ ≤ θ < 0[

fw
0

]
, θ = 0

(18)

with fw = h2 p2(t− τ) + h3 p3(t− τ) in Equation (18).
According to the theory of eigendecomposition, what we need to calculate is the eigen-

vector q(θ) corresponding to jω0 of the linear operator L. We give the following lemma.

Lemma 2. q(θ) is encoded in Equation (14) as the eigenvector of L, associated with jω0 and satis-
fying

q(θ) =
[

q1
1

]
ejω0θ (19)

within q1 = jω0 + d

Proof of Lemma 2. From Equation (14), we can see that, when the range of θ is [−τ, 0),
the action of the linear operator L can be colloquially understood as taking the derivative.
In addition, in the linear part of the system analyzed earlier, the differential operator
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corresponds to the eigenvalue of ±jω0, we denote the associating eigenvector L with jω0,
and we can obtain the following formula:

q(θ) = q(0)ejω0θ

and, when θ = 0, the action of the linear operator L is equivalent to the differentiation,
from which we can derive the following characteristic equation:

Lq(θ) = jω0q(θ) = jω0q(0)ejω0θ

The above formula is expanded as

Aq(0) + Bq(0)e−jω0τ0 = jω0q(0)

thus

−µq1 − Kq2e−jω0τ0 = jω0q1

q1 − dq2 = jω0q2

Set q2 = 1, then q1 = jω0 + d,

q(θ) = q(0)ejω0θ =

[
q1
1

]
ejω0θ , q1 = jω0 + d

Thus, we obtain the result in (19).

In addition, corresponding to the above discussions, there is the following statement
for conjugate eigenvectors.

Lemma 3. q∗(θ) is encoded as an adjoint eigenvector of L∗ in Equation (16) associating with−jω0
and such that

q∗(θ) = D̄
[

1
q∗2

]
ejω0θ (20)

within q∗2 = −jω0 + µ, D = 1
<q,q∗1>

= 1
µ+d−2jω0−τKejω0τ0

Proof of Lemma 3. From Equation (16), we can observe a statement similar to the above,
that is, when the range of θ is [−τ, 0), the action of the conjugate linear operator L∗ can be
colloquially understood as taking the derivative, and −jω0 is an eigenvalue of L∗, we can
obtain the following equation:

q∗1(θ) = q∗1(0)e
−jω0θ

and, when θ = 0, the action of the conjugate linear operator L∗ is equivalent to the
differentiation, from which we can derive the following characteristic equation:

L∗q∗1(θ) = −jω0q∗1(θ) = −jω0q∗1(0)e
jω0θ

Expanding the above formula, we can obtain the adjoint matrix equation

ATq∗1(0) + BTq∗1(0)e
jω0τ0 = −jω0q∗1(0)

thus

−µq∗01 + q∗2 = −jω0q∗01

−dq∗2 − Kq∗01ejω0τ0 = −jω0q∗2
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Setting q∗01 = 1, we have q∗2 = −jω0 + µ,

q∗1(θ) = q∗1(0)e
−jω0θ =

[
1
q∗2

]
e−jω0θ

In this case, the q∗1(θ) is not the normal orthogonal basis; in order to construct manifold
near the origin C(µ) on the manifold C(0), µ = 0 coordinate system, we need to normalize
it by introducing the inner product form references Equation (15), and the normalized
eigenvector q∗(θ) = Dq∗1(θ) should be such that < q∗, q >= 1, and we have

< q, q∗1 >= q̄∗1
T
(0)q(0) + ejω0τ0 q̄∗1

T
(0)Bq(0) =

1
D̄

thus

D =
1

< q, q∗1 >
=

1
µ + d− 2jω0 − τKejω0τ0

Thus, we obtain the result in (20).

In the above procedure, we give the adjoint form and the adjoint equation of the
solution operator to the similarity transformation, and q(θ) and q∗(θ) can be obtained.
Then, we can use the conjugate eigenvector q∗(θ) to project the central epidemic. After
determining the accompanying vectors, the solution space can be divided into central and
stable manifolds Like in literature [7], we define

z =< q∗, ut > (21)

and

y(t, θ) = ut(θ)− z(t)q(θ)− z̄(t)q̄(θ) (22)

The solution of the system is composed of popular linear combinations, z is the
projected solution at time t, and y is a high-order term.

Lemma 4. The evolution of z concerning time t satisfies the following form:

ż(t) = jω0z + g20z2 + g11zz̄ + g02z̄2 + g21z2z̄ + · · · (23)

in which
g20 = D̄ f20, g11 = D̄ f11, g02 = D̄ f02 , and g21 = D̄ f21 (24)

within
f20 = 2h2e−2jω0τ0

f11 = 2h2
f02 = 2h2e2jω0τ0

f21 = 2[2h2e−jω0τ0 y(2)11 (−τ) + h2ejω0τ0 y(2)20 (−τ) + 3h3e−2jω0τ0 ]

Proof of Lemma 4. Near the origin O, take q and q̄ as local coordinate direction, and z(t)
and z̄(t) is the manifold manifold in the C. Based on Equations (21) and (23), we can derive
the following equation:

ż(t) = < q∗, u̇t >=< q∗, Lut + Fut >

= jω0z(t) + q̄∗T(0)Fut(0)

= jω0z + D̄
[
1 q̄∗2

][ fw
0

]
= jω0z + D̄

[
1 q̄∗2

][
F20z2 + F11zz̄ + F02z̄2 + F21z2z̄ + · · ·

]
in which
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F20 =

[
f20
0

]
, F11 =

[
f11
0

]

F02 =

[
f02
0

]
, F21 =

[
f21
0

]
the center manifold theorem, and Equation (22) shows

y(t, θ) =
1
2

y20(θ)z2(t) + y11(θ)z(t)z̄(t) + · · ·

By definition, we know

ut(θ) = z(t)q(θ) + z̄(t)q̄(θ) +
1
2

y20(θ) + y11(θ)zz̄ + · · ·

According to Equation (13),

ut(θ) =

[
mt(θ)
pt(θ)

]
=

[
m(t + θ)
p(t + θ)

]
then, we can convert the system into the form of u

m(t) = m(t + 0) = u(1)
t (0)

p(t) = p(t + 0) = u(2)
t (0)

m(t− τ) = m(t + (−τ)) = u(1)
t (−τ)

p(t− τ) = p(t + (−τ)) = u(2)
t (−τ)

within

u(2)
t (−τ) = zq(2)(−τ) + z̄q̄(2)(−τ) +

1
2

y(2)20 (−τ)z2 + y(2)11 (−τ)zz̄

For our system, the nonlinearities have been sorted out earlier, and then we can obtain

h2 p2(t− τ) = h2(u2
t (−τ))2 =h2[zq(2)(−τ) + z̄q̄(2)(−τ) +

1
2

y(2)20 (−τ)z2 + y(2)11 (−τ)zz̄]2

h3 p3(t− τ) = h3(u2
t (−τ))3 =h3[zq(2)(−τ) + z̄q̄(2)(−τ) +

1
2

y(2)20 (−τ)z2 + y(2)11 (−τ)zz̄]3

so we can figure out the following

f20 = 2h2e−2jω0τ0

f11 = 2h2
f02 = 2h2e2jω0τ0

f21 = 2[2h2e−jω0τ0 y(2)11 (−τ) + h2ejω0τ0 y(2)20 (−τ) + 3h3e−2jω0τ0 ]

Thus, we have

g20 = q̄∗T(0) f20 = D̄ f20

g11 = q̄∗T(0) f11 = D̄ f11

g02 = q̄∗T(0) f02 = D̄ f02

g21 = q̄∗T(0) f21 = D̄ f21

Thus, we obtain the result in (24).

It is easy to see that g20, g11andg02 can be determined directly from the system param-
eters. However, the result of g21 is closely related to the calculation of y11, y20.
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Therefore, we summarized the calculations on y20(−τ) and y11(−τ) in the follow-
ing lemma.

Lemma 5 ([19]). The coefficients y(2)20 (−τ), y(2)11 (−τ) of the center manifold y(t) are such that

y(2)20 (−τ) =
2j
ω

D̄h2e−4jωτ +
2j
3ω

Dh2 + C202e−2jωτ (25)

y(2)11 (−τ) =− 2j
ω

D̄h2e−jωτ +
2j
ω

Dh2ejωτ + C112, (26)

in which

C20 =

[
2jω0 + τ0µ τ0Ke−2jω0τ0

−τ0 2jω0 + τ0d

]−1[ f20
0

]
=

[
C201
C202

]

C11 = − 1
τ0

[
−µ −K
1 −d

]−1[ f11
0

]
=

[
C111
C112

]
.

According to Equations (25) and (26), up to this point, we can obtain all expressions of
gij. Therefore, we have the following theorem about the nonlinear dynamics of the system.

For applying the Hassard formula,
µ2 = −Re[C1(0)]

α′(0)]

τ2 = − Im[C1(0)] + µ2ω′(0)
ω0

β2 = 2Re[C1(0)]

(27)

with

C1(0) =
j

2ω0
[4h2

2D̄2e−2jω0τ0 − 4h2|D̄|2 −
2
3

h2|D̄e2jω0τ0 |2]

+ 2h2D̄e−jω0τ0 y(2)11 (−τ) + h2ejω0τ0 y(2)20 (−τ) + 3h3e−jω0τ0

It is noticed that all the bifurcation parameters can be determined in a systematic way,
with the value of

− ∂P/∂τ

∂P/∂λ

∣∣∣(τ0,jω0)
= α′(0) + ω′(0)j

Theorem 2. In Formulas (27), µ2 determines the direction of the bifurcation; if µ > 0 (<0), the
periodic solution is called supercritical (subcritical). τ2 determines the period of the periodic solution
of the bifurcation; if τ2 > 0 (<0), then the period increases (decreases). β2 determines the stability of
the periodic solution. If (β2 < 0) (>0), the periodic solution is asymptotically stable (unstable).

4. Numerical Examples

In this section, we will apply a typical example from other literature to verify the
correctness and validity of our results. All numerical calculations are performed by MAT-
LAB. Moreover, the analysis shows that our technique is a reliable approach to solve the
nonlinear dynamics of gene expression systems.

Example 1. The typical example comes from [2], and it should be pointed out that this example is a
special case in the study of this article

ṁ(t) = k
1+(p(t−τ)/40)4 − 0.16m

ṗ(t) = m− 0.1p
(28)
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µ = 0.16 and d = 0.1 denote the degradation rates of mRNA and protein, respectively, where
p0 = 40 is a reference concentration of protein n = 4.

The associating characteristic polynomial (6) is

λ2 + 0.26λ + 0.016 + Ke−τλ

In the following, we will discuss the special case when k = 1. Lemma 1 tells us that

ω0 = 0.0990

and Theorem (1) leads us to the critical delay

τ0 = 18.2674

and
Reλ

′
(τ0) = 0.00092

Our simulation diagram gives the time delay stability interval, through the previous theoretical
calculation, and the interval we calculated is consistent with the interval in the simulation, and both
aspects can verify each other.

We take the root trajectory Figure 1, and we find that, at τ < 18.2674, the system is stable
since the eigenroots all have negative real parts. In addition, a pair of pure imaginary roots crosses
the imaginary axis at τ0 = 18.2674, resulting in the unstable oscillation of the system, that is, Hopf
bifurcation. Thus, there exists only one delay interval [0, 18.2674], for the system of gene expression.

Figure 1. The rightmost root loci versus delay τ.

The corresponding parameters are calculated as follows:
Lemmas 2 and 3 give the adjoint vectors as

q(θ) =
[

0.1000 + 0.0990j
1

]
ejω0θ

q∗(θ) =
[

1
0.2418 + 0.1192j

]
ejω0θ

Associating with Lemma 4, we obtain

H2 = 0.000111, H3 = 0.000024
g20 = −0.000011 + 0.00029j
g11 = 0.000142− 0.000254j
g02 = −0.000242 + 0.00016j
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Subsequently, Lemma 5 describes that y20 and y11 are such that

y(2)20 (−τ) = 0.001752 + 0.004121j
y(2)11 (−τ) = −0.001292

Thus, we have
g21 = −0.000182− 0.000049j

Therefore, it gives the bifurcation parameters

µ2 = 0.099129, τ2 = 0.003557 and β2 = −0.000182

Theorem 2 tells us that the Hopf bifurcation occurs at τ = 18.2674, and the direction of
bifurcation is supercritical.

In addition, we draw stable and unstable phase trajectory in Figures 2 and 3.

Figure 2. The stable phase trajectory with delay in a stable interval.

Figure 3. The two phase trajectories with delay in unstable intervals.

Furthermore, we took a representative point inside the stability interval, τ = 14; this time
delay represents that the system is stable. We drew a phase diagram according to this time lag, and
the track of the phase diagram finally converged to the origin, which also shows that the system is
stable. Then, it shows that we obtained this time lag, and it is indeed stable.
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At the same time, we took another point from the unstable interval. For τ = 21 in Figure 4,
we chose two different initial states. It is easy to see that both of the two phase trajectories are
convergent to the bifurcating periodic solution. It means that both phase trajectories are divergent,
and both are further and further away from the equilibrium point. In addition, this means that the
equilibrium points are unstable.

Finally, we took the bifurcation point, a special point, and found that the graph converges to
the limit ring. The bifurcation means that it starts from the initial state and finally converges more
and more to the limit ring, and no longer converges to the equilibrium point. At the beginning, the
system has the concept of equilibrium point, and as the time lag changes, it will bifurcate and the
original point becomes a circle. As is shown in Theorem 1, the τ0 = 18.2674 is the Hopf bifurcation
point. With τ = 18.2674, there is a periodic convergence phase trajectory.

Figure 4. The bifurcating phase trajectory with delay.

5. Conclusions

In this paper, we propose a unified framework for studying single genetic negative
feedback autoregulation systems with time delay. According to the τ-decomposition
strategy, the maximum value of the time delay stability bound is given. In addition, we
consider the time delay as a bifurcation parameter and prove that Hopf bifurcation occurs
when the delay passes this threshold. The direction and stability of the bifurcated periodic
orbits are studied using the central manifold theorem, the bilinear form and the projection
vector. In fact, the results we discuss can be directly applied to other fields related to
two-dimensional delay differential equations. Moreover, a numerical example partially
verifies the correctness and reliability of the obtained results.
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