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Abstract: Error estimation and adaptive applications help to control the discretization errors in finite
element analysis. The study implements the radial point interpolation (RPI)-based error-recovery
approaches in finite element analysis. The displacement/pressure-based mixed approach is used
in finite element formulation. The RPI approach considers the radial basis functions (RBF) and
polynomials basis functions together to interpolate the finite element solutions, i.e., displacement
over influence zones to recover the solution errors. The energy norm is used to represent global and
local errors. The reliability and effectiveness of RPI-based error-recovery approaches are assessed by
adaptive analysis of incompressibility elastic problems including the problem with singularity. The
quadrilateral meshes are used for discretization of problem domains. For adaptive improvement of
mesh, the square of error equally distributed technique is employed. The computational outcome for
solution errors, i.e., error distribution and convergence rate, are obtained for RPI technique-based
error-recovery approach employing different radial basis functions (multi quadratic, thin-plate splint),
RBF shape parameters, different shapes of influence zones (circular, rectangular) and conventional
patches. The error convergence in the original FEM solution, in FEM solution considering influence-
zone-based RPI recovery with MQ RBF, conventional patch-based RPI recovery with MQ RBF and
conventional patch LS-based error recovery are found as (0.97772, 2.03291, 1.97929 and 1.6740),
respectively, for four-node quadrilateral discretization of problem, while for nine-node quadrilateral
discretization, the error convergence is (1.99607, 3.53087, 4.26621 and 2.54955), respectively. The study
concludes that the adaptive analysis, using error-recovery estimates-based RPI approach, provides
results with excellent accuracy and reliability.

Keywords: error estimates; effectivity; incompressibility; recovery technique; radial point interpolation;
radial basis function

1. Introduction

The error assessment and adaptive techniques are developed to improve the finite
element analysis efficiency and to keep the discretization error within limits. The adaptive
finite element technique is an iterative approach in which the finite element analysis and
error estimation are first carried out, and then the solution error is checked for permissible
limits, and the mesh is refined if limit is exceeded. The success of adaptive analysis depends
on the accurate error estimation of selected meshing schemes. The current interest in finite
element method (FEM) research is to reduce the dependency of mesh for the analysis
and to develop the advanced finite element methods. Cen et al. [1] provided a review of
up-to-date high-performance finite element methods including the hybrid stress-function
FEM, the hybrid displacement-function FEM and the improved unsymmetric FEM, and
their applications. Xu and Rajendran [2] proposed a meshfree finite element method based
on partition of unity for linear and nonlinear finite element analyses. The shape-free FEM
concept was proposed by Cen et al. [3], in which performances of FEM are not affected
by distortion of element shapes. Three-dimensional eight-node hexahedral elements are
developed by Zhou et al. [4] for resisting mesh distortion in the finite element analysis
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applicable to both isotropic and anisotropic cases. They apply the virtual work principle in
the development of an element considering two different sets of displacement fields that
are employed simultaneously, namely traditional iso-parametric element formulations and
analytical trial functions. Huang et al. [5] developed a new three-dimensional solid-shell
element with mesh-resistant distortion for analysis of shells with various geometry and
loading conditions. The incompressible condition of problem causes an error in analysis
due to the ill conditioning of the stiffness matrix and volumetric locking. Brink and Stein [6]
summarized the computational results of the approaches, namely displacement-pressure
formulation, a three-field formulation and a two-field formulation based on an energy
functional that deals with the incompressibility in finite element analysis. Zeng and Liu [7]
used a mixed Kirchhof stress displacement-pressure formulation, Karabelas et al. [8] used
a basic pressure projection stabilized method, and Doll et al. [9] use a selective-reduction
integration approach to satisfy the incompressibility condition. Boffi and Stenberg [10]
suggested a number of treatments for the issue of volumetric locking, which arises from
the constrained nature of displacement-based finite element analysis. They consider hy-
drostatic pressure as unknown and satisfy the condition of the ellipticity on the kernel, in
addition to the well-known Babuška–Brezzi condition. Gültekin et al. [11] employed the
variational multi-scale approach-based finite element technique to investigate finite-strain
incompressible elasticity with volumetric locking. The meshless method provides better
accuracy than conventional FEM [12]. Guo et al. [13] proposed a universal recovery pro-
cedure to improve the accuracy of gradient approximation for virtual element methods
using general polygonal meshes. Kaveh and Seddighian [14] developed the nodal stress
recovery technique by fitting appropriative function using Colliding Bodies Optimization
(CBO) Algorithm for nodal stress fields. The approach is a connection between analytical
approaches and numerical methods, utilizing the benefits of both categories. Khan et al. [15]
implemented the mixed formulations for incompressible linear elasticity problems in the
finite element method. They also consider the requirement for pressure stabilization with
lowest-order conforming approximations. Popis, ter et al. [16] developed mathematical
algorithms to generate mesh using ordered/unordered point clouds, eliminating the errors
which can be induced in mesh generation over the domains. Gratsch and Bathe [17] compre-
hensively reviewed the error estimation approaches for linear and non-linear finite element
solutions. Alshoaibi and Bashiri [18] presented the adaptive modeling of crack develop-
ment for linear elastic materials under fatigue conditions. The displacement projection
technique was used to calculate stress-intensity factors at each crack increment. A hybrid
Hermite approximation approach and an improved interpolation element-free Galerkin
method is proposed by Ma et al. [19] for the analysis of elasticity problems, who found
results with excellent accuracy and stability. Vogl et al. [20] conducted Zienkiewicz and
Zhu error estimator-based adaptive analysis of magnetized plasma in transport-confined
fusion reactors. The derivatives of field variable at the super-convergent points are used
by Saikia et al. [21] to map stress field and to recover the errors in the finite element anal-
ysis by applying the artificial neural network procedure. Karvonen et al. [22] conducted
probabilistic error analysis for recently proposed statistical finite element method (statFEM)
based on a Gaussian process. Ahmed [23] compared the recently proposed influence-
zones-based error-recovery techniques including RPI method for elastic finite element
solutions. Gong et al. [24] developed an interface model of soil and structure employing
the radial point interpolation approach in finite element method. A hybrid approach using
element-free Galerkin (EFG) and radial point interpolation (RPI) technique was developed
by Cao et al. [25] to deal with the imposition of displacement boundary conditions of the
elastic problems.

It is clear from the survey of the relevant literature that the recent research interest
in FEM is to reduce the dependency of the mesh for the analysis, and also to increase the
effectivity of the finite element solution errors. Thus, error-recovery techniques in a mesh-
free environment need to be further developed particularly for adaptive finite element
analysis of large deformation or incompressibility problems. The present study proposes
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the mesh-free RPI-based error recovery for finite element analysis of incompressible-elastic
problems. The displacement-pressure-based mixed approach is employed in finite element
formulation. The elastic plate examples with a known analytical solution are analyzed to
investigate the performance of RPI-based error recovery in terms of the error properties, i.e.,
convergence rate, distribution and effectivity. The four-node quadrilateral meshing is used
for domain discretization. The effect of influence-zone type, namely circular and rectangular
zones of influence, and RBF types, namely MQ and TSP radial basis function, along with
their shape parameters, is also investigated in RPI-based error-recovery analysis. The
RPI-based error-recovery technique performance is compared with least-square (LS)-based
error-recovery technique on the conventional patches. The conventional patch contains the
union of the surrounding elements around the particular element [26]. The incompressible-
elastic finite element formulation and finite element error estimation procedure are given
in Appendix A.

2. Radial Point Interpolation (RPI) Technique-Based Error Recovery

The radial point interpolation (RPI) technique takes into account both the polynomials
basis function (PBF) and radial basis functions (RBF) for interpolation [27]. Consider a
problem domain Ω. To approximate a function u(x) in Ω, the node interpolant uh(x) is
defined in domain Ω by

uh(x) = ∑n
i=1 Bi(r) ai + ∑m

j=1 pj(x)bj(x) (1)

with the constraint condition

n

∑
i=1

pij(x)ai = 0, j = 1−m, (2)

where Bi(r) is the radial basis functions, n is the number of nodes in the neighborhood of x,
pj(x) is the monomial in the space coordinates xT = [x, y], and coefficient ai and bj are the
interpolant constant m is the number of polynomial basis function.

In the radial basis function Bi(r), the variable is only the distance, r, between the
interpolation node x and a node xi. For a two-dimensional problem, r is defined as

r = [(xj − xi)
2 + (yj − yi)

0.5] (3)

There are a number of radial basis functions. The multi-quadrics (MQ) radial function
and thin-plate splint radial basis function (TPS) are used in the present study. It has been
proved that this term can improve interpolation accuracy. In Equation (1), only limited
number pj(x) is sufficient, i.e., m << n. The following linear polynomial basis is employed.

PT(x) = [1 x y], (4)

The coefficient ai and bj in Equation (1) can be determined by enforcing Equation (1)
to be satisfied at the n nodes surrounding node x. Equation (1) can be rewritten in matrix
form as [

u
0

]
=

[
B0 P
PT 0

][
a
b

]
= G a0 (5)

where

PT =

 1 1 −
x1 x2 −
y1 y2 −

− 1
− xn
− yn

 (6)

B0 =


B1(r1) B2(r1) − Bn(r1)
B1(r2) B2(r2) − Bn(r2)
− − −− −

B1(rn) B2(rn) −− Bn(rn)

 (7)
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aT
0 = [a1, a2,−−−−−−−an, b1, b2, b3] (8)

Hence, we have
u(x) = Φ(x) ue, (9)

where the shape function u(x) is defined by

Φ(x) =
[

B1(r) B2(r)−−− Bn(r) 1 x y] G−1 (10)

and
uT

e = [u1, u2,−−−−−−−un, 0 0 0] (11)

The shape function Φ(x) obtained through the above procedure possesses delta func-
tion properties, i.e.,

∅i
(
xj
)
= δij =

{
1, i = j
0, i 6= j

}
(12)

2.1. Multi-Quadrics Radial Basis Function (MQ)

There are a number of radial basis functions. and the radial basis function (RBF)
affects the performance of RPI procedure considerably. The RBF multi-quadrics (MQ) with
dimensionless coefficient (α0) is formulated as

Ri(xj) = [(xj − xi)
2 + (yj − yi)

2 + (α0_dc)2]q, α0 ≥ 0 (13)

where dc = characteristic length relating the nodal distance of the point x (smallest distance
between the node i and nodes in influence zones).

2.2. Thin-Plate Splint Radial Basis Function (TPS)

Thin-plate splint RBF is formulated as follows:

Ri(xj) ={[(xj − xi)
2 + (yj − yi)

2]}η/2, (14)

The α0, q and η are the radial basis functions shape parameters. In employing radial
basis functions, the shape parameters must be identified for optimal performance. It was
found from the earlier study [28] that for two-dimensional elastic plate problem using
multi-quadrics RBF and errors measured in energy norm, α0 = 5.0 and q = 1.03 perform well,
and the same are adopted in this study The value of η is taken as four (4) with thin-plate
splint RBF. For a plate problem with rigid inclusion, the value of α0 and q are taken as 10.0
and 1.03 for multi quadrics RBF in RPI-based error recovery.

In Equation (1), the linear polynomial added into the RBF can ensure linear consistency
and improve accuracy [29]. The linear polynomial basis having m as 3 is used, and is given
below as

pT(xi) = [1, xi, yi,], (15)

The mesh-free interpolation performance depends on the selection of influence-zone
types. The influence zones of a circular shape are formed from the distance d (= ‖ x − xi‖/dm).
The (x − xi) is the distance from node x to point xi, and dm is the size of the influence zone
of the point xi; the influence size of the ith node, dmi, is calculated by dmi = dmax ci, in which
dmax is a dilation parameter. The distance cI is calculated by probing for sufficient neighbor
nodes distance. In this study, the value of dmax is assumed as 3.0. For regularly distributed
nodes, ci is simply the distance between two neighboring nodes, while for irregularly
distributed nodes, ci can be taken as an average distance of nodes in the influence zone of
xi. For the construction of influence zones of rectangular shape, the distance along two
cartesian directions are rx = ‖x − xi‖/dmx and ry =‖y − yi‖/dmy, where dmx = dmax cxi and
dmy = dmax cyi. For uniformly distributed nodes, ci is simply the distance between two
neighboring nodes. For non-uniformly distributed nodes, ci can be taken as an average
nodal spacing in the support domain of xi.
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The PIM-based error-recovery technique and error estimators directed mesh updating
schemes are implemented in 2D-finite element computer software. The program is also
incorporated with standard patch least-square error-recovery technique and incompressible-
elasticity formulation. The software is installed on intel core i7 computer with 2.6 GHz
processor and 16 GB RAM to analyze the incompressible-elastic problems. Figure 1 depicts
the error-recovery approach coupled with the adaptive incompressible-elastic finite-element
analysis flow chart.
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3. Applications to Benchmark Examples
3.1. Incompressible-Elastic Square Plate

A convergence study of the recovery of errors in displacement or stress for an incompressible-
elastic problem subjected to self-weight is used to test the effectiveness of the RPI-based
error-recovery scheme. This problem is employed by Zienkiewicz et al. [30]. The absence of
singularity in the illustrative plate problem enables the theoretical convergence rate of the
ZZ recovery scheme to be compared to that of alternative recovery schemes. The analytical
solutions for the illustrative plate problem are given in Equations (16)–(20).

Domain and Boundary Conditions: Ω [1, 1], u = v = 0 on Γ.
Analytical Solutions:

u = 2x2 y(1− x)2(1− y)(1− 2y), (16)

v = −2x y2 (1− x)(1− 2x) (1− y)2, (17)

p = x2 − y2, (18)
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Body Self-weight:

bx = 4y
(

1− 6x + 6x2
)(

1− 3y + 2y2
)
+ 12x2

(
1− 2x + x2

)
(−1 + 2y)− 2x, (19)

by = −4x
(

1− 6y + 6y2
)(

1− 3x + 2x2
)
+ 12y2

(
1− 2y + y2

)
(−1 + 2x) + 2y, (20)

The adaptive analysis of the illustrative plate problem is carried taking four-node
quadrilateral elements with one-point reduced integration and nine-node quadrilateral
elements with four-point reduced integration for volumetric strain term (Figure 2). The
target error in energy norm is kept as 2%. The computational results for error proper-
ties with various recovery procedures in energy norms considering influence zones and
conventional patches are tabulated in Tables 1–3.
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Table 1. Error properties results for LS- and RPI (MQ)-based recovery approach in incompressible-
elastic plate analysis considering influence zones and conventional patches (four-node quadrilateral
regular mesh).

Mesh Size
(1/h)

FEM Error
(×10−3)

RPI (Influence Zone, MQ) RPI (Conventional Patch, MQ) LS (Conventional Patch)

Error (×10−3) Effectivity Error (×10−3) Effectivity Error (×10−3) Effectivity

1/4 29.44 8.30 0.96649 10.21 0.79000 15.95 0.90074
1/16 7.69 0.49 1.00823 0.72 0.98241 1.79 1.00184
1/32 3.85 0.12 1.00364 0.17 0.99637 0.49 1.00092

Conv. Rate 0.97772 2.03291 1.97929 1.67400

Table 2. Error properties results for LS- and RPI (MQ)-based recovery approach in incompressible-
elastic plate analysis considering influence zones and conventional patches (nine-node quadrilateral
regular mesh).

Mesh Size
(1/h)

FEM Error
(×10−3)

RPI (Influence Zone, MQ) RPI (Conventional Patch, MQ) LS (Conventional Patch)

Error (×10−3) Effectivity Error (×10−3) Effectivity Error (×10−3) Effectivity

1/4 4.44 0.580 1.13369 6.927 1.87269 2.757 1.04939
1/8 1.11 0.054 1.19421 0.081 0.98104 0.702 1.01182
1/16 0.279 0.017 1.00075 0.018 0.99259 0.021 1.00111

Conv. Rate 1.99607 3.53087 4.26621 2.54955

Table 3. Error properties results for LS- and RPI (MQ)-based recovery approach in incompressible-
elastic plate analysis considering influence zones and conventional patches (four-node quadrilateral
irregular mesh).

Mesh Size
FEM Error

(×10−3)
RPI (Influence Zone, MQ) RPI (Conventional Patch, MQ) LS (Conventional Patch)

Error (×10−3) Effectivity Error (×10−3) Effectivity Error (×10−3) Effectivity

30 82 31.69 25.04 0.83372 25.05 0.79958 23.04 0.80883
615 1218 5.39 1.89 0.98982 1.96 0.99366 1.33 0.99778
2598 5798 2.73 0.86 0.98908 0.89 0.99317 0.57 1.00702
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3.1.1. Effect of Influence-Zone Shape and Radial Basis Function and Its Shape Parameters
in RPI-Based Error Recovery

In order the study the shape of influence zone and RBI in RPI-based recovery, the rect-
angular influence-zone shape (Figure 3) and thin-plate splint (TPS) RBI are also considered
in incompressible-elastic finite element analysis. The influence of the shape parameters
value of η =5 for TPS RBI is also studied. The computational results for RPI interpolation
considering circular/rectangular zones and conventional patch with thin-plate splint (TPS)
RBI and shape parameters are given in the following Tables 4–6 for regular and irregular
mesh of quadrilateral elements.
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Table 4. Error properties results for RPI (TPS)-based recovery techniques in incompressible-elastic plate
analysis considering influence zones and conventional patches (four-node quadrilateral regular mesh).

Mesh Size
(1/h)

FEM Error
(×10−3)

RPI (Circular Influence Zone,
TPS, η = 4)

RPI (Conventional Patch, TPS,
η = 4)

RPI (Rectangular Influence
Zone, TPS)

Error (×10−3) Effectivity Error (×10−3) Effectivity Error (×10−3) Effectivity

1/4 29.44 13.16 0.96649 12.31 0.79461 13.29 0.83386
1/16 7.69 0.901 1.00823 0.914 0.98862 0.796 0.97836
1/32 3.85 0.234 1.00364 0.204 0.99450 0.161 0.99601

Conv. Rate 0.97772 1.93875 1.97230 2.12271

Table 5. Error properties results for RPI (TPS)-based recovery techniques in incompressible-elastic plate
analysis considering influence zones and conventional patches (four-node quadrilateral irregular mesh).

Mesh Size
FEM Error

(×10−3)

RPI (Circular Influence
zone, TPS, η = 4)

RPI (Conventional Patch, TPS,
η = 4)

RPI (Rectangular Influence
Zone, TPS)

Error (×10−3) Effectivity Error (×10−3) Effectivity Error (×10−3) Effectivity

30 82 31.691 25.28 0.82779 25.017 0.79698 24.681 0.85763
615 1218 5.387 1.818 0.97268 1.900 0.98447 1.929 0.98678
2598 5798 2.732 0.852 0.98871 0.889 0.99513 0.907 0.99393

Table 6. Error properties results for RPI (TPS)-based recovery techniques in incompressible-elastic
plate analysis considering TPS RBF shape parameter and conventional patches (four-node quadrilat-
eral regular mesh).

Mesh Size
(1/h)

FEM Error
(×10−3)

RPI (Circular Influence Zone,
TPS, η = 5)

RPI (Conventional Patch,
TPS, η = 5)

Error (×10−3) Effectivity Error (×10−3) Effectivity

1/4 29.44 13.31 0.80100 11.31 0.85831
1/16 7.69 1.488 0.95403 1.204 0.98862
1/32 3.85 0.698 0.96364 0.555 0.94069

Conv. Rate 0.97772 1.41784 1.46772
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3.1.2. Finite Error Distribution in Plate Domain

The error distribution pattern is replicated in adaptively improved meshes that result
from adaptive analysis to obtain a target error limit throughout the problem domain. The
finite element analysis in adaptive environment incorporating the RPI-based error recovery
is carried out to target error limit of 4%. Table 7 shows the adaptive analysis results
(overall error, total number of elements and degree of freedom (DOF)) for a target error
limit of 4% with quadrilateral discretization using the RPI error recovery employing multi-
quadrics (MQ)/thin-plate splint (TPS) RBF, circular/rectangular influence-zones shapes
and conventional patches. Figure 4 depicts the plots of adaptive refined meshes obtained
from adaptive analysis employing radial point interpolation-based error recovery using
multi-quadrics (MQ) and thin-plate splint (TPS) RBF, circular and rectangular influence-
zones shapes, and conventional patches.

Table 7. Adaptive finite element analysis results (overall errors, total number of elements (N) and
DOF) for incompressible-elastic plate with 4% target error using quadrilateral elements.

Recovery Type

Adaptive Analysis Results (Original Uniform Mesh with
615 Elements and 1218 DOF, 4% Target Error)

FEM
Error

Projected
Error

Adaptive Mesh Properties

N DOF

LS (conventional patches) 9.43 9.64 5629 11,520
RPI (influence zones-MQ-Cir.) 9.43 9.26 5872 12,026

RPI (conventional patches-MQ) 9.43 9.30 5606 11,490
RPI (influence zones-TSP-Cir.) 9.43 9.13 5950 12,086

RPI (influence zones-TSP-Rect.) 9.43 9.22 5454 11,186
RPI (conventional patches-TSP) 9.43 9.23 5587 11,454

3.2. Infinite Incompressible-Elastic Plate with Rigid Circular Opening

The infinite incompressible-elastic plate with circular opening example is also analyzed
to examine the recovery properties of the mesh-free RPI-based recovery schemes. The
adaptive mesh-refining approach is implemented to study the error distribution behavior.
The analytical solution of the example problem is known [31]. The gradients are continuous
on both the boundary and inside domain, having one or more singular points outside of
the domain. The following equations can be used to obtain true displacement and stresses
in the problem.

ur =

(
Tx

8Gr

)
{(k− 1)r2]+2γR2+[β(k− 1)R2 + 2r2 − 2δ

(
R4

r2

)
]} cos2θ, (21)

uθ = −
(

Tx

8Gr

)[
β(k− 1)R2 + 2r2 − 2δ

(
R4

r2

)]
sin2θ, (22)

σrr = (Tx/2)
[
1− γ

(
R2/r2

)]
] +(Tx/2) [1− 2β

(
R2/r2

)
+ 3δ

(
R4/r4

)
cos2θ, (23)

σθθ =

(
Tx

2

)[
1 + γ

(
R2

r2

)]
− (Tx/2)

[
1− 3δ

(
R4/r4

)]
cos2θ , (24)

τr = −(Tx/2)
[

1 + β

(
R2

r2

)
+ 3δ

(
R4/r4

)]
sin2θ, (25)

where r = y2 + x2, Tx = uniaxial traction applied at infinity, and constants k[=3 − 4υ],
β[=−2/(3 − 4υ)], γ[=−(2 − 4υ)/2], δ[=1/(3 − 4υ)] depend on Poisson’s ratio υ only.

The dimensions of the problem are taken as R = 1 unit, w = b = 4 unit, as shown in Figure 5.
The rigid circular opening’s center is a singular point. Both of the displacement components
have a value of zero along the edge of the circular arc AE. Both the normal displacement
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component and the shear stress are equal to zero along the CB and DE border symmetry lines.
Along boundaries AB and CD, the tractions computed from Equations (23)–(25) are imposed.
The numerical quadrature using 12- Gauss points per element side is used to calculate the
corresponding load vectors. The plate problem is analyzed by RPI-based error estimator
incorporated adaptive procedures and the target error in energy norm is kept as 2%. The
uniform subdivision of four-node quadrilateral elements is used. The discretized domain
is shown in Figure 5. The numerical results of the convergence of error and effectivity for
four-node quadrilateral elements with one-point reduced integration for penalty term is given
in Table 8. The adaptive mesh refinement results, i.e., degrees of freedom (DOF) and number
of element (N) after mesh was updated for 2% target error in incompressible plate with rigid
circular opening, considering meshless and conventional patches are given in Table 9. The
updated mesh plots for target error of 2% are depicted in Figure 5.
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Table 8. Error properties found for LS- and RPI (MQ)-based recovery approach in incompressible-
elastic analysis for plate with rigid circular opening considering influence zones and conventional
patches. (Four-node quadrilateral equal elements).

Mesh Size FEM Error
RPI (Influence Zone, MQ) RPI (Conventional Patch, MQ) LS (Conventional Patch)

Error Effectivity Error Effectivity Error Effectivity

233 534 0.1680 0.1071 0.88526 0.1148 0.81606 0.1177 1.03672
793 1698 0.0912 0.0584 0.98995 0.0604 0.98564 0.0516 1.02639
2467 5130 0.0546 0.0266 0.95198 0.0272 0.94467 0.0234 0.97784

Table 9. Adaptive finite element analysis results (errors, total number of elements (N) and DOF) for
incompressible-elastic plate with 2% target error using quadrilateral elements.

Recovery Type

Adaptive Analysis Results (Original Uniform Mesh with
233 Elements and 534 DOF, 2% Target Error)

FEM
Error

Projected
Error

Adaptive Mesh Properties

N DOF

LS (conventional patch) 4.93 5.12 739 1586
RPI (Meshfree-MQ-Cir.) 4.93 9.35 291 652

RPI (conventional patch-MQ) 4.93 4.02 346 770

4. Discussion

The study implements the RPI-based error-recovery approaches in finite element error
analysis. The displacement/pressure-based mixed approach is used in finite element formu-
lation. The accuracy and reliability of RPI-based error-recovery approaches is assessed for
incompressibility-elastic problem. The adaptive analysis computational results are obtained
for error quality, i.e., errors convergence, effectivity with increasing order of fineness and re-
fined meshes for target error, by simulating the incompressible plate benchmark examples.
The problem domain is meshed using 4/9 node quadrilateral elements. The target error in
energy norm for four-node elements is kept as 4% in incompressible-elastic plate and 2% for
incompressible-elastic plate with rigid circular opening. The incompressible-elastic analysis
results for plate problems in terms of convergence of error, effectivity for least-square
and radial point interpolation-based recovery procedures using influence zones/standard
patches, and MQ/TSP radial basis function and two-shape parameter value (η =4, 5) are
tabulated in Tables 1–9.

From Tables 1–6, it is clear that the error convergence obtained with the help of the RPI
recovery is found to be better than that for the least-square error-recovery technique. The
performance of RPI influence-zone-based recovery is better as compared to conventional
patches-based radial-point interpolation error recovery. This may be due to inaccurate
recovery for nodes on boundary since fewer nodes are available. The influence-zone-based
recovery technique eliminates such difficulties. The order of error is also smaller in RPI error
recovery, thereby indicating higher efficiency of the RPI-based error-recovery technique.
The higher order quadrilateral elements also present similar error properties results for
RPI error-recovery-based adaptive finite-element analysis. However, error convergence in
conventional patch-based RPI error-recovery technique is higher compared to influence-
zone-based RPI error-recovery technique. The convergence of errors in the original finite
element solution, and in the solution employing circular influence-zone-based RPI recovery
with MQ RBF, conventional patch-based RPI recovery with MQ RBF and conventional
patch-based least-square (LS) error recovery, are found as (0.97772, 2.03291, 1.97929 and
1.6740) and (1.99607, 3.53087, 4.26621 and 2.54955), respectively, for four-node and nine-
node quadrilateral discretization of elastic plate problem. The performance of RPI-based
error-recovery approach is also investigated for the plate problem with circular opening. It
is evident from the Tables 7 and 8 and Figure 6 that computation results of influence-zone-
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based RPI-recovery approach have higher global effectivity than the conventional patch-
based LS error-recovery approach, with more optimize error distribution characteristics.
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The effect of influence-zone type, namely circular and rectangular zones of influence,
and RBF type, namely MQ and TSP radial basis function, is also investigated in RPI-based
error-recovery analysis. The results indicated that influence-zone and RBF type affect
considerably the error quality and effectivity in RPI-based error-recovery analysis. The
rectangular zone of influence improves the error convergence and reduces the order of error,
while performance of TSP radial basis function is better than the MQ radial basis function
in RPI-based error recovery in incompressible-elastic problem. The error convergences’
infinite element solutions using circular and rectangular influence-zone-based RPI recovery
with TSP RBF are 1.93875 and 2.12271. The optimal value of the shape parameter (η) of TSP
radial basis function is four (4), as by increasing the η value, the order of error increases
and rate of error convergence decreases.

The error distribution pattern is replicated in adaptively improved meshes that re-
sulted from adaptive analysis to obtain a target error limit throughout the problem domains.
The adaptive analysis incorporating the error recovery based on RPI is carried out for tar-
get error limits of 4% and 2%, respectively, for square plate and plate with rigid circular
opening. The degrees of freedom and total number of elements (N) after mesh updated for
target error with RPI-recovery techniques using quadrilateral discretization are presented
in Tables 6 and 8. The updated mesh plots for the target error obtained in RPI-recovery
techniques considering influence zones/standard patches and MQ/TSP radial basis func-
tion are shown in Figures 4 and 6. It is observed from the updated meshes that the RPI
error computation is more efficient as compared to the standard patch-based error compu-
tation. It can be concluded that the adaptive analysis using radial-point interpolation-based
error-recovery estimation provides results with excellent accuracy and reliability.

5. Conclusions

The study implements the radial point interpolation (RPI)-based error-recovery ap-
proaches in finite element analysis. The displacement/pressure-based mixed approach
is used in finite element formulation. The solution errors are quantified in energy norms.
The reliability and effectiveness of RPI-based error-recovery approaches is assessed by
the adaptive analysis of the incompressibility elastic problem including the problem with
singularity. The quadrilateral meshes are used for discretization of problem domains. The
square of error equally distributed scheme is used for adaptive improvement of mesh. The
computational outcome for solution errors, i.e., error distribution and convergence rate, are
obtained for RPI technique-based error-recovery approach with multi quadratic/thin-plate-
splint radial basis functions, circular/rectangular influence zones and conventional patches.
The error convergence obtained with the help of RPI recovery is found to be better than
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that for the least-square error-recovery technique. The performance of RPI influence-zone-
based recovery is better as compared to conventional patches-based RPI error recovery.
It is observed that influence-zone and RBF type affect considerably the error quality and
effectivity in RPI-based error-recovery analysis. The rectangular zone of influence improves
the error convergence and reduces the order of error, while performance of TSP radial
basis function is better than the MQ radial basis function in RPI-based error recovery in
the incompressible-elastic problem. It can be concluded that the adaptive analysis under
the guidance of radial point interpolation-based error-recovery estimation provides results
with excellent accuracy and reliability.
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Appendix A

Appendix A.1 Finite Element Formulation for Incompressible Elasticity [30]

The momentum balance equation and incompressibility constraints in the incompress-
ible elastic formulation are given as follows,

L Tσ + f = 0 in Ω, (A1)

∇Tu = m T L u = 0 in Ω , (A2)

σ n = t on Γt, andu = u on Γu (A3)

where Ω is a problem domain, f is body forces σ ε and u are the stress, strain and displace-
ment in body.

The displacement-pressure mixed formulation is used for the analysis. The constitutive
relation can be written as,

The stress (σ) and strain (ε) relation for mixed formulation in terms of displacement
(u) and pressure (p) can be written as,

σ = 2µ

(
ε− 1

3
mmTε

)
+ mp, or (A4)

where mT = [1,1,1, 0, 0, 0], σ is the stress tensor, ε is the strain tensor, u is the displacement
and L defines the strain as

ε = Lu, (A5)



Appl. Sci. 2023, 13, 2366 13 of 15

Approximating independently u and p by u = Nuu, and p = Np p, and performing
the Galerkin approximation, we have the discretized system of equations

p = Np p , (A6)[
A B
BT 0

]{
u
p

}
=

[
f1
f2

]
(A7)

where B =
∫

Ω GTmNPdΩ , A =
∫

Ω GT2µ
(

I − 1
3 mmT

)
GdΩ,

f1 =
∫
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Appendix A.2 FiniteElement Errors and Adaptivity [26]

The finite element errors are the deviation of the original finite element results from
the recovered results (or exact results). Solution errors are evaluated in in scalar quantity
terms i.e., energy norms or L2 norms. The reliability of error estimations is measured in
terms of effectivity. The ratio between the projected error and the exact error i.e., effectivity
(θ), provide the reliability of the error estimators.

θ =
‖e‖
‖eex‖

(A8)

where ‖e‖E(=
[∫

Ω e∗Tσ D−1e∗σdΩ
] 1

2 ) represent the evaluated error, and ‖eex‖E is the exact
error (in energy norms), D is the elasticity matrix.

Solution accuracy (η) in finite element analysis is given as follows.

η =
‖e‖
‖σ∗‖ (A9)

where ‖σ∗‖2 = ‖σh‖2 + ‖e‖E
2, ‖σh‖(=

[∫
Ω σT D−1σTdΩ

] 1
2 ).

The finite element solution is accepted when target accuracy (ηtarget) is more than
the accuracy (η) of the solution. The mesh may be improved in adaptive way i.e., only
on locations where the errors are more than the target error. The global target error is
calculated as follows.

‖e‖target = ηtarget‖e‖/k (A10)

where k is a factor lying between 1.0 to 1.5 to avoid oscillation [32].
The target error in the ith element is calculated using the following equation [26].

‖e‖target (i)√
Ωi

=
‖e‖target√

Ω
(A11)

where Ω is the volume of the domain, Ωi is the volume of the ith element.
Mesh improvement parameter (ξi) that directs mesh refining is as follows.

ξi =
‖e‖target

‖e‖target (i)
(A12)

The mesh improvement is required when element improvement parameter is greater
than one. The updated mesh size (hupdated) can be found as.

hupdated =
hold

ξ
1/p
i

(A13)
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where p is the order of the approximating polynomial and hold is the old size of the ith element.
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