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Abstract: The determination of the rock elasticity modulus (EM) is an indispensable key step for
the design of rock engineering problems. Traditional experimental analysis can accurately measure
the rock EM, but it requires manpower and material resources, and it is time consuming. The EM
estimation of new rocks using former published empirical formulas is also a possibility but can be
attached of high uncertainties. In this paper, four types of metaheuristic optimization algorithms
(MOA), named the backtracking search optimization algorithm (BSA), multi-verse optimizer (MVO),
golden eagle optimizer (GEO) and poor and rich optimization algorithm (PRO), were utilized to
optimize the random forest (RF) model for predicting the rock EM. A data-driven technology was
used to generate an integrated database consisting of 120 rock samples from the literature. To verify
the predictive performance of the proposed models, five common machine-learning models and
one empirical formula were also developed to predict the rock EM. Four popular performance
indices, including the root-mean-square error (RMSE), mean absolute error (MAE), the coefficient
of determination (R2) and Willmott’s index (WI), were adopted to evaluate all models. The results
showed that the PRO-RF model has obtained the most satisfactory prediction accuracy. The porosity
(Pn) is the most important variable for predicting the rock EM based on the sensitive analysis. This
paper compares the performance of the RF models optimized by using four MOA for the rock EM
prediction. It provides a good example for the subsequent application of soft techniques on the EM
and other important rock parameter estimations.

Keywords: elasticity modulus; rock materials; data-driven; soft techniques; poor and rich optimiza-
tion algorithm

1. Introduction

In rock engineering, the rock elasticity modulus (EM) plays an important role for
structure designs [1–4]. The EM is an important index for quantifying the rock behavior.
It is also closely related to the rock’s durability, which can determine rock applications to
a large extent [5]. Numerous experiments were developed according to the international
society of rock mechanics (ISRM) to calculate the rock EM [6]. Nevertheless, the expensive
sample costs and time-consuming laboratory operations have forced engineers to develop
other methods for estimating the rock EM.

The empirical formula based on statistics is a popular method to estimate the rock EM
in preliminary design phases [7–12]. The aim of the empirical formulas (simple-regression
(SR) or multiple-regression (MR) formulas) is to establish a relationship between one or
more rock properties and the EM. Numerous researchers proposed various empirical for-
mulas to estimate the rock EM [3,4,13–16]. Beiki et al. [17] used the porosity (Pn) to predict
the rock EM with a low prediction accuracy of the coefficient of determination (R2). Yasar
and Erdogan [18] provided a linear SR formular using P-wave velocity (Vp) to estimate EM.
Dincer et al. [19] established an SR formula between the Schmidt hammer rebound number
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(SHRN) and EM. The prediction accuracy of R2 was equal to 0.85. Behzadafshar et al. [20]
only utilized the point load index (PLI) to forecast the granite EM. The prediction accuracy
was not satisfactory, resulting in a low R2 of 0.58. Dehghan et al. [21] developed an MR
formula consisting of the above four variables to predict the travertine EM. By reviewing
the developed empirical formula, the Pn, Vp, SHRN and PLI are usually considered into
these empirical equations, which can be obtained directly from tests [13]. However, the
original data used to develop each empirical formula are fixed and different, and the
formula performance decreases once it is used to predict the EM of a new rock [22]. From
the prediction accuracy perspective, the intrinsic relationship of the SR and MR formulas
cannot well describe the complex and nonlinear correlation between the rock properties
and the EM [23].

In recent years, soft techniques have been widely used to solve prediction problems
in rock engineering [24–30], especially machine-learning (ML) methods. For the rock EM
prediction, Ocak and Seker [31] proposed an artificial neural network (ANN) model to
predict the EM of intact rock. The results showed that the ANN model obtained a higher
accuracy for the root-mean-square error (RMSE is equal to 0.191) than those of previous
approaches. Pappalardo and Mineo [32] utilized ANN models to estimate the EM statis of
rock samples. The results indicated that this artificial intelligence model is of more practical
value in estimating the rock EM. Singh et al. [33] used an adaptive neurofuzzy inference
system (ANFIS) to predict the EM values of 85 rock samples. The performance evaluation
results illustrated that the ANFIS model has a better performance than the initial ANN
model and fuzzy inference system (FIS) model by means of the lower RMSE value of 6.799.
Umrao et al. [34] developed an ANFIS to estimate the EM of 45 heterogenous sedimentary
rocks. This model has obtained a satisfactory prediction accuracy of R2 = 0.935. Acar and
Kaya [35] adopted a least-square support vector machine (LS-SVM) model to find the EM
of weak rocks by considering the Vp, unit weight (r), PLI and tensile strength (Ts). The
prediction results showed that the LS-SVM models can be a good substitute for experiments
to measure the weak rock EM. Al-Anazi and Gates [36] used a support vector regression
(SVR) model and a backpropagation neural network (BPNN) model to forecast the EM of
reservoir rocks. The prediction results indicated that the former has a better performance
than the latter. Matin et al. [37] used an integrated ML model, named the random forest
(RF) model, to predict the EM and the uniaxial compressive strength (UCS) of various rocks.
Based on the prediction results, the RF model not only achieves a satisfactory accuracy
(R2 = 0.91) for the EM prediction but can also accurately estimate the UCS (R2 = 0.93).
Other similar studies on the rock EM prediction by ML models can be referred to in the
literature [38–42]. To improve the ML model’s performance, the metaheuristic optimization
algorithms (MOA) are used to select the model hyperparameters. Tian et al. [43] used
the imperialism competitive algorithm (ICA) and the particle-swarm optimization (PSO)
to optimize an ANN model for predicting the EM of rock materials. The optimization
results illustrated that the ICA-ANN has the best prediction accuracy for both the training
and testing phases (R2: 0.952 and 0.955). Mokhtari and Behnia [44] combined the cuckoo
optimization algorithm (COA) and ANN model to estimate the EM of limestone rocks.
The results showed that the COA can obviously improve the prediction performance of
the ANN model. Other optimized ML models for the EM prediction can be found in the
literature [45–50].

Among common ML models, the RF model has unique advantages in resisting the
overfitting phenomenon, and its combination with MOA can effectively solve the hyperpa-
rameter selection problem [51]. In general, MOA can be divided into four groups, i.e., the
based evolutionary, based swarm intelligence, based human behavior and based physico-
chemical groups. Therefore, the aim of this paper is to generate four optimized RF models
using four different MOA strategies for predicting the rock EM. An integrated rock database
was established using the data-driven technology to train and test the proposed models. In
addition, five widely used ML models and one empirical equation were also developed to
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compare the predictive performance with four hybrid RF models for predicting the rock
EM. Finally, a sensitive analysis is carried out to calculate the variable importance.

2. Data Preparation

Reviewing the published studies on the rock EM prediction, the used rock samples are
generally different, resulting in a loss of accuracy in predicting other rock sample properties
from original empirical formulas or other models. To overpass this limitation, an integrated
rock database consisting of 120 rock samples (e.g., granite and travertine) was established
using the data-driven technology. The EM values of these rock samples was investigated by
Armaghani et al. [3], Dehghan et al. [21] and Tuğrul and Zarif [52]. The reason for choosing
these data is that the EM value of each rock is determined jointly by the porosity (Pn),
P-wave velocity (Vp), Schmidt hammer rebound number (SHRN) and point load index
(PLI). Before generating the prediction models, a correlation analysis needs to be conducted
by outputting the correlation coefficient (CC) to determine the final variables used in the
EM prediction. As illustrated in Figure 1, the scatter plot at the lower right shows the
distribution of the four input variables and of one output variable. The histograms in the
diagonal showed the data range of all variables, and the number at the upper left represents
the CC between the two corresponding variables. If the number value is negative, the
correlation between the two variables is negative. Otherwise, the correlation is positive.
The absolute number value is used to evaluate the correlation between any of two variables.
If the CC between two input parameters (or between each input and output parameter)
is very high (or very low), one of them needs to be removed to increase the prediction
efficiency. The results showed that the CC between the four variables is not high; Pn and
EM have the highest CC value (−0.651). Especially, the low correlation between PLI and
EM is caused by the diverse sources of databases used to predict EM in this paper, while
the PLI is beneficial to accurately predict the rock EM [3]. Therefore, the Pn, Vp, SHRN
and PLI are used as input variables to predict the EM (output variable). Their detailed
information is shown in Table 1.
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Table 1. Detailed description of the input and output variables.

Variables
Statistical Information

Sign Unit Min Max Mean St. D

Point load index PLI MPa 0.890 12.530 4.365 2.839
Porosity Pn % 0.100 10.270 1.957 3.047

P-wave velocity Vp km/s 2.823 7.943 5.575 0.892
Schmidt hammer rebound number SHRN / 25.630 72.000 47.093 13.795

Elasticity modulus EM GPa 3.050 183.300 60.139 44.832
Note: Min—minimum value; Max—maximum value; St. D—standard deviation value.

3. Development of Hybrid RF Models for Predicting the Rock EM
3.1. Metaheuristic Optimization Algorithms
3.1.1. Backtracking Search Optimization Algorithm (BSA)

Civicioglu [53] proposed a MOA-based evolutionary method to solve optimization
problems, namely, the backtracking search optimization algorithm (BSA). The algorithm is
still inspired by an individual evolution, especially the traditional mutation, and crossover
operators are uniformly replaced by breeding operators. The optimization process of the
BSA can be described using five strategies: initialization, selection, mutation, crossover and
selection. These strategies are defined by using Equations (1)–(5).

Pi = Low + rand(N) · (Up− Low) (1)

Poi =

{
P[ a, b ∼ Pi), a < b
permuting(Poi), a > b

(2)

Mutant = Pi + F(Poi − Pi) (3)

Ti = Pi + map · F(Poi − Pi) (4)

Pui = Ti, f itness(Ti) < f itness(Pi) (5)

where Pi and Poi represent the initial and historical position of the i-th individual, respec-
tively. Low and Up indicate the lower and upper bounds of the dimension space. a and b are
random numbers within the range of [0, 1]. F and map represent the control parameter of
the mutation operator and a binary matrix consisting of crossover probability parameters,
respectively. Ti and Pui are the current position of the i-th tested individual and the updated
position of the i-th individual, respectively.

3.1.2. Multi-Verse Optimizer (MVO)

The multi-verse optimizer (MVO) is a MOA-based physics algorithm proposed by
Mirjalili et al. [54], which is inspired by the idea that the universe moves from white holes to
black holes through wormholes to achieve a stable situation. The white holes are believed
to be an important part of the original universe, the black holes have an irresistible pull
on everything including light beams, and the wormhole is a bridge or passage connecting
different universes. In the MVO algorithm, the birth of the universe is always related to the
objects transfer. The universe with a low inflation rate is more likely to take in more objects.
The optimization process of MVO can be described as follows:

(1) Population—the initial population of the universes in the searching space is defined
using the Equation (6).

U =


u1

1 u2
1 · · · ud

1
u1

2 u2
2 · · · ud

2
...

...
...

...
u1

n u2
n · · · ud

n

 (6)

where ud
n indicates the parameter of the n-th universe in the d-dimension searching space.
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(2) Exploration and exploitation—the function of wormholes is to help objects move from
one universe to another (see Figure 2). Thus, this mechanism by which objects are
exchanged between universes through wormholes can be described as:

uj =


uj + TDR · ((ub− lb) · r3 + lb), r2 < 0.5 and r1 < WEP
uj + TDR · ((ub− lb) · r3 + lb), r2 > 0.5 and r1 < WEP
uj, r1 > WEP

(7)

where uj represents the j-th parameter of the best universe. ub and lb are the lower and
upper bounds of the multi-universes space, respectively. r1, r2 and r3 indicate three random
numbers within the range of [0, 1]. TDR and WEP represent two coefficients, the former
is the wormhole existence probability, and the latter is named the travelling-distance rate.
These coefficients can be calculated using the Equations (8) and (9).

WEP = min + t · (max−min
T

) (8)

TDR = 1− t1/e

T1/e (9)

where min and max represent the minimum maximum values, respectively. t and T indicate
the current iteration and the maximum iteration, respectively. e is the exploitation accuracy.
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3.1.3. Golden Eagle Optimizer (GEO)

Mohammadi-Balani et al. [55] developed a novel MOA-based swarm intelligence
named the golden eagle optimizer (GEO) to provide an effective scheme for solving opti-
mization problems. This algorithm is inspired by the hunting behavior of golden eagles,
who can adjust their speed to hunt. The hunting behavior can be divided into three parts:
(a) selecting the prey; (b) attacking the prey; and (c) cruising. It is worth noting that each
hunting behavior of a golden eagle is carefully considered. It allows striking a balance
between attack and cruise. Once an attack is launched, the golden eagle is unable to obtain
food or replenish enough energy.

(I) Selecting the prey—the selection can occur in a basic way, with each golden eagle
randomly select a prey from the memory of any other group member to better explore
the landscape. It is important to note that the chosen prey is not necessarily the nearest
or furthest prey. Figure 3 shows how prey selection works.

(II) Exploration and exploitation—after determining the prey, each golden eagle carries
out the attacking and cruising behaviors. The attacking behavior can be expressed by
the following mathematical formula:

YG
i = YP

l − Ai (10)
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where YG
i and YP

l represent the position of the i-th golden eagle and the prey determined
by the l-th golden eagle, respectively. Ai indicates the attacking distance between the prey
and the i-th golden eagle. The cruising behavior is related to the attacking behavior, which
can be expressed using the Equations (11) and (12).

h1y1 + h2y2 + . . . + hmym = d⇒
m

∑
z=1

hzRz (11)

m

∑
z=1

αzyz =
m

∑
z=1

αs
zy∗z (12)

where [h1, h2, . . . hm], [y1, y2, . . . ym] and [R1, R2, . . . Rm] represent the normal coefficients,
variables and random points, respectively. s is the current iteration.

[
y∗1 , y∗2 , . . . y∗m

]
indicates

the position of the selected prey. [α1, α2, . . . αm] belongs to the Ai.
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3.1.4. Poor and Rich Optimization Algorithm (PRO)

The poor and rich optimization algorithm (PRO) was proposed by Moosavi and
Bardsiri [56]. It is inspired by people’s desires and attitudes towards money. The wealth
accumulated by individuals can preliminarily divide society into two classes, namely, rich
and poor. For the rich (i.e., wealth level is obviously higher than the average one), observing
the behavior of the poor (i.e., wealth level is obviously lower than the average one) can
help them to increase wealth and consolidate their class position. The poor tend to narrow
the gap by learning from rich ideas about wealth and approaches to making money. In
the PRO algorithm, the population distribution of rich and poor can be expressed using
Equation (13).

POPmain = POPpoor + POPrich (13)

where POPmain represents the main population, which is related to the POPpoor (poor
population) and POPrich (rich population). It should be noted that the position of the rich is
better than the poor position. Their positions are calculated using the Equations (14) and
(15), respectively.

P∗rich = Prich + c ·
(

Prich − Pbest
poor

)
(14)

P∗poor = Ppoor +
[
c(Pattern)− Ppoor

]
(15)

where P∗rich and Prich represent the updated and old positions of the rich, respectively. P∗poor

and Ppoor indicate the updated and old positions of the poor, respectively. Pbest
poor is the

current position of the best people in the poor population. c is a random number within
the range of 0 to 1. The Pattern value is calculated by using the Equation (16).

Pattern =
Pbest

rich + Pmean
rich + Pworst

rich
3

(16)
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where Pbest
rich and Pworst

rich represent the current positions of the best and worst people in the
rich population, respectively. Pmean

rich indicates the average position of the people in the rich
population. The position distribution of rich and poor is shown in Figure 4.
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However, some sudden changes can occur for the rich and poor situations, such as the
stock prices falling and rising, shortages of petroleum products and inflation [56]. Since the
occurrence of the above situation is not predictable, P∗rich and P∗poor after mutation can be
expressed as follows:

P∗rich = P∗rich + randn, i f rand < Pmut (17)

P∗poor = P∗poor + randn, i f rand < Pmut (18)

where rand is a random number within the range of 0 to 1. randn represents a value
considering a normal distribution. Pmut represents the mutation probability.

3.2. Hybrid RF Models

In this paper, the BSA, MVO, GEO and PRO are used to optimize the RF model for
predicting the rock EM. The definition of the RF model is described in the literature [57–60].
The hyperparameter combination selection (i.e., number of trees (Nt) and random features
(Maxdepth)) is a key step to tap into the RF model prediction potential. Therefore, four hy-
brid RF models were generated to find the optimal hyperparameter combination according
to the following process:

(i) Data preprocessing
A total of 120 rock samples with four input variables were used to predict the EM in
this paper. All variables need to be extracted and normalized to [−1, 1]. The purpose
of this step is to prevent a failure for establishing the accurate prediction relationships
due to the parameter variability. After that, the train and test sets are separated from
the initial database. The ratio of the train set to the test set is set equal to 4 to 1. It
should be noted that the same train or test set is used to generate each hybrid RF
model for predicting the rock EM and comparing their performance.

(ii) Parameter settings
Although the Nt increase will not cause an overfitting of the RF model, a large
parameter selection range can greatly increase the computation time. Therefore, the
ranges of Nt and Maxdepth are set equal to [1, 100] and [1, 10], respectively. For
the four MOA algorithms, the number of initial solutions (i.e., individuals of BSA,
candidates of MVO, population of GEO and human of PRO) and the iteration time
are the core factors that affect the optimization performance of these algorithms. To
better activate the optimization performance, the solutions are set equal to 30, 60, 90,
120 and 150 during the 200 iterations.
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(iii) Optimization evaluation
The fitness function is utilized to evaluate the performance of each hybrid RF model
with different solutions during the 200 iterations. The RMSE is adopted to represent
the fitness values of all models in this paper. They do not need an absolute value to
evaluate the model performance [51]. In other words, the best-optimized RF model
has the lowest RMSE value among all hybrid models based on the same MOA. The
flowchart for developing four hybrid RF models for predicting the rock EM is shown
in Figure 5.
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4. Performance Evaluation

The statistical indices widely utilized to evaluate the performance of the prediction
models include the root-mean-square error (RMSE), the mean absolute error (MAE), the
coefficient of determination (R2) and the Willmott’s index (WI). The RMSE and MAE are
able to reflect the error between the predicted and the measured values. On the other hand,
the R2 and WI describe the fitting performance of the prediction models. In terms of values,
the lowest values of RMSE and MAE and the highest values of R2 and WI represent the
best prediction model.

RMSE =

√
1
n

n

∑
i=1

(Ei − ei)
2 (19)
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R2 = 1−

[
n
∑

i=1
(Ei − ei)

]2

[
n
∑

i=1
(Ei − E)

]2 (20)

MAE =
1
n

n

∑
i=1
|Ei − ei| (21)

WI = 1−
[

∑n
i=1(Ei − ei)

2

∑n
i=1
(∣∣ei − E

∣∣+ ∣∣Ei − E
∣∣)2

]
(22)

where n is the number of the samples. Ei and ei represent the measured and the predicted
values of the rock EM, respectively. E is the average value of the measured rock EM.

5. Results and Discussion
5.1. Results of the Proposed Four Hybrid Models

To determine the optimal solution and corresponding hyperparameter combination
(i.e., Nf and Maxdepth) of the RF model, all hybrid models were performed during 200 it-
erations. The iteration curves of each hybrid RF model with five solutions are shown in
Figure 6. As it can be seen in Figure 6a, it is obvious that the BSA-RF with 60 solutions
has a lower fitness value than the other four BSA-RF models during the 200 iterations.
The solution of 90 is the most suitable for generating the MVO-RF model by means of the
lowest fitness value (see Figure 6b). As illustrated in Figure 6c,d, the optimal solutions of
the GEO-RF and PRO-RF models are equal to 120 and 90, respectively. Table 2 lists the
results and the best hyperparameter combination of the four optimized RF models. The
PRO-RF model has the lowest value of RMSE (0.1861) among all models. This optimized
RF model shows that the optimal Nf and Maxdepth values are 17 and 2, respectively.
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Table 2. Development results of all hybrid RF models.

Solutions
Fitness (RMSE)

BSA-RF MVO-RF GEO-RF PRO-RF

30 0.1941 0.1893 0.1987 0.1901
60 0.1868 0.1977 0.1974 0.1935
90 0.1947 0.1870 0.1934 0.1861

120 0.1940 0.1942 0.1925 0.1875
150 0.1927 0.1917 0.1940 0.1928

Optimal hyperparameter combination

Nf 19 21 20 17
MaxDepth 2 2 2 2

Four hybrid RF models with the optimal hyperparameter combinations were used to
predict the rock EM in the training phase. The performance indices of each hybrid RF model
are listed in Table 3. As illustrated in this table, four models achieved a good prediction
accuracy with high values of R2 and WI and low values of RMSE and MAE. Compared
with the other three models, the PRO-RF is the best prediction model for predicting the EM
by means of the best performance indices, i.e., R2 is equal to 0.9423, RMSE to 10.7420, MAE
to 7.6514 and WI is equal to 0.9843. The ranking score results of all models indicated that
the GEO-RF model with the lowest total score of 4 is the worst model among all hybrid
models for predicting EM in the training phase. The score of the MVO-RF model is the
second model in the rank just after the PRO-RF model.

Table 3. Performance and ranking results of four hybrid RF models in the training phase.

Models
Performance Indices and Ranking Scores

Total
R2 Score RMSE Score MAE Score WI Score

BSA-RF 0.9359 2 11.3203 2 7.8165 2 0.9824 2 8
MVO-RF 0.9407 3 10.8867 3 7.7471 3 0.9837 3 12
GEO-RF 0.9317 1 11.6807 1 8.0452 1 0.9809 1 4
PRO-RF 0.9423 4 10.7420 4 7.6514 4 0.9843 4 16

As illustrated in Figure 7, the regression distribution of the predicted and the measured
EM values represents the performance of the prediction models. The position of each rock
EM data in the two-dimension regression diagram is determined by the predicted EM
values (horizontal axis, x) and the measured EM values (vertical axis, y). If y = x, it means
that the predicted EM value is equal to the measured EM value. The rock EM data are then
located on the diagonal line. To this end, the PRO-RF model has obtained the most rock EM
data on the diagonal or close to the line among the four hybrid RF models (Figure 7d). After
the PRO-RF model, the MVO-RF model and the BSA-RF model have similar regression
distributions for both the small and big rock EM data. The MVO-RF model has obtained
more data close to the diagonal line than the BSA-RF model in the interval between 20
and 70.

To further determine the performance of all hybrid RF models, the performance indices
were calculated again using the test set, as shown in Table 4. The best model is still the
PRO-RF, which has the lowest values of RMSE and MAE (10.1548 and 6.0423) and the
highest values of R2 and WI (0.9410 and 0.9840). The predictive performance of the BSA-RF
model is better than the MVO-RF model in the testing phase, the former not only has the
better performance indices but also has a higher score (12) than the latter (8). In addition,
the GEO-RF model still does not achieve better predictive performances than the other
models using the test set.
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Table 4. Performance and ranking results of four hybrid RF models in the testing phase.

Models
Performance Indices and Ranking Scores

Total
R2 Score RMSE Score MAE Score WI Score

BSA-RF 0.9322 3 10.8902 3 7.2155 3 0.9812 3 12
MVO-RF 0.9236 2 11.5567 2 7.5280 2 0.9785 2 8
GEO-RF 0.9123 1 12.3826 1 7.9739 1 0.9746 1 4
PRO-RF 0.9410 4 10.1548 4 6.0423 4 0.9840 4 16

Figure 8 illustrates the regression results of the four hybrid RF models in the testing
phase. As it can be seen in Figure 8a–c, large errors between the predicted EM values by
the BSA-RF, MVO-RF and GEO-RF models and the measured EM values indicate that the
data point move away from the diagonal, especially when the EM values are in the range
of [50, 80] and [0, 20]. The PRO-RF model has obtained the most EM data points close to
the diagonal based on the best predictive performance in the testing phase. Therefore, the
PRO-RF model is the best hybrid RF model for predicting the rock EM in this paper.

5.2. Performance Comparison between the Proposed and Other Models

To compare the predictive performance with the proposed hybrid models, five com-
mon ML models, named the ANN, SVR, extreme learning machine (ELM), kernel-extreme
learning machine (KELM) and generalized regression neural network (GRNN), and one
empirical formula, were also developed to predict the rock EM. The definition and the
hyperparameter settings of the five ML models can be found in [61–65]. The multivariate-
quadratic equation (MQE) of MR was used to generate an empirical formula as expressed
using Equation (23).

EM = −136.609 + 7.864PLI − 1.056PLI2 − 17.038Pn + 1.378Pn
2

+ 4.265Vp + 1.084Vp
2 + 5.297SHRN − 0.042SHRN2 (23)
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The optimal hyperparameter combination of each model and the corresponding per-
formance results are shown in Table 5. The GRNN obtained better performance indices (R2:
0.9010; RMSE: 13.1593; MAE: 8.2674 and WI: 0.9717) than the other models using the test
set. After this model, the prediction accuracy of the KELM and the ELM models is superior
to the ANN and the SVR models. The worst prediction model is the MQE; its index values
of R2, RMSE, MAE and WI are, respectively, equal to 0.8318, 17.1476, 13.5849 and 0.9497.
Figure 9 shows the rank scores of all comparison models. It can be obviously observed that
the performance ranking of the six models is GRNN (24), KELM (20), ELM (16), ANN (12),
SVR (8) and MQE (4).

Table 5. Performance results of five common ML models using test set.

Models
Performance Indices

Hyperparameters
R2 RMSE MAE WI

ANN 0.8683 15.1724 10.8323 0.9619 Nh = 2; Ne = 4,4
SVR 0.8592 15.6918 11.7625 0.9591 C = 128; Rk = 0.25
ELM 0.8795 14.5124 10.2086 0.9665 Nes = 65

KELM 0.8987 13.3074 8.4755 0.9716 Rc = 128; Rk = 1.0
GRNN 0.9010 13.1593 8.2674 0.9717 Sf = 0.3
MQE 0.8318 17.1476 13.5849 0.9497 Equation (7)

Note: Nh—the hidden layers number; Ne—the number of neurons in the corresponding hidden layer; C—penalty
parameter; Rk—RBF kernel parameter; Nes—the number of neurons in a single hidden layer; Rc—regularization
coefficient; Sf—smoothing factor.

The regression diagrams of the six comparison models in the testing phase are pre-
sented in Figure 10. As it can be seen in these diagrams, all models have a finite number
of rock EM data points near the diagonal line. Compared with the other five models,
the GRNN model obtained a good EM regression distribution in the range of 70 to 90
(Figure 10e). For the MQE model, most of the rock EM data points are away from the
diagonal, which also indicates a large error between the EM value predicted by this model
and the measured EM value. As a result, the GRNN model is the best prediction model
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among the six other models by means of the best performance indices. It obtains the highest
rank score value and the best regression distribution.
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Thus, the GRNN model is used to compare the performance with the PRO-RF model
for predicting the rock EM. The bar chart tool is utilized to make an intuitive comparison
between the measured EM and the EM predicted by the GRNN model and PRO-RF model,
as shown in Figure 11. In Figure 11a, the predicted EM values of the No. 1, No. 7, No. 11,
No. 13 and No. 15 samples by the PRO-RF model showed deviations. On the other hand,
the GRNN model also does not accurately predict the EM values of the No. 2, No. 3, No.
4 and No. 19 samples, in addition to the above samples. The error analysis results of the
PRO-RF model and the GRNN model for predicting the rock EM are shown in Table 6. It
can be intuitively observed that the error in the statistical indices based on the PRO-RF
model is better than the GRNN model ones, such as the error sum of the PRO-RF model
(145.014) being lower than the GRNN model (198.417).
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Table 6. Error analysis comparison between the PRO-RF model and the GRNN model.

Models
Statistical Indices

Min Max Median Mean St. E St. D Sum

PRO-RF 0.134 31.524 2.678 6.042 1.702 8.337 145.014
GRNN 0.328 35.992 3.477 8.267 2.135 10.458 198.417

Note: St. E—standard error value. St. D—standard deviation value.

The relative deviation (RD) distribution is also an effective tool to evaluate the model
performances [64]. The definition of RD is the ratio of the error between the predicted value
and the measured value to the measured value. This also means that the models with a
better performance have lower RD values. As illustrated in Figure 12a, the maximum RD
of the PRO-RF model is 44.77%, and most of the RD values are lower than 40%. Especially,
there are 11 RD values lower than 10%. It should be noted that the maximum RD of the
GRNN model is higher than 70%, and only 9 RD values are lower than 10%. Therefore, the
PRO-RF model has a better predictive performance than the GRNN model for calculating
the rock EM.

5.3. Sensitive Analysis

After determining the best prediction model, the sensitive analysis was carried out
to calculate the parameter importance of the rock EM prediction. The average impact on
model output magnitude (mean) is one of indices in the Shapley additive explanations
(SHAP), which is used to represent the parameter importance, as shown in Figure 13. As
can be seen in this graph, the porosity (Pn) has the larger importance value (30.52) than the
other input variables in the EM prediction based on the PRO-RF model. After the Pn, the
importance ranking of other three variables are the SHRN (3.8), Vp (4.09) and PLI (2.08). In
addition, another SHAP index is the impact on the model output (SHAP value), which is
used to describe the correlation between the input and output variables. As illustrated in
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Figure 14, only the Pn has the greatest negative correlation with EM. The SHRN, Vp and
PLI are positively correlated with the EM, and the correlation decreased successively.
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6. Conclusions

In this study, four hybrid RF models, named BSA-RF, MVO-RF, GEO-RF and PRO-RF
were developed to predict the elasticity modulus (EM) of 120 rock samples. Four rock
properties, named the porosity (Pn), P-wave velocity (Vp), Schmidt hammer rebound
number (SHRN) and point load index (PLI), were considered as the main factors for the
EM prediction. In addition, five ML models (i.e., ANN, SVR, ELM, KELM and GRNN)
and one empirical formula were also developed to predict the rock EM and compare the
predictive performance with the proposed hybrid RF models. The main conclusion of this
paper can be listed as follows:

i. Four hybrid RF models have obtained a good prediction accuracy by means of four
performance indices. In particular, the PRO-RF model is the best model among them.

ii. The GRNN model has a better predictive performance than the other ML models and
the empirical formula. It results in the higher values of R2 (0.9010) and WI (0.9717)
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and the lower values of RMSE (13.1593) and MAE (8.2674). However, these four
optimized RF models are superior to the GRNN model.

iii. The porosity (Pn) is the most important variable by means of the highest average
impact value of 30.52 for predicting the rock EM. Meanwhile, the Pn is also the only
variable negatively correlated with EM.

This paper proposes four effective hybrid RF models to predict the rock EM. It shows
a successful application of soft techniques for a rock parameter prediction. Nevertheless,
more various rocks should be collected into the integrated database to increase the pre-
diction model’s accuracy. Furthermore, other rock properties such as the density, water
content and UCS could be considered in the rock EM prediction.

Author Contributions: Conceptualization, C.L. and D.D.; methodology, C.L.; investigation, D.D.;
writing—original draft preparation, C.L.; writing—review and editing, C.L. and D.D.; visualization,
C.L.; funding acquisition, C.L. All authors have read and agreed to the published version of the
manuscript.

Funding: The first author was funded by the China Scholarship Council (Grant No. 202106370038).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study are from published research: Armaghani
et al. [3] (https://doi.org/10.1007/s12517-015-2057-3), Dehghan et al. [21] (https://doi.org/10.1016/
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