Vojta Therapy and Conservative Physical Therapy versus Physical Therapy Only for Lumbar Disc Protrusion: A Comparative Cohort Study from Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Assessments
- The primary outcome measures
- The secondary outcome measures
2.3. Study Size
2.4. Statistical Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fjeld, O.R.; Grøvle, L.; Helgeland, J.; Småstuen, M.C.; Solberg, T.K.; Zwart, J.A.; Grotle, M. Complications, reoperations, readmissions, and length of hospital stay in 34 639 surgical cases of lumbar disc herniation. Bone Jt. J. 2019, 101-B, 470–477. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, T.H.; Lim, S.M. Prevalence of disc degeneration in asymptomatic korean subjects. Part 1: Lumbar spine. J. Korean Neurosurg. Soc. 2013, 53, 31–38. [Google Scholar] [CrossRef]
- Sasi Kuppuswamy, D.; George, J.C.; Chemmanam, M. Prevalence of lumbar disc herniation and disc degeneration in asymptomatic Indian subjects: An MRI based study. Int. J. Orthop. Sci. 2017, 3, 357–360. [Google Scholar] [CrossRef]
- Gilbert, J.W.; Martin, J.C.; Wheeler, G.R.; Storey, B.B.; Mick, G.E.; Richardson, G.B.; Herder, S.L.; Gyarteng-Dakwa, K.; Broughton, P.G. Lumbar disk protrusion rates of symptomatic patients using magnetic resonance imaging. J. Manip. Physiol. Ther. 2010, 33, 626–629. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; March, L.; Zheng, X.; Huang, J.; Wang, X.; Zhao, J.; Blyth, F.M.; Smith, E.; Buchbinder, R.; Hoy, D. Global low back pain prevalence and years lived with disability from 1990 to 2017: Estimates from the Global Burden of Disease Study 2017. Ann. Transl. Med. 2020, 8, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Balaji, V.R.; Chin, K.F.; Tucker, S.; Wilson, L.F.; Casey, A.T. Recovery of severe motor deficit secondary to herniated lumbar disc prolapse: Is surgical intervention important? A systematic review. Eur. Spine J. 2014, 23, 1968–1977. [Google Scholar] [CrossRef]
- Hartvigsen, J.; Hancock, M.J.; Kongsted, A.; Louw, Q.; Ferreira, M.L.; Genevay, S.; Hoy, D.; Karppinen, J.; Pransky, G.; Sieper, J.; et al. Lancet Low Back Pain Series Working Group. What low back pain is and why we need to pay attention. Lancet 2018, 391, 2356–2367. [Google Scholar] [CrossRef] [PubMed]
- Clavo, B.; Robaina, F.; Urrutia, G.; Bisshopp, S.; Ramallo, Y.; Szolna, A.; Caramés, M.A.; Fiuza, M.D.; Linertová, R. Ozone therapy versus surgery for lumbar disc herniation: A randomized double-blind controlled trial. Complement. Ther. Med. 2021, 59, 102724. [Google Scholar] [CrossRef]
- Szasz, S.; Popoviciu, H.V.; Papp, E.G.; Popa, C.; Ianosi, E.S.; Moldovan, G. Importance of TENS-transcutaneous electrical nerve stimulation therapy in acute low back pain. Osteoporos. Int. 2016, 27, S511. [Google Scholar]
- Tarcău, E.; Ianc, D.; Sirbu, E.; Ciobanu, D.; Boca, I.C.; Marcu, F. Effects of Complex Rehabilitation Program on Reducing Pain and Disability in Patients with Lumbar Disc Protrusion-Is Early Intervention the Best Recommendation? J. Pers. Med. 2022, 12, 741. [Google Scholar] [CrossRef]
- Yildirim, P.; Gultekin, A. The Effect of a Stretch and Strength-Based Yoga Exercise Program on Patients with Neuropathic Pain due to Lumbar Disc Herniation. Spine (Phila Pa 1976) 2022, 47, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, W.C.; van Tulder, M.; Arts, M.; Rubinstein, S.M.; van Middelkoop, M.; Ostelo, R.; Verhagen, A.; Koes, B.; Peul, W.C. Surgery versus conservative management of sciatica due to a lumbar herniated disc: A systematic review. Eur. Spine J. 2011, 20, 513–522. [Google Scholar] [CrossRef]
- Weinstein, J.N.; Lurie, J.D.; Tosteson, T.D.; Skinner, J.S.; Hanscom, B.; Tosteson, A.N.; Herkowitz, H.; Fischgrund, J.; Cammisa, F.P.; Albert, T.; et al. Surgical vs nonoperative treatment for lumbar disk herniation: The Spine Patient Outcomes Research Trial (SPORT) observational cohort. JAMA 2006, 296, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
- Lurie, J.D.; Tosteson, T.D.; Tosteson, A.N.; Zhao, W.; Morgan, T.S.; Abdu, W.A.; Herkowitz, H.; Weinstein, J.N. Surgical versus nonoperative treatment for lumbar disc herniation: Eight-year results for the spine patient outcomes research trial. Spine 2014, 39, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Atlas, S.J.; Keller, R.B.; Wu, Y.A.; Deyo, R.A.; Singer, D.E. Long-term outcomes of surgical and nonsurgical management of sciatica secondary to a lumbar disc herniation: 10 year results from the maine lumbar spine study. Spine 2005, 30, 927–935. [Google Scholar] [CrossRef]
- Atlas, S.J.; Keller, R.B.; Chang, Y.; Deyo, R.A.; Singer, D.E. Surgical and nonsurgical management of sciatica secondary to a lumbar disc herniation: Five-year outcomes from the Maine Lumbar Spine Study. Spine 2001, 26, 1179–1187. [Google Scholar] [CrossRef]
- Vojta, V. The Basic Elements of Treatment According to Vojta. Management of the Motor Disorders of Children with Cerebral Pals; Lavenham Press Ltd.: Suffolk, UK, 1984. [Google Scholar]
- Ha, S.Y.; Sung, Y.H. Effects of Vojta approach on diaphragm movement in children with spastic cerebral palsy. J. Exerc. Rehabil. 2018, 14, 1005–1009. [Google Scholar] [CrossRef]
- Husárová, R. The Vojta Approach in adults patients. Rehabilitacia 2005, 42, 38–43. [Google Scholar]
- Bauer, H.; Appaji, G.; Mundt, D. Vojta neurophysiologic therapy. Indian J. Pediatr. 1992, 59, 37–51. [Google Scholar] [CrossRef]
- Ha, S.Y.; Sung, Y.H. Effects of Vojta method on trunk stability in healthy individuals. J. Exerc. Rehabil. 2016, 12, 542–547. [Google Scholar] [CrossRef]
- Juárez-Albuixech, M.L.; Redondo-González, O.; Tello, I.; Collado-Vázquez, S.; Jiménez-Antona, C. Vojta Therapy versus transcutaneous electrical nerve stimulation for lumbosciatica syndrome: A quasi-experimental pilot study. J. Bodyw. Mov. Ther. 2020, 24, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Łozińska, P.; Wójtowicz, D.; Wdowiak, P.; Dziuba-Słonina, A. Changes in kinematic parameters during walking in adults with low back pain subjected to Vojta therapy. A pilot study. Physiother. Quart. 2019, 27, 22–28. [Google Scholar] [CrossRef]
- Gajewska, E.; Huber, J.; Kulczyk, A.; Lipiec, J.; Sobieska, M. An attempt to explain the Vojta therapy mechanism of action using the surface polyelectromyography in healthy subjects: A pilot study. J. Bodyw. Mov. Ther. 2018, 22, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Thong, I.S.K.; Jensen, M.P.; Miró, J.; Tan, G. The validity of pain intensity measures: What do the NRS, VAS, VRS, and FPS-R measure? Scand. J. Pain 2018, 18, 99–107. [Google Scholar] [CrossRef]
- Fairbank, J.C. Oswestry disability index. J. Neurosurg. Spine 2014, 20, 239–241. [Google Scholar] [CrossRef] [PubMed]
- Moll, J.; Wright, V. Measurement of spinal movement. In The Lumbar Spine and Back Pain, 3rd ed.; Jayson, M.I.V., Ed.; Churchill Livingstone: Edinburgh, UK, 1987; Volume 11, pp. 215–234. [Google Scholar]
- Wadsworth, C.T.; Krishnan, R.; Sear, M.; Harrold, J.; Nielsen, D.H. Intrarater reliability of manual muscle testing and hand-held dynametric muscle testing. Phys. Ther. 1987, 67, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Wiklund, I. The Nottingham Health Profile--a measure of health-related quality of life. Scand. J. Prim. Health Care Suppl. 1990, 1, 15–18. [Google Scholar] [PubMed]
- Shirley, D.; Hodges, P.W.; Eriksson, A.E.; Gandevia, S.C. Spinal stiffness changes throughout the respiratory cycle. J Appl. Physiol. 2003, 95, 1467–1475. [Google Scholar] [CrossRef]
- Hodges, P.W.; Sapsford, R.; Pengel, L.H. Postural and respiratory functions of the pelvic floor muscles. Neurourol. Urodyn. 2007, 26, 362–371. [Google Scholar] [CrossRef]
- Mannion, A.F.; Pulkovski, N.; Gubler, D.; Gorelick, M.; O’Riordan, D.; Loupas, T.; Schenk, P.; Gerber, H.; Sprott, H. Muscle thickness changes during abdominal hollowing: An assessment of between-day measurement error in controls and patients with chronic low back pain. Eur. Spine J. 2008, 17, 494–501. [Google Scholar] [CrossRef]
- Tsao, H.; Tucker, K.J.; Hodges, P.W. Changes in excitability of corticomotor inputs to the trunk muscles during experimentally-induced acute low back pain. Neuroscience 2011, 181, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.I.; Jeong, D.K. The effect of lumbosacral stabilization exercise on Oswestry Disability Index and gait velocity of patients with chronic low back pain. J. Digit. Converg. 2013, 11, 243–250. [Google Scholar] [CrossRef]
- Jeong, D.K.; Choi, H.H.; Kang, J.I.; Choi, H. Effect of lumbar stabilization exercise on disc herniation index, sacral angle, and functional improvement in patients with lumbar disc herniation. J. Phys. Ther. Sci. 2017, 29, 2121–2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Group A (n = 38) | Group B (n = 39) | p |
---|---|---|---|
Age (years) | 50.24 ± 12.25 | 50.33 ± 14.02 | 0.908 |
BMI (kg/m2) | 26.53 ± 5.07 | 27.90 ± 5.18 | 0.685 |
Time elapsed (months) | 10.00 ± 9.79 | 9.90 ± 9.02 | 0.920 |
Gender (%) men women | 34.2 | 38.5 | 0.440 |
65.1 | 61.5 | ||
Living place (%) urban rural | 65.8 | 66.7 | 0.563 |
34.2 | 33.3 | ||
Comorbidities (%) yes no | 81.6 | 84.6 | 0.479 |
18.4 | 15.4 | ||
Radiculopathy (%) right left bilateral | 34.2 | 33.3 | 0.717 |
21.1 | 15.4 | ||
44.7 | 51.3 | ||
Pain medication (%) yes no | 84.2 | 76.9 | 0.402 |
15.8 | 23.1 |
Parameters | Group A (n = 38) | Group B (n = 39) | p | 95% CI [Lower/Upper] |
---|---|---|---|---|
VAS (score) | 6.39 ± 2.331 | 6.87 ± 1.838 | 0.321 | −1.429/0.475 |
ODI (score) | 20.58 ± 10.859 | 20.82 ± 10.123 | 0.920 | −5.006/4.523 |
FTF (cm) | 23.76 ± 18.807 | 27.46 ± 17.111 | 0.369 | −11.857/4.460 |
TRLF (cm) | 42.58 ± 2.678 | 41.05 ± 4.883 | 0.094 | −0.267/3.322 |
TLLF (cm) | 42.18 ± 4.152 | 41.23 ± 5.446 | 0.391 | −1.249/3.156 |
HF (degree) | 82.89 ± 19.920 | 70.51 ± 27.381 | 0.026 | 1.488/23.276 |
MSTFF (score) | 3.63 ± 0.819 | 3.56 ± 0.754 | 0.641 | −0.290/0.425 |
MSTE (score) | 3.37 ± 0.970 | 3.44 ± 0.821 | 0.836 | −0.475/0.340 |
MSTRLF (score) | 3.45 ± 0.978 | 3.49 ± 0.854 | 0.878 | −0.456/0.377 |
MSTLLF (score) | 3.42 ± 1.030 | 3.49 ± 0.790 | 0.886 | −0.482/350 |
HRQL (score) | 27.68 ± 13.449 | 27.00 ± 13.578 | 0.825 | −5.452/6.821 |
Group A (n = 38) | Group B (n = 39) | Group A Changes | Group B Changes | Inter-Action | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | Post | Baseline | Post | p | Effect Size | 95% CI Lower/Upper | p | Effect Size | 95% CI Lower/Upper | p | |
VAS | 6.87 ± 1.838 | 3.33 ± 2.017 | 6.39 ± 2.331 | 3.74 ± 1.117 | 0.000 * | 0.73 | 2.876/4.211 | 0.047 * | 0.10 | 1.940/3.376 | 0.401 |
ODI | 20.58 ± 10.859 | 13.00 ± 8.539 | 20.82 ± 10.123 | 10.38 ± 9.054 | 0.000 * | 0.63 | 5.671/9.487 | 0.000 * | 0.69 | 8.146/12.725 | 0.169 |
FTF | 23.76 ± 18.807 | 16.26 ± 17.071 | 27.46 ± 17.111 | 18.15 ± 19.682 | 0.000 * | 0.28 | 3.531/11.469 | 0.000 * | 0.51 | 6.335/12.281 | 0.654 |
TRLF | 42.58 ± 2.678 | 39.00 ± 4.430 | 41.04 ± 4.883 | 37.90 ± 8.084 | 0.356 | 0.23 | 3.324/4.834 | 0.509 | 0.12 | 0.692/5.616 | 0.462 |
TLLF | 42.18 ± 4.152 | 38.42 ± 4.452 | 41.23 ± 5.446 | 38.62 ± 5.514 | 0.097 | 0.38 | 2.647/4.880 | 0.643 | 0.30 | 1.715/3.516 | 0.866 |
HF | 64.55 ± 22.002 | 82.89 ± 19.920 | 55.38 ± 28.013 | 70.51 ± 27.381 | 0.000 * | 0.47 | 11.975/24.709 | 0.000 * | 0.38 | 8.890/21.367 | 0.115 |
MSTFF | 3.63 ± 0.819 | 4.11 ± 0.764 | 3.56 ± 0.754 | 4.00 ± 0.688 | 0.018 * | 0.14 | −0.657/−0.291 | 0.844 | 0.07 | 0.664/0.228 | 0.527 |
MSTE | 3.37 ± 0.970 | 3.84 ± 0.789 | 3.44 ± 0.821 | 3.90 ± 0.680 | 0.000 * | 0.58 | 0.672/0.275 | 0.000 * | 0.51 | 0.641/0.282 | 0.743 |
MSTRLF | 3.45 ± 0.978 | 4.05 ± 0.868 | 3.49 ± 0.854 | 3.92 ± 0.774 | 0.628 | 0.00 | 0.829/0.382 | 0.700 | 0.00 | 0.615/0.257 | 0.491 |
MSTLLF | 3.42 ± 1.030 | 4.00 ± 0.805 | 3.49 ± 0.790 | 3.79 ± 0.707 | 0.774 | 0.48 | 0.790/0.368 | 0.534 | 0.50 | 0.651/0.323 | 0.882 |
HRQL | 27.68 ± 13.449 | 17.95 ± 11.045 | 27.00 ± 13.578 | 18.31 ± 13.638 | 0.000 * | 0.74 | 7.004/12.469 | 0.000 * | 0.76 | 6.793/10.591 | 0.899 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iosub, M.E.; Ianc, D.; Sîrbu, E.; Ciobanu, D.; Lazăr, L. Vojta Therapy and Conservative Physical Therapy versus Physical Therapy Only for Lumbar Disc Protrusion: A Comparative Cohort Study from Romania. Appl. Sci. 2023, 13, 2292. https://doi.org/10.3390/app13042292
Iosub ME, Ianc D, Sîrbu E, Ciobanu D, Lazăr L. Vojta Therapy and Conservative Physical Therapy versus Physical Therapy Only for Lumbar Disc Protrusion: A Comparative Cohort Study from Romania. Applied Sciences. 2023; 13(4):2292. https://doi.org/10.3390/app13042292
Chicago/Turabian StyleIosub, Monica Elena, Dorina Ianc, Elena Sîrbu, Doriana Ciobanu, and Liviu Lazăr. 2023. "Vojta Therapy and Conservative Physical Therapy versus Physical Therapy Only for Lumbar Disc Protrusion: A Comparative Cohort Study from Romania" Applied Sciences 13, no. 4: 2292. https://doi.org/10.3390/app13042292
APA StyleIosub, M. E., Ianc, D., Sîrbu, E., Ciobanu, D., & Lazăr, L. (2023). Vojta Therapy and Conservative Physical Therapy versus Physical Therapy Only for Lumbar Disc Protrusion: A Comparative Cohort Study from Romania. Applied Sciences, 13(4), 2292. https://doi.org/10.3390/app13042292