Inflammation: What’s There and What’s New?
Abstract
:1. Introduction
2. Inflammatory Mechanisms
2.1. Initiation of the Inflammatory Response
2.1.1. Vasodilatation, Fluid Exudation, and Leukocyte Migration
2.1.2. Coagulation Cascade Profile in Inflammatory Processes
2.2. Complement System
2.3. Amplification of the Inflammatory Response
2.3.1. Immune Response
2.3.2. Acquired Immune Response
3. Relationship between Inflammatory Processes and Chronic Diseases
3.1. Chronic Diseases
3.1.1. Atherosclerosis
3.1.2. Alzheimer’s Disease
Disease | Description | Inflammatory Mechanism | Treatment | Ref. |
---|---|---|---|---|
Chronic obstructive pulmonary disease (COPD) | A chronic inflammatory lung disease that causes obstructed airflow from the lungs. | Both innate (macrophages/neutrophils) and adaptive inflammatory immune cells (CD4, CD8, and B lymphocytes) that develop lymphoid follicles increase the tissue volume of the bronchial wall characterized by the infiltration of the wall. | Phosphatidylcholine (PC) (natural) 18:1 PC (cis) and 1, 2-dioleoyl-sn-glycerol-3-phosphocholine (DOPC) (synthetic). | [52] |
Alcoholic fatty liver disease (AFLD) | A build-up of fats in the liver caused by drinking a large amount of alcohol. | Expression of the following inflammatory molecules in the liver: tumor necrosis factor α (TNF-α), monocyte chemotactic protein 1 (MCP-1), chemokine (C-X-C motif) ligand 1 (CXCL-1), and interleukin 1 beta (IL-1β). | Phosphoesterase complex (Pho). | [53] |
Obesity | A complex disease involving an excessive amount of body fat. | Abnormal cytokine production, increased synthesis of acute-phase reactants, and activation of inflammatory signaling pathways | Weight loss and physical activity. | [54] |
Chronic kidney disease | A long-term condition where the kidneys do not work as well as they should. | Activation of the prototypical proinflammatory signaling pathway, the best characterized being NF-κB and AP-1, mainly based on the stimulation of multiple mediators, including proinflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor α (TNF-α). | Ramipril, enalapril, lisinopril. atorvastatin, simvastatin, vitamin D, furosemide, and cyclophosphamide. | [55] |
Autoimmune diseases (SLE, RA, and Sjogren’s Syndrome) | A condition in which the immune system mistakenly attacks the body. | Substitution of the AU-rich element (ARE) in the IFN- 3 ‘untranslated region (called ARE-Del) with random nucleotides, which results in a weak, but chronic, expression of IFN-γ. | Nonsteroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen (Motrin and Advil) and naproxen (Naprosyn). | [56] |
Myocardial infarction (MI) | A heart attack occurring when blood flow to a part of the heart decreases or stops, causing damage to the heart muscle. | Inhibition of the signaling pathways of nuclear transcription factor κB (NF-κB), p38, c-Jun NH2-terminal kinase (JNK), and transforming growth factor β (TGF-β). | Thrombolytics, aspirin, nitroglycerin, beta-blockers, and ACE inhibitors. | [57] |
Psoriasis | A skin condition that causes red, flaky, crusty patches of skin covered with silvery scales. | Heightened innate and adaptive immune activation. T helper (Th)1 and Th17 cells drive pro-inflammatory cytokines, including TNF-α, interferon-γ, IL17A, and IL23. | Anti-TNF-α therapy, topical—creams and ointments, phototherapy. | [58] |
4. Common Treatments of the Inflammatory Process
4.1. Corticosteroids
4.2. Non-Steroidal Anti-Inflammatory Drugs
4.3. Natural Anti-Inflammatory Agents
Drug Type | Mechanism of Action | Chemical Structure | Side Effects | Reference |
---|---|---|---|---|
Corticosteroid Drugs | ||||
Prednisone | Decreases inflammation through the suppression of the migration of polymorphonuclear leukocytes and reversing increased capillary permeability. It also suppresses the immune system by reducing the function and the size of the immune system. | Nausea, vomiting, loss of appetite, heartburn, trouble sleeping, increased sweating, and acne. | [65] | |
Cortisone | Switches off multiple activated inflammatory genes through the inhibition of HAT and recruitment of HDAC2 activity to the inflammatory gene transcriptional complex. | Confusion, excitement, restlessness, headaches, nausea, vomiting, skin problems, including acne, thin skin, heavy sweating, and redness, and trouble sleeping. | [66] | |
Methylprednisolone | The methylprednisolone–glucocorticoid receptor complex binds and blocks promoter sites of pro-inflammatory genes, promotes the expression of anti-inflammatory gene products, and inhibits the synthesis of inflammatory cytokines, mainly by blocking the function of transcription factors, such as nuclear factor kappa-B (NF-kB). | Upset stomach, stomach irritation, vomiting, headache, dizziness, insomnia, restlessness, depression, anxiety, acne, increased hair growth, easy bruising, and irregular or absent menstrual periods. | [67] | |
Non-steroidal Anti-Inflammatory Drugs NSAIDs | ||||
Ibuprofen | Non-selective, reversible inhibition of the cyclooxygenase enzymes COX-1 and COX-2 (coded for by PTGS1 and PTGS2, respectively). | Headaches, feeling dizzy, feeling sick (nausea), being sick (vomiting), wind, indigestion, and swollen ankles. | [68] | |
Naproxen | Blocks arachidonate binding to competitively inhibit both cyclooxygenase (COX) isoenzymes, COX-1 and COX-2, resulting in analgesic and anti-inflammatory effects. | Confusion, headaches, ringing in the ears, changes in vision, tiredness, drowsiness, dizziness, and rashes. | [69] | |
Celecoxib | Selective inhibition of cyclooxygenase-2 (COX-2), which is responsible for prostaglandin synthesis, an integral part of the pain and inflammation pathway. | Stomach pain, heartburn, gas, diarrhea, constipation, nausea, vomiting, swelling in the hands or feet; dizziness, and cold symptoms. | [70] | |
Diclofenac | Inhibition of prostaglandin synthesis by inhibiting cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) with relative equipotency. | Headaches, dizziness, stomach pain, feeling or being sick, diarrhea, and rashes. | [71] | |
Indomethacin | Inhibition of prostaglandin synthesis by inhibiting cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). | Vomiting, upset stomach, heartburn, diarrhea, a feeling of bowel fullness, constipation, bloating, gas, rectal irritation, dizziness, drowsiness, and nervousness. | [72] | |
Piroxicam | Inhibition of cyclooxygenase (COX-1 and COX-2). Piroxicam is a potent inhibitor of prostaglandin (PG) synthesis in vitro. | Abnormal liver function tests, urination problems, upset stomach, heartburn, loss of appetite, stomach pain, nausea, vomiting, gas, diarrhea, constipation, dizziness, headaches, itching, rashes, and ringing in the ears. | [73] |
4.3.1. Omega-3 EFAs (Fish Oil)
4.3.2. White Willow Bark; Salix Alba (Carl Linnaeus)
4.3.3. Green Tea
4.3.4. Ginger; Zingiber Officinale (Roscoe)
4.3.5. Bryonia Dioica (Jacq.)
4.3.6. Other Natural Matrices
5. Methods for Assessing Anti-Inflammatory Activity
5.1. In Vivo Assessment
5.2. In Vitro Assessment
6. Trends in the Treatment of Inflammatory Processes
Targeting Glycolysis with Small Molecules to Elicit an Anti-Inflammatory Effect
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sherwood, E.R.; Toliver-Kinsky, T. Mechanisms of the inflammatory response. Best Pract. Res. Clin. Anaesthesiol. 2004, 18, 385–405. [Google Scholar] [CrossRef] [PubMed]
- Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of NOD 2 and NALP 3 in interleukin-1 b generation. Clin. Exp. Immunol. 2007, 147, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.A.G.; Hernández-Díaz, S. The risk of upper gastrointestinal complications associated with nonsteroidal anti-inflammatory drugs, glucocorticoids, acetaminophen, and combinations of these agents. Arthritis Res. Ther. 2001, 3, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Bost, J.; Maroon, A.; Maroon, J. Natural anti-inflammatory agents for pain relief. Surg. Neurol. Int. 2010, 1, 80. [Google Scholar] [CrossRef]
- Tabernero, A.; Schneider, F.; Potenza, M.A.; Randriamboavonjy, V.F.-S.; Chasserot, S.; Wolf, P.; Mitolo-Chieppa, D.; Stoclet, J.-C.; Andriantsitohaina, R. Cyclooxygenase-2 and inducible nitric oxide synthase in omental arteries harvested from patients with severe liver diseases. Intensive Care Med. 2003, 29, 262–270. [Google Scholar] [CrossRef]
- Court, O.; Kumar, A.; Parrillo, J.E. Clinical review: Myocardial depression in sepsis and septic shock. Crit. Care 2002, 6, 500–508. [Google Scholar] [CrossRef]
- Störmann, P.; Auner, B.; Schimunek, L.; Serve, R.; Horst, K.; Simon, T.-P.; Pfeifer, R.; Köhler, K.; Hildebrand, F.; Wutzler, S.; et al. Leukotriene B4 indicates lung injury and on-going inflammatory changes after severe trauma in a porcine long-term model. Prostaglandins Leukot. Essent. Fat. Acids 2017, 127, 25–31. [Google Scholar] [CrossRef]
- Rosen, C.L.; Adler, J.N.; Rabban, J.T.; Sethi, R.K.; Arkoff, L.; Blair, J.A.; Sheridan, R. Early predictors of myoglobinuria and acute renal fallure following electrical injury. J. Emerg. Med. 1999, 17, 783–789. [Google Scholar] [CrossRef]
- Downey, G.P.; Worthen, G.S.; Henson, P.M.; Hyde, D.M. Neutrophil Sequestration and Migration in Localized Pulmonary Inflammation Capillary Localization and Migration across the Interalveolar Septum. Am. Rev. Respir. Dis. 1993, 147, 168–176. [Google Scholar] [CrossRef]
- A Perry, M.; Granger, D.N. Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules. J. Clin. Invest. 1991, 87, 1798–1804. [Google Scholar] [CrossRef]
- Alon, R.; Fuhlbrigge, R.C.; Finger, E.B.; A Springer, T. Interactions through L-selectin between Leukocytes and Adherent Leukocytes Nucleate Rolling Adhesions on Selectins and VCAM-1 in Shear Flow 135. J. Cell Biol. 1996, 135, 849–865. [Google Scholar] [CrossRef]
- Hirakata, T.; Matsuda, A.; Yokomizo, T. Leukotriene B4 receptors as therapeutic targets for ophthalmic diseases. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2020, 1965, 158756. [Google Scholar] [CrossRef]
- Zaal, A.; van Ham, S.M.; Brinke, A.T. Differential effects of anaphylatoxin C5a on antigen presenting cells, roles for C5aR1 and C5aR2. Immunol. Lett. 2019, 209, 45–52. [Google Scholar] [CrossRef]
- Weston, C.A.; Rana, B.M.; Cousins, D. Differential expression of functional chemokine receptors on human blood and lung group 2 innate lymphoid cells. J. Allergy Clin. Immunol. 2019, 143, 410–413.e9. [Google Scholar] [CrossRef]
- Puy, C.; Tucker, E.I.; Wong, Z.C.; Gailani, D.; Smith, S.A.; Choi, S.H.; Morrissey, J.H.; Gruber, A.; McCarty, O.J.T. Factor XII promotes blood coagulation independent of factor XI in the presence of long-chain polyphosphate. J. Thromb. Haemost. 2013, 11, 1341–1352. [Google Scholar] [CrossRef]
- Riewald, M.; Ruf, W. Science review: Role of coagulation protease cascades in sepsis. Crit. Care 2003, 7, 123–130. [Google Scholar] [CrossRef]
- Carraway, M.S.; Welty-Wolf, K.E.; Miller, D.L.; Ortel, T.L.; Idell, S.; Ghio, A.J.; Petersen, L.C.; Piantadosi, C.A. Blockade of Tissue Factor Treatment for Organ Injury in Established Sepsis. Am. J. Respir. Crit. Med. 2003, 167, 1200–1209. [Google Scholar] [CrossRef]
- Pawlinski, R.; Pedersen, B.; Kehrle, B.; Aird, W.C.; Frank, R.D.; Guha, M.; Mackman, N. Regulation of tissue factor and inflammatory mediators by Egr-1 in a mouse endotoxemia model. Blood 2003, 101, 3940–3947. [Google Scholar] [CrossRef]
- Shah, S.; Shilpa, B.S. Inflammatory mechanisms. Long-Term Intervention in Chronic Obstructive Pulmonary Disease. Jaypee Digital 2012, 1, 139–164. [Google Scholar] [CrossRef]
- Clemenza, L.; Dieli, F.; Cicardi, M.; Salerno, A. Research on complement: Old issues revisited and a novel sphere of influence. Tends Immunol. 2003, 24, 292–295. [Google Scholar] [CrossRef]
- Fishelson, Z. Review C3: A molecular mosaic of binding sites. Mol. Immunol. 1991, 28, 545–552. [Google Scholar] [CrossRef]
- Pangburn, M.K.; Rawal, N. Structure and function of complement C5 convertase enzymes. Biochem. Soc. Trans. 2002, 30, 1006–1010. [Google Scholar] [CrossRef]
- Cole, D.S.; Morgan, B.P. Beyond lysis: How complement influences cell fate. Clin. Sci. 2003, 104, 455–466. [Google Scholar] [CrossRef]
- Parrillo, J.E.; Parker, M.M.; Natanson, C.; Suffredini, A.F.; Danner, R.L.; Cunnion, R.E.; Ognibene, F.P. Septic Shock in Humans Advances in the Understanding of Pathogenesis, Cardiovascular. Ann. Intern. Med. 1990, 113, 227–242. [Google Scholar] [CrossRef]
- Kohtz, P.D.; Halpern, A.L.; Eldeiry, M.A.; Hazel, K.; Kalatardi, S.; Ao, L.; Meng, X.; Reece, T.B.; Fullerton, D.A.; Weyant, M.J. Toll-Like Receptor-4 Is a Mediator of Proliferation in Esophageal Adenocarcinoma. Ann. Thorac. Surg. 2019, 107, 233–241. [Google Scholar] [CrossRef]
- Lakhan, S.E.; Kirchgessner, A.; Hofer, M. Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. J. Transl. Med. 2009, 7, 97. [Google Scholar] [CrossRef]
- Palsson-McDermott, E.M.; Curtis, A.M.; Goel, G.; Lauterbach, M.A.R.; Sheedy, F.J.; Gleeson, L.E.; van den Bosch, M.W.M.; Quinn, S.R.; Domingo-Fernandez, R.; Johnston, D.G.W.; et al. Pyruvate Kinase M2 Regulates Hif-1a Activity and IL-1b Induction and Is a Critical Determinant of the Warburg Effect in LPS-Activated Macrophages. Cell Metab. 2015, 21, 65–80. [Google Scholar] [CrossRef]
- Granucci, F.; Feau, S.; Zanoni, I.; Pavelka, N.; Vizzardelli, C.; Raimondi, G.; Ricciardi-Castagnoli, P. The immune response is initiated by dendritic cells via interaction with, microorganisms and interleukin-2 production. J. Infect. Dis. 2003, 187 (Suppl. 2), S346–S350. [Google Scholar] [CrossRef]
- Naimi, A.; Movassaghpour, A.A.; Hagh, M.F.; Talebi, M.; Entezari, A.; Jadidi-Niaragh, F.; Solali, S. TNF-related apoptosis-inducing ligand (TRAIL) as the potential therapeutic target in hematological malignancies. Biomed. Pharmacother. 2018, 98, 566–576. [Google Scholar] [CrossRef]
- Mochol, M.; Taubøll, E.; Aukrust, P.; Ueland, T.; Andreassen, O.A.; Svalheim, S. Interleukin 18 (IL-18) and its binding protein (IL-18BP) are increased in patients with epilepsy suggesting low-grade systemic inflammation. Seizure 2020, 80, 221–225. [Google Scholar] [CrossRef]
- Bowker, N.; Shah, R.L.; Sharp, S.J.; Luan, J.; Stewart, I.D.; Wheeler, E.; Ferreira, M.A.; Baras, A.; Wareham, N.J.; Langenberg, C.; et al. Meta-analysis investigating the role of interleukin-6 mediated inflammation in type 2 diabetes. EBioMedicine 2020, 61, 103062. [Google Scholar] [CrossRef]
- Kruse, J.L.; Olmstead, R.; Hellemann, G.; Wade, B.; Jiang, J.; Vasavada, M.M.; Iii, J.O.B.; Congdon, E.; Espinoza, R.; Narr, K.L.; et al. Inflammation and depression treatment response to electroconvulsive therapy: Sex-specific role of interleukin-8. Brain Behav. Immun. 2020, 89, 59–66. [Google Scholar] [CrossRef]
- Sun, L.; He, C.; Nair, L.; Yeung, J.; Egwuagu, C.E. Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease. Cytokine 2015, 75, 249–255. [Google Scholar] [CrossRef]
- Honda, Z.-I.; Ishii, S.; Shimizu, T. Platelet-Activating Factor Receptor. J. Biochem. 2002, 131, 773–779. [Google Scholar] [CrossRef]
- Pearlstein, J.G.; Staudenmaier, P.; West, A.E.; Geraghty, S.; Cosgrove, V.E. Immune response to stress induction as a predictor of cognitive-behavioral therapy outcomes in adolescent mood disorders: A pilot study. J. Psychiatr. Res. 2019, 120, 56–63. [Google Scholar] [CrossRef]
- Guo, M.; Tang, X.; Sheng, X.; Xing, J.; Zhan, W. The effects of IL-1β, IL-8, G-CSF and TNF-α as molecular adjuvant on the immune response to an E. tarda subunit vaccine in flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 2018, 77, 374–384. [Google Scholar] [CrossRef]
- Wheatley, C. A scarlet pimpernel for the resolution of inflammation? The role of supra-therapeutic doses of cobalamin, in the treatment of systemic inflammatory response syndrome (SIRS), sepsis, severe sepsis, and septic or traumatic shock. Med. Hypotheses 2006, 67, 124–142. [Google Scholar] [CrossRef]
- Oʼsullivan, S.T.; Lederer, J.A.; Horgan, A.F.; Chin, D.H.L.; Mannick, J.A.; Rodrick, M.L. Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection. Ann. Surg. 1995, 222, 482–492. [Google Scholar] [CrossRef]
- Wolk, K.; Döcke, W.D.; von Baehr, V.; Volk, H.D.; Sabat, R. Impaired antigen presentation by human monocytes during endotoxin tolerance Impaired antigen presentation by human monocytes during endotoxin tolerance. Blood 2000, 96, 218–223. [Google Scholar] [CrossRef]
- Decker, T.; Stockinger, S.; Karaghiosoff, M.; Müller, M.; Kovarik, P. IFNs and STATs in innate immunity to microorganisms. J. Clin. Investig. 2002, 109, 1271–1277. [Google Scholar] [CrossRef]
- Weiner, H.L. Oral tolerance: Immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Mirobes Infect. 2001, 3, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Inflammatory Mechanisms: The Molecular Basis of Inflammation and Disease. Nutr. Rev. 2007, 65, S140–S146. [Google Scholar] [CrossRef]
- Pasceri, V.; Yeh, E.T.H. A tale of two diseases: Atherosclerosis and rheumatoid arthritis. Circulation 1999, 100, 2124–2126. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Plutzky, J. Atherosclerosis: An inflammatory disease. Int. Congr. Symp. Ser.—R. Soc. Med. 2000, 340, 27–31. [Google Scholar]
- Libby, P.; Ridker, P.M.; Maseri, A. Clinical Cardiology: New Frontiers Inflammation and Atherosclerosis The Scientific Basis of Inflammation. Circulation 2012, 105, 1135–1143. [Google Scholar]
- Libby, P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 2018, 83, 456–460. [Google Scholar] [CrossRef]
- Smith, J.D.; Eugene, T.; Michael, G.; Claire, G.; Jason, T. Colony-Stimulating (op) Apolipoprotein. Genetics 1995, 92, 8264–8268. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC41137/pdf/pnas01496-0184.pdf; (accessed on 2 April 2022).
- Brown, M.S.; Goldstein, J.L. Lipoprotein metabolism in the macrophage: Implications for Cholesterol Deposition in Atherosclerosis. Annu. Rev. Biochem. 1983, 52, 223–261. [Google Scholar] [CrossRef]
- Wilcox, J.N.; Smith, K.M.; Schwartz, S.M.; Gordon, D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc. Natl. Acad. Sci. USA 1989, 86, 2839–2843. [Google Scholar] [CrossRef]
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. Transl. Res. Clin. Interv. 2018, 4, 575–590. [Google Scholar] [CrossRef]
- Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging 2000, 21, 383–421. [Google Scholar] [CrossRef]
- Komalla, V.; Allam, V.S.R.R.; Kwok, P.C.L.; Sheikholeslami, B.; Owen, L.; Jaffe, A.; Waters, S.A.; Mohammad, S.; Oliver, B.G.; Chen, H.; et al. A phospholipid-based formulation for the treatment of airway inflammation in chronic respiratory diseases. Eur. J. Pharm. Biopharm. 2020, 157, 47–58. [Google Scholar] [CrossRef]
- Ma, D.; Hu, J.; Xu, W.; Wang, Y.; Wang, J.; Li, L.; Wang, S.; Zhou, H.; Li, Y.; Liu, L. Phosphoesterase complex modulates microflora and chronic inflammation in rats with alcoholic fatty liver disease. Life Sci. 2020, 262, 118509. [Google Scholar] [CrossRef]
- Tilg, H.; Moschen, A. Insulin resistance, inflammation, and non-alcoholic fatty liver disease. Trends Endocrinol. Metab. 2008, 19, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferro, S.; De Martini, N.; Rotondi, S.; Tartaglione, L.; Ureña-Torres, P.; Bover, J.; Pasquali, M. Bone, inflammation, and chronic kidney disease. Clin. Chim. Acta 2020, 506, 236–240. [Google Scholar] [CrossRef]
- Bae, H.R.; Leung, P.S.; Hodge, D.L.; Fenimore, J.M.; Jeon, S.-M.; Thovarai, V.; Dzutsev, A.; Welcher, A.A.; Boedigheimer, M.; Damore, M.A.; et al. Multi-omics: Differential expression of IFN-γ results in distinctive mechanistic features linking chronic inflammation, gut dysbiosis, and autoimmune diseases. J. Autoimmun. 2020, 111, 102436. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, S.; Wen, P.; Wu, M.; Wu, Y.; Mai, M.; Huang, J. PGAM1 deficiency ameliorates myocardial infarction remodeling by targeting TGF-β via the suppression of inflammation, apoptosis and fibrosis. Biochem. Biophys. Res. Commun. 2021, 534, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Aksentijevich, M.; Lateef, S.S.; Anzenberg, P.; Dey, A.K.; Mehta, N.N. Chronic inflammation, cardiometabolic diseases and effects of treatment: Psoriasis as a human model. Trends Cardiovasc. Med. 2020, 30, 472–478. [Google Scholar] [CrossRef]
- Aisen, P.S.; Davis, K.L. Inflammatory mechanisms in Alzheimer’s disease: Implications for therapy. Am. J. Psychiatry 1994, 151, 1105–1113. [Google Scholar] [CrossRef]
- David, S.; David, M.D.; Michael, H.; Grieco, M.D.; Paul Cushman, M.D., Jr. Adrenal glucocorticoids after twenty years. A review of their clinically relevant consequences. J. Chronic Dis. 1970, 22, 637–711. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Ramey, D.R.; Morfeld, D.; Fries, J.F. Comparative toxicity of non-steroidal anti-inflammatory agents. Pharmacol. Ther. 1994, 62, 175–191. [Google Scholar] [CrossRef]
- May, M.J.; Kopp, E.B. NF-kB and REL Proteins: Evolutionarily Conserved Mediators of Immune Responses. Annu. Rev. Immunol. 1998, 16, 225–260. [Google Scholar] [CrossRef]
- Talalay, P.; Talalay, P. The Importance of Using Scientific Principles in the Development of Medicinal Agents from Plants. Acad. Med. 2001, 76, 238–247. Available online: https://journals.lww.com/academicmedicine/Fulltext/2001/03000/The_Importance_of_Using_Scientific_Principles_in.10.aspx (accessed on 5 April 2022). [CrossRef] [PubMed]
- Reynolds, J.F.; Noakes, T.D.; Schwellnus, M.; Windt, A.; Bowerbank, P. Non-Steroidal Inflammatory Drugs Fail to Enhance Healing of Acute Hamstring Injuries Treated with Physiotherapy. S. Atr. Med. J. 1995, 85, 517–522. Available online: https://www.ajol.info/index.php/samj/article/view/156043 (accessed on 23 April 2022).
- Li, Y.; Li, H.; Wei, M.; Lu, J.; Jin, L. pH-Responsive composite based on prednisone-block copolymer micelle intercalated inorganic layered matrix: Structure and in vitro drug release. Chem. Eng. J. 2009, 151, 359–366. [Google Scholar] [CrossRef]
- Khondker, A.; Hub, J.S.; Rheinstädter, M.C. Steroid–steroid interactions in biological membranes: Cholesterol and cortisone. Chem. Phys. Lipids 2019, 221, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Y.; Wang, C.; Li, G.; Zhao, Y.; Yang, Y. Synthesis of methylprednisolone loaded ibuprofen modified inulin based nanoparticles and their application for drug delivery. Mater. Sci. Eng. 2014, 42, 111–115. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, Y.; Hao, D.; Ji, Y.; Ouyang, D. Solvation structure and molecular interactions of ibuprofen with ethanol and water: A theoretical study. Fluid Phase Equilibria 2020, 510, 112454. [Google Scholar] [CrossRef]
- Tarushi, A.; Zampakou, M.; Perontsis, S.; Lafazanis, K.; Pantazaki, A.A.; Hatzidimitriou, A.G.; Geromichalos, G.D.; Psomas, G. Manganese (II) complexes of tolfenamic acid or naproxen in polymeric structures or encapsulated in [15-MC-5] manganese (III) metallacrowns: Structure and biological activity. Inorg. Chim. Acta 2018, 483, 579–592. [Google Scholar] [CrossRef]
- Yamakawa, N.; Suzuki, K.; Yamashita, Y.; Katsu, T.; Hanaya, K.; Shoji, M.; Sugai, T.; Mizushima, T. Structure–activity relationship of celecoxib and rofecoxib for the membrane permeabilizing activity. Bioorganic Med. Chem. 2014, 22, 2529–2534. [Google Scholar] [CrossRef]
- Tong, X.; Li, Z.; Chen, W.; Wang, J.; Li, X.; Mu, J.; Tang, Y.; Li, L. Efficient catalytic ozonation of diclofenac by three-dimensional iron (Fe)-doped SBA-16 mesoporous structures. J. Colloid Interface Sci. 2020, 578, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Nnabuike, G.G.; Salunke-Gawali, S.; Patil, A.S.; Butcher, R.J.; Obaleye, J.A. Synthesis and structures of tetrahedral zinc(II) complexes bearing indomethacin and nitrogen donor ligands. Inorg. Chim. Acta 2020, 513, 119941. [Google Scholar] [CrossRef]
- Upadhyay, P.P.; Sun, C.C.; Bond, A.D. Relating the tableting behavior of piroxicam polytypes to their crystal structures using energy-vector models. Int. J. Pharm. 2018, 543, 46–51. [Google Scholar] [CrossRef]
- Bernstein, J.E.; Bickers, D.R.; Dahl, M.V.; Roshal, J.Y. Treatment of chronic postherpetic neuralgia with topical capsaicin: A preliminary study. J. Am. Acad. Dermatol. 1987, 17, 93–96. [Google Scholar] [CrossRef]
- Stallone, D.; Brunner, E.; Bingham, S.; Marmot, M. Dietary Assessment in Whitehall II: The influence of reporting bias on apparent socioeconomic variation in nutrient intakes. Eur. J. Clin. Nutr. 1997, 51, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Marienfeld, R.; Neumann, M.; Chuvpilo, S.; Escher, C.; Kneitz, B.; Avots, A.; Schimpl, A.; Serfling, E. Cyclosporin A interferes with the inducible degradation of NF-xB inhibitors, but not with the processing of plOYNF-xB1 in T cells. Eur. J. Immunol. 1997, 27, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Gulati, O.P. Pycnogenol: A nutraceutical for venous health. Biomed. Rev. 2008, 19, 33–43. [Google Scholar] [CrossRef]
- Malmstrom, K.; Daniels, S.; Kotey, P.; Seidenberg, B.C.; Desjardins, P.J. Comparison of Rofecoxib and Celecoxib, Two Cyclooxygenase-2 Inhibitors, in Postoperative Dental Pain: A Randomized, Placebo- and Active-Comparator-Controlled Clinical Trial. Clin Ther. 1999, 21, 1653–1663. [Google Scholar] [CrossRef]
- Enna, S.; Medeiros, M.; Aimbire, F.; Faria-Neto, H.; Sertié, J.; Lopes-Martins, R. Anti-inflammatory effect of the hydralcoholic extract of Zingiber officinale rhizomes on rat paw and skin edema. Phytomedicine 2003, 10, 381–385. [Google Scholar]
- Habib, S.H.M.; Makpol, S.; Hamid, N.A.A.; Das, S.; Ngah, W.Z.W.; Yusof, Y.A.M. Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. Clinics 2008, 63, 807–81363. [Google Scholar] [CrossRef]
- Benarba, B.; Meddah, B.; Aoues, A. Bryonia dioica aqueous extract induces apoptosis through mitochondrial intrinsic pathway in BL41 Burkitt’s lymphoma cells. J. Ethnopharmacol. 2012, 141, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Ukiya, M.; Akihisa, T.; Yasukawa, K.; Tokuda, H.; Toriumi, M.; Koike, K.; Kimura, Y.; Nikaido, T.; Aoi, W.; Nishino, H.; et al. Anti-Inflammatory and Anti-Tumor-Promoting Effects of Cucurbitane Glycosides from the Roots of Bryonia dioica. J. Nat. Prod. 2002, 65, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Ziani, B.E.; Carocho, M.; Abreu, R.M.; Bachari, K.; Alves, M.J.; Calhelha, R.C.; Talhi, O.; Barros, L.; Ferreira, I.C. Phenolic profiling, biological activities and in silico studies of Acacia tortilis (Forssk.) Hayne ssp. raddiana extracts. Food Biosci. 2020, 36, 100616. [Google Scholar] [CrossRef]
- Añibarro-Ortega, M.; Pinela, J.; Barros, L.; Ćirić, A.; Silva, S.P.; Coelho, E.; Mocan, A.; Calhelha, R.C.; Soković, M.; Coimbra, M.A.; et al. Compositional features and bioactive properties of aloe vera leaf (Fillet, mucilage, and rind) and flower. Antioxidants 2019, 8, 444. [Google Scholar] [CrossRef] [PubMed]
- Halla, N.; Heleno, S.A.; Costa, P.; Fernandes, I.P.; Calhelha, R.C.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.C.; Barreiro, M.F. Chemical profile and bioactive properties of the essential oil isolated from Ammodaucus leucotrichus fruits growing in Sahara and its evaluation as a cosmeceutical ingredient. Ind. Crops Prod. 2018, 119, 249–254. [Google Scholar] [CrossRef]
- Villavicencio, A.L.; Heleno, S.A.; Calhelha, R.C.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C. The influence of electron beam radiation in the nutritional value, chemical composition and bioactivities of edible flowers of Bauhinia variegata L. var. candida alba Buch.-Ham from Brazil. Food Chem. 2018, 241, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Finimundy, T.C.; Pereira, C.; Dias, M.I.; Caleja, C.; Calhelha, R.C.; Sokovic, M.; Stojković, D.; Carvalho, A.M.; Rosa, E.; Barros, L.; et al. Infusions of Herbal Blends as Promising Sources of Phenolic Compounds and Bioactive Properties. Molecules 2020, 25, 2151. [Google Scholar] [CrossRef] [PubMed]
- Souilem, F.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Harzallah-Skhiri, F.; Ferreira, I.C. Phenolic profile and bioactive properties of carissa macrocarpa (Eckl.) A.DC.: An in vitro comparative study between leaves, stems, and flowers. Molecules 2019, 24, 1696. [Google Scholar] [CrossRef]
- Zhan, G.; Miao, R.; Zhang, F.; Hao, Y.; Zhang, Y.; Zhang, Y.; Khurm, M.; Zhang, X.; Guo, Z. Peraksine derivatives with potential anti-inflammatory activities from the stems of Rauvolfia vomitoria. Fitoterapia 2020, 146, 104704. [Google Scholar] [CrossRef]
- Hirukawa, M.; Zhang, M.; Echenique–Diaz, L.M.; Mizota, K.; Ohdachi, S.D.; Begué–Quiala, G.; Delgado–Labañino, J.L.; Gámez–Díez, J.; Alvarez–Lemus, J.; Machado, L.G.; et al. Isolation and structure–activity relationship studies of jacaranones: Anti-inflammatory quinoids from the Cuban endemic plant Jacaranda arborea (Bignoniaceae). Tetrahedron Lett. 2020, 61, 152005. [Google Scholar] [CrossRef]
- Pompermaier, L.; Marzocco, S.; Adesso, S.; Monizi, M.; Schwaiger, S.; Neinhuis, C.; Stuppner, H.; Lautenschläger, T. Medicinal plants of northern Angola and their anti-inflammatory properties. J. Ethnopharmacol. 2018, 216, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Khlifi, D.; Sghaier, R.M.; Amouri, S.; Laouini, D.; Hamdi, M.; Bouajila, J. Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L. Food Chem. Toxicol. 2013, 55, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Chougouo, R.D.K.; Nguekeu, Y.M.M.; Dzoyem, J.P.; Awouafack, M.D.; Kouamouo, J.; Tane, P.; McGaw, L.J.; Eloff, J.N. Anti-inflammatory and acetylcholinesterase activity of extract, fractions and five compounds isolated from the leaves and twigs of Artemisia annua growing in Cameroon. SpringerPlus 2016, 5, 1525. [Google Scholar] [CrossRef] [PubMed]
- Jonville, M.; Kodja, H.; Strasberg, D.; Pichette, A.; Ollivier, E.; Frédérich, M.; Angenot, L.; Legault, J. Antiplasmodial, anti-inflammatory and cytotoxic activities of various plant extracts from the Mascarene Archipelago. J. Ethnopharmacol. 2011, 136, 525–531. [Google Scholar] [CrossRef]
- Bayala, B.; Bassole, I.H.N.; Gnoula, C.; Nebie, R.; Yonli, A.; Morel, L.; Figueredo, G.; Nikiema, J.-B.; Lobaccaro, J.-M.A.; Simpore, J. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso. PLoS ONE 2014, 9, e92122. [Google Scholar] [CrossRef]
- Austarheim, I.; Pham, A.T.; Nguyen, C.; Zou, Y.-F.; Diallo, D.; Malterud, K.E.; Wangensteen, H. Antiplasmodial, anti-complement and anti-inflammatory in vitro effects of Biophytum umbraculum Welw. traditionally used against cerebral malaria in Mali. J. Ethnopharmacol. 2016, 190, 159–164. [Google Scholar] [CrossRef]
- Bourgou, S.; Pichette, A.; Marzouk, B.; Legault, J. Bioactivities of black cumin essential oil and its main terpenes from Tunisia. S. Afr. J. Bot. 2010, 76, 210–216. [Google Scholar] [CrossRef]
- Conforti, F.; Sosa, S.; Marrelli, M.; Menichini, F.; Statti, G.A.; Uzunov, D.; Tubaro, A.; Menichini, F.; Della Loggia, R. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J. Ethnopharmacol. 2008, 116, 144–151. [Google Scholar] [CrossRef]
- Shaikh, R.U.; Pund, M.M.; Gacche, R.N. Evaluation of anti-inflammatory activity of selected medicinal plants used in Indian traditional medication system in vitro as well as in vivo. J. Tradit. Complement. Med. 2016, 6, 355–361. [Google Scholar] [CrossRef]
- Alam, F.; Din, K.M.; Rasheed, R.; Sadiq, A.; Jan, M.S.; Minhas, A.M.; Khan, A. Phytochemical investigation, anti-inflammatory, antipyretic and antinociceptive activities of Zanthoxylum armatum DC extracts-in vivo and in vitro experiments. Heliyon 2020, 6, e05571. [Google Scholar] [CrossRef]
- Wu, P.; Song, Z.; Li, Y.; Wang, H.; Zhang, H.; Bao, J.; Li, Y.; Cui, J.; Jin, D.-Q.; Wang, A.; et al. Natural iridoids from Patrinia heterophylla showing anti-inflammatory activities in vitro and in vivo. Bioorganic Chem. 2020, 104, 104331. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Song, Z.; Wang, X.; Li, Y.; Li, Y.; Cui, J.; Tuerhong, M.; Jin, D.-Q.; Abudukeremu, M.; Lee, D.; et al. Bioactive triterpenoids from Lantana camara showing anti-inflammatory activities in vitro and in vivo. Bioorganic Chem. 2020, 101, 104004. [Google Scholar] [CrossRef] [PubMed]
- Arvy, L. Activation printanière de la glande thyroïde chezRana temporaria L., castrée. Experientia 1950, 6, 468–469. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, N. Making the First Anti-Depressant: Amphetamine in American Medicine. J. Hist. Med. Allied Sci. 2014, 61, 288–323. [Google Scholar] [CrossRef] [PubMed]
- Selye, H. Participation of Adrenal Cortex in Pathogenesis of Arthritis. Br. Med. J. 1949, 2, PMC2051665. [Google Scholar] [CrossRef] [PubMed]
- Selye, H. On the mechanism through which the hydrocortisone affects the resistance of tissue to injury. JAMA 1953, 152, 1207–1213. [Google Scholar] [CrossRef]
- Nemudzivhadi, V.; Masoko, P. In Vitro Assessment of Cytotoxicity, Antioxidant, and Anti-Inflammatory Activities of Ricinus communis (Euphorbiaceae) Leaf Extracts. Evid. Based Complement. Altern. Med. 2014, 2014, 625961. [Google Scholar] [CrossRef]
- Chandra, S.; Dey, P.; Bhattacharya, S. Preliminary In Vitro Assessment of Anti-Inflammatory Property of Mikania scandens Flower Extract. J. Adv. Pharm. Educ. Res. 2012, 2, 25–31. Available online: https://japer.in/storage/models/article/o7oFhPQiOLtJneASIAZU8QDQoCRZuFVdOq0WQXWakKBNwvabl5UfxiI9Tlhh/preliminary-in-vitro-assessment-of-anti-inflammatory-property-of-mikania-scandens-flower-extract.pdf (accessed on 6 June 2022).
- Elgorashi, E.; McGaw, L. African plants with in vitro anti-inflammatory activities: A review. S. Afr. J. Bot. 2019, 126, 142–169. [Google Scholar] [CrossRef]
- Hussain, S.; Azam, F.; Eldarrat, H.A.; Alkskas, I.; Mayoof, J.A.; Dammona, J.M.; Ismail, H.; Ali, M.; Arif, M.; Haque, A. Anti-inflammatory, analgesic and molecular docking studies of Lanostanoic acid 3-O-a-D-glycopyranoside isolated from Helichrysum stoechas. Arab. J. Chem. 2020, 13, 9196–9206. [Google Scholar] [CrossRef]
Natural Matrix | Anti-Inflammatory Assay | Active Compounds | Mechanism of Action | Anti-Inflammatory Activity | References |
---|---|---|---|---|---|
In vitro assessment | |||||
(EC50) μg/mL | |||||
Acacia tortilis (Forssk.) | Inhibition of nitric oxide (NO) production in a cell-based model of lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage-like cell line. | (epi)-Gallocatechin derivatives | Inhibition of cyclooxygenase-1 (COX-1) and COX-2 enzymes that are involved in the inflammatory response. | 88 ± 4 | [83] |
Aloe vera (Carl Linnaeus) | Aloe–emodin | Active against the human colon cancer cell lines DLD-1 and HT2. | 8.6 ± 0.1 | [84] | |
Ammodaucus leucotrichus fruits (Coss. and Dur.) | Perilla aldehyde and limonene | Active against skin pathologies. | 11.70 | [85] | |
Bauhinia variegata L. | Phenolic acids and flavonoid glycoside | - | 255 ± 16 | [86] | |
Calendula arvencis L. | - | - | 321 ± 4 | [87] | |
Carissa macrocarpa (Eckl.) A.DC | Phenolic acids, flavan-3-ols, and flavonols | - | 179 ± 6 | [88] | |
Rauvolfia vomitoria (Afzel) | Peraksine derivatives | - | 17.52−20.99 | [89] | |
Jacaranda arborea (Bignoniaceae) (Urban) | Methyl (1-hydroxy-4-oxocyclohexa-2,5- dien-1-yl)acetate (jacaranone) (1) and its ethyl ester 2 | Inhibition of the production of TNF-a in LPS-treated macrophages with low toxicity. | 0.99 (uM) | [90] | |
Acanthus montanus (Nees) T. | Inhibition of nitric oxide (NO) production in a cell-based model of lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage-like cell line and inhibition of COX-2 expression. | Verbascoside | - | 91.50 ± 0.95 | [91] |
92.55 ± 0.64 | |||||
Brillantaisia owariensis P. (P.Beauv.) | - | - | 71.01 ± 0.65 | [91] | |
71.01 ± 0.65 | |||||
Asteraceaeherba-alba Asso (Bercht. and J. Presl) | Inhibition of nitric oxide (NO) production in a cell-based model of lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage-like cell line. | - | - | 60 | [92] |
Asteraceae annua L. (C.Winkl.). | Artemisinin scopoletin, chrysosplenetin, eupatin, and sitosterol-3-O-β-d-- glucopyranoside | - | 87.43 | [93] | |
Cassia fistula L. (Collad.) | - | - | 83 | [94] | |
Eucalyptus camaldulensis (Dehnh) | Lipoxygenase inhibition activity (LOX). | Essential oils | - | 36.79 | [95] |
Biophytum umbraculum (Welw.) | Inhibition of nitric oxide (NO) production in a cell-based model of lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage-like cell line. | - | - | 39.6 ± 6.8 | [96] |
Nigella sativa L. (Mill.) | Essential oils, trans-sabinene hydrate methyl ether 19, and 1,2-epoxy-menth-4-ene21 | - | 6.3 | [97] | |
Buddleja salviifolia (Lam) | Acteoside | - | 42 | [94] | |
Rubus rosifolius (Sm.) | Essential oils | - | 56 | [94] | |
Morinda citrifolia (Carl Linnaeus) | - | - | 67 | [94] | |
In vivo assessment | |||||
Percentage of edema reduction (%) | |||||
Borago officinalis (Carl Linnaeus) | Inhibition of the croton oil-induced ear edema in mice. | Phenolic compounds | - | 21 | [98] |
Capparis sicula subsp. Sicula (Carl Linnaeus) | - | 24 | [98] | ||
Malva sylvestris (Carl Linnaeus) | - | 21 | [98] | ||
Mentha aquatic (Carl Linnaeus) | - | 27 | [98] | ||
Raphanus raphanistrum subsp. Raphanistrum (Carl Linnaeus) | - | 25 | [98] | ||
Percent inhibition of edema volume after 1 h (%) | |||||
Terminalia bellarica (Gaertn.) Roxb. | Reducing the carrageenan-induced mice paw edema volume. | Flavonoids, terpenoids, and alkaloids | Inhibition of COX-2 activity. | 32.85 ± 0.013 | [99] |
Terminalia chebulla (Retz.) | Flavonoids, terpenoids, and alkaloids | Inhibition of COX-2 activity. | 34.28 ± 0.016 | [99] | |
Zanthoxylm armatum, (DC.) | - | Prevention of pro-inflammatory mediators of edema synthesis and their release at the target site. | 43 ± 0.2 | [100] | |
Output of NO and ROS | |||||
Patrinia heterophylla (Benth.) | Detection of ROS and NO production in an established zebrafish model. | Natural iridoids | Down-regulation of iNOS and COX-2 expression. | ROS and NO increase after treatment of zebrafish embryos with LPS. | [101] |
Lantana camara (Carl Linnaeus) | Triterpenoids | Down-regulation of iNOS. | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calhelha, R.C.; Haddad, H.; Ribeiro, L.; Heleno, S.A.; Carocho, M.; Barros, L. Inflammation: What’s There and What’s New? Appl. Sci. 2023, 13, 2312. https://doi.org/10.3390/app13042312
Calhelha RC, Haddad H, Ribeiro L, Heleno SA, Carocho M, Barros L. Inflammation: What’s There and What’s New? Applied Sciences. 2023; 13(4):2312. https://doi.org/10.3390/app13042312
Chicago/Turabian StyleCalhelha, Ricardo C., Hala Haddad, Lúcia Ribeiro, Sandrina A. Heleno, Márcio Carocho, and Lillian Barros. 2023. "Inflammation: What’s There and What’s New?" Applied Sciences 13, no. 4: 2312. https://doi.org/10.3390/app13042312
APA StyleCalhelha, R. C., Haddad, H., Ribeiro, L., Heleno, S. A., Carocho, M., & Barros, L. (2023). Inflammation: What’s There and What’s New? Applied Sciences, 13(4), 2312. https://doi.org/10.3390/app13042312