Study on Shear Mechanical Properties and Fracture Evolution Mechanism of Irregular Serrated Rock Discontinuities
Abstract
:1. Introduction
2. Laboratory Direct Shear Test
2.1. Specimen Preparation
2.2. Test Plan
2.3. Test Device and Test Procedure
3. Test Results and Analysis
3.1. Shear Characteristics Analysis
3.1.1. The Influence of Normal Stress
3.1.2. The Influence of Different Undulating Angles
3.1.3. The Influence of Different Undulating Heights
3.2. Analysis of Influencing Factors and Failure Characteristics of Shear Strength
3.2.1. Effect of Normal Stress on Shear Strength
3.2.2. Effect of Undulating Angle on Shear Strength
3.2.3. Effect of Undulating Height on Shear Strength
3.2.4. Analysis of Shear Failure Characteristics
4. PFC2D Numerical Simulation of Granular Flow
4.1. Establishment of PFC Direct Shear Model
4.2. Shear Damage Mechanism of Rock Discontinuity under Different Normal Stresses
4.2.1. Characteristics of Microcrack Evolution
4.2.2. Distribution Characteristics of Force Chains
4.3. Shear Damage Mechanism of Rock Discontinuity under Different Undulating Angles
4.3.1. Characteristics of Microcrack Evolution
4.3.2. Distribution Characteristics of Force Chains
4.4. Shear Damage Mechanism of Rock Discontinuity under Different Undulating Heights
4.4.1. Characteristics of Microcrack Evolution
4.4.2. Distribution Characteristics of Force Chains
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.S.; Liu, R.C.; Jiang, Y.J.; Wang, G.; Luan, H.J. Effect of shear-induced contact area and aperture variations on nonlinear flow behaviors in fractal rock fractures. J. Rock Mech. Geotech. Eng. 2022, 15, 309–322. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Gong, B.; Zhang, Y.J.; Yang, X.Y.; Tang, C.A. Progressive fracture behavior and acoustic emission release of CJBs affected by joint distance ratio. Mathematics 2022, 10, 4149. [Google Scholar] [CrossRef]
- Gong, B.; Wang, Y.Y.; Zhao, T.; Tang, C.A.; Yang, X.Y.; Chen, T.T. AE energy evolution during CJB fracture affected by rock heterogeneity and column irregularity under lateral pressure. Geomat. Nat. Hazards Risk 2022, 13, 877–907. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Gong, B.; Tang, C.A. Numerical investigation on anisotropy and shape effect of mechanical properties of columnar jointed basalts containing transverse joints. Rock Mech. Rock Eng. 2022, 55, 7191–7222. [Google Scholar] [CrossRef]
- Du, S.G.; Lin, H.; Yong, R.; Liu, G.J. Characterization of joint roughness heterogeneity and its application in representative sample investigations. Rock Mech. Rock Eng. 2022, 55, 3253–3277. [Google Scholar] [CrossRef]
- Sun, G.Z. Foundation of Rock Mass Mechanics; Science Press: Beijing, China, 1983. [Google Scholar]
- Jin, T.W. Study on Shear Characteristics of Regular Dentate Joints. Master’s Thesis, Beijing University of Civil Engineering and Architecture, Beijing, China, 2021. [Google Scholar]
- Li, H.B.; Feng, H.P.; Liu, B. Study on strength behaviors of rock joints under different shearing deformation velocities. Chin. J. Rock Mech. Eng. 2006, 25, 2435–2440. [Google Scholar]
- Li, H.B.; Liu, B.; Feng, H.P.; Zhang, L.Q. Study of deformability behaviour and failure mechanism by simulating rock joints sample under different loading conditions. Rock Soil Mech. 2008, 29, 1741–1746. [Google Scholar]
- Zhang, Q.Z.; Shen, M.R.; Ding, W.Q. Study on the mechanical properties of rock mass discontinuity under shear condition. Hydrogeol. Eng. Geol. 2012, 39, 37–42. [Google Scholar]
- Shen, M.R.; Zhang, Q.Z. Experimental study of shear deformation characteristics of rock mass discontinuities. J. Rock Mech. Eng. 2010, 29, 713–719. [Google Scholar]
- Cheng, T.; Guo, B.H.; Sun, J.H.; Tian, S.X.; Sun, C.X.; Chen, Y. Establishment of constitutive relation of shear deformation for irregular joints in sandstone. Rock Soil Mech. 2022, 43, 51–64. [Google Scholar]
- Einstein, H.H.; Veneziano, D.; Baecher, G.B.; O’Reilly, K.J. The effect of discontinuity persistence on rock slope stability. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1983, 20, 227–236. [Google Scholar] [CrossRef]
- Ji, F.; Yan, X.T.; Zhang, B. Experimental Study on Shear Fracture Evolution Mechanism of Non-penetrating Serrated Structural Surface. J. Chongqing Jiaotong Univ. Nat. Sci. 2021, 40, 117–123. [Google Scholar]
- Seidel, J.P.; Haberfield, C.M. The application of energy principles to the determination of the sliding resistance of rock joints. Rock Mech. Rock Eng. 1995, 28, 211–226. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, F.Z.; Zhang, C.Q.; Yang, F.J.; Lu, J.J. The shear failure characteristic of the structural plane and its application in the study of slip rockburst. Chin. J. Rock Mech. Eng. 2015, 34, 1729–1738. [Google Scholar]
- Cheng, Y.H.; He, D.L.; Qin, J.X.; Yang, J.Y. Effect of sawtooth angle on shear mechanical behavior of structural plane. Geotech. Geol. Eng. 2021, 39, 4169–4180. [Google Scholar] [CrossRef]
- Huang, D.; Huang, R.Q.; Lei, P. Shear deformation and strength of through-going saw-tooth rock discontinuity. J. China Coal Soc. 2014, 39, 1229–1237. [Google Scholar]
- Bahaaddini, M.; Hagan, P.C.; Mitra, R.; Khosravi, M.H. Experimental and numerical study of asperity degradation in the direct shear test. Eng. Geol. 2016, 204, 41–52. [Google Scholar] [CrossRef]
- Zhou, K.F.; Liu, C.X.; Li, S.; Cheng, Y.H. Size effect on the rheological shear mechanical behaviors of different joints: A numerical study. Geofluids 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, H.; Wang, Y.X.; Yong, R.; Zhao, Y.L.; Du, S.G. Damage evolution characteristics of saw-tooth joint under shear creep condition. Int. J. Damage Mech. 2021, 30, 453–480. [Google Scholar] [CrossRef]
- Jiang, M.J.; Liu, J.; Crosta, G.B.; Li, T. Dem analysis of the effect of joint geometry on the shear behavior of rocks. Comptes Rendus Mécanique 2017, 345, 779–796. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Zhang, S.H.; Luan, H.J.; Chen, L.J.; Zhang, G.C.; Wang, C.S. Numerical Investigation on the Effect of Cyclic Loading on Macro-meso Shear Characteristics of Rock Joints. J. China Coal Soc. 2022, 1–13. [Google Scholar]
- Bahaaddini, M.; Sharrock, G.; Hebblewhite, B.K. Numerical direct shear tests to model the shear behaviour of rock joints. Comput. Geotech. 2013, 51, 101–115. [Google Scholar] [CrossRef]
- Yang, X.X.; Qiao, W.G. Numerical investigation of the shear behavior of granite materials containing discontinuous joints by utilizing the flat-joint model. Comput. Geotech. 2018, 104, 69–80. [Google Scholar] [CrossRef]
- Tang, W.Y.; Lin, H. Influence of dentate discontinuity height on shear properties of soft structure plane. J. Cent. South Univ. Sci. Technol. 2017, 48, 1300–1307. [Google Scholar]
- Xia, C.C.; Song, Y.L.; Tang, Z.C.; Song, Y.J.; Shou, C. Particle flow numerical simulation for shear behavior of rough joints. Chin. J. Rock Mech. Eng. 2012, 31, 1545–1552. [Google Scholar]
- Liu, X.R.; Xu, B.; Huang, J.H.; Lin, G.Y.; Zhou, X.H.; Wang, J.W.; Xiong, F. Macro-meso shear mechanical behaviors of coalescent rock joints with different morphologies. Chin. J. Geotech. Eng. 2021, 43, 406–415. [Google Scholar]
- Cao, R.H.; Cao, P.; Lin, H.; Ma, G.W.; Zhang, C.Y.; Jiang, C. Failure characteristics of jointed rock-like material containing multi-joints under a compressive-shear test: Experimental and numerical analyses. Arch. Civ. Mech. Eng. 2018, 18, 784–798. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.Z.; Zhu, C.Q.; Meng, Q.S. Shear tests of interfaces between calcareous sand and steel. Mar. Georesour. Geotechnol. 2018, 37, 1095–1104. [Google Scholar] [CrossRef]
- Jiang, Q.; Song, L.B. Application and prospect of 3D printing technology to physical modeling in rock mechanics. Chin. J. Rock Mech. Eng. 2018, 37, 23–37. [Google Scholar]
- Wang, C.S.; Jiang, Y.J.; Wang, G.; Luan, H.J.; Zhang, Y.C.; Zhang, S.H. Experimental investigation on the shear behavior of the bolt-grout interface under CNL and CNS conditions considering realistic bolt profiles. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 1–23. [Google Scholar] [CrossRef]
- Tian, W.; Pei, Z.R.; Han, N. A preliminary research on three-dimensional reconstruction and mechanical characteristics of rock mass based on CT scanning and 3D printing technology. Rock Soil Mech. 2017, 38, 2297–2305. [Google Scholar]
- Cui, J.G.; Zhang, C.Q.; Liu, L.P.; Zhou, H.; Cheng, G.T. Study of effect of shear velocity on mechanical characteristics of bolt-grout interface. Rock Soil Mech. 2018, 39, 275–281. [Google Scholar]
- Park, J.W.; Song, J.J. Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. Int. J. Rock Mech. Min. 2009, 46, 1315–1328. [Google Scholar] [CrossRef]
- Liu, X.R.; Deng, Z.Y.; Liu, Y.Q.; Lu, Y.M.; Liu, S.L.; Han, Y.F. Macroscopic and microscopic analysis of particle flow in pre-peak cyclic direct shear test of rock joint. J. China Coal Soc. 2019, 44, 2103–2115. [Google Scholar]
- Wang, X.; Wang, X.Z.; Shen, J.H.; Zhu, C.Q. Particle size and confining-pressure effects of shear characteristics of coral sand: An experimental study. Bull. Eng. Geol. Environ. 2022, 81, 97. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, H.; Lv, J.S.; Shi, R.M. Rock cutting characteristics with single pick and prediction of cutting force based on force chain. Rock Soil Mech. 2022, 43, 3036–3046. [Google Scholar]
Serial No | Normal Stress/MPa | Undulating Height/mm | Undulating Angle/° | Research Objective |
---|---|---|---|---|
1 | 2 | 6–10 | 40 | Effect of normal stress |
2 | 3 | 6–10 | 40 | |
3 | 4 | 6–10 | 40 | |
4 | 3 | 6–10 | 40 | Effect of undulating height |
5 | 3 | 6–10 | 50 | |
6 | 3 | 6–10 | 60 | |
7 | 3 | 6 | 40–70 | Effect of undulating angle |
8 | 3 | 8 | 40–70 | |
9 | 3 | 10 | 40–70 |
Spherical Particle | Numerical Value | Parallel Bonding Model | Numerical Value |
---|---|---|---|
Elasticity Modulus/GPa | 1.50 | Elasticity Modulus/GPa | 1.50 |
Stiffness Ratio | 0.50 | Stiffness Ratio | 1.50 |
Friction Coefficient | 0.70 | Tensile Strength/MPa | 6.70 |
Maximum Particle Radius/mm | 0.50 | Shear Strength/MPa | 18.1 |
Maximum And Minimum Particle Radius Ratio | 1.25 | Friction Angle/° | 20 |
Volume Density/kg·m−3 | 2480 |
Numerical Value | Normal Stiffness/GPa·m−1 | Shear Stiffness/GPa·m−1 | Friction Coefficient | Tensile Strength/MPa | Cohesion/MPa |
---|---|---|---|---|---|
Number | 200 | 200 | 0.7 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, D.; Jiang, Y.; Luan, H.; Zhang, S.; Wang, C.; Liu, J. Study on Shear Mechanical Properties and Fracture Evolution Mechanism of Irregular Serrated Rock Discontinuities. Appl. Sci. 2023, 13, 2444. https://doi.org/10.3390/app13042444
Li X, Wang D, Jiang Y, Luan H, Zhang S, Wang C, Liu J. Study on Shear Mechanical Properties and Fracture Evolution Mechanism of Irregular Serrated Rock Discontinuities. Applied Sciences. 2023; 13(4):2444. https://doi.org/10.3390/app13042444
Chicago/Turabian StyleLi, Xinpeng, Dong Wang, Yujing Jiang, Hengjie Luan, Sunhao Zhang, Changsheng Wang, and Jiankang Liu. 2023. "Study on Shear Mechanical Properties and Fracture Evolution Mechanism of Irregular Serrated Rock Discontinuities" Applied Sciences 13, no. 4: 2444. https://doi.org/10.3390/app13042444
APA StyleLi, X., Wang, D., Jiang, Y., Luan, H., Zhang, S., Wang, C., & Liu, J. (2023). Study on Shear Mechanical Properties and Fracture Evolution Mechanism of Irregular Serrated Rock Discontinuities. Applied Sciences, 13(4), 2444. https://doi.org/10.3390/app13042444