UHPLC-QTOF/MS Untargeted Lipidomics and Caffeine Carry-Over in Milk of Goats under Spent Coffee Ground Enriched Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Sample Preparation and UHPLC-QTOF/MS Analysis
2.3. Analysis of Caffeine by UHPLC-MS/MS
2.4. Caffeine Carry-Over
2.5. Statistical Data Analysis NMR Spectroscopy
3. Results and Discussion
3.1. Caffeine Levels in Milk
3.2. Multivariate Lipid Signature
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murthy, P.S.; Naidu, M.M. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Hejna, A. Potential applications of by-products from the coffee industry in polymer technology—Current state and perspectives. Waste Manag. 2021, 121, 296–330. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Flores, J.; Pedraza-Beltrán, P.; Yong-Ángel, G.; Avilés-Nova, F.; Rayas-Amor, A.-A.; Solís-Méndez, A.; González-Ronquillo, M.; Vázquez-Carrillo, M.; Castelán-Ortega, O. Effect of Increasing Supplementation Levels of Coffee Pulp on Milk Yield and Food Intake in Dual-Purpose Cows: An Alternative Feed Byproduct for Smallholder Dairy Systems of Tropical Climate Regions. Agriculture 2021, 11, 416. [Google Scholar] [CrossRef]
- Choi, Y.; Rim, J.; Lee, H.; Kwon, H.; Na, Y.; Lee, S. Effect of fermented spent instant coffee grounds on milk productivity and blood profiles of lactating dairy cows. Asian-Australas. J. Anim. Sci. 2019, 32, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Kawai, K.; Kuruhara, K.; Matano, Y.; Akiyama, K.; Hashimura, S.; Tanaka, S.; Kiku, Y.; Watanabe, A.; Shinozuka, Y. Effects of Coffee Ground Silage Feeding in Reducing Somatic Cell Count in Bovine Subclinical Mastitis Milk. Asian J. Anim. Vet. Adv. 2018, 13, 377–382. [Google Scholar] [CrossRef]
- Carta, S.; Tsiplakou, E.; Nicolussi, P.; Pulina, G.; Nudda, A. Effects of spent coffee grounds on production traits, haematological parameters, and antioxidant activity of blood and milk in dairy goats. Animal 2022, 16, 100501. [Google Scholar] [CrossRef]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; De Rezende, T.R.; Schwarz, S.; Lachenmeier, D.W. A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef]
- Low, J.H.; Rahman, W.A.W.A.; Jamaluddin, J. The influence of extraction parameters on spent coffee grounds as a renewable tannin resource. J. Clean. Prod. 2015, 101, 222–228. [Google Scholar] [CrossRef]
- Shang, Y.-F.; Xu, J.-L.; Lee, W.-J.; Um, B.-H. Antioxidative polyphenolics obtained from spent coffee grounds by pressurized liquid extraction. S. Afr. J. Bot. 2017, 109, 75–80. [Google Scholar] [CrossRef]
- LIczbiński, P.; Bukowska, B. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. Ind. Crop. Prod. 2021, 175, 114265. [Google Scholar] [CrossRef]
- Cappelletti, S.; Daria, P.; Sani, G.; Aromatario, M. Caffeine: Cognitive and Physical Performance Enhancer or Psychoactive Drug? Curr. Neuropharmacol. 2015, 13, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Acheson, K.J.; Gremaud, G.; Meirim, I.; Montigon, F.; Krebs, Y.; Fay, L.B.; Gay, L.-J.; Schneiter, P.; Schindler, C.; Tappy, L. Metabolic effects of caffeine in humans: Lipid oxidation or futile cycling? Am. J. Clin. Nutr. 2004, 79, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, C.; Zheng, G.; Liu, L.; Sayama, K. Catechins and Caffeine Promote Lipid Metabolism and Heat Production Through the Transformation of Differentiated 3T3-L1 Adipocytes from White to Beige Adipocytes. J. Food Sci. 2020, 85, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Xu, M.; Qiu, Y.; Liao, M.; Zhang, Q.; Yang, L.; Zheng, G. Chlorogenic acid and caffeine combination attenuates adipogenesis by regulating fat metabolism and inhibiting adipocyte differentiation in 3T3-L1 cells. J. Food Biochem. 2021, 45, e13795. [Google Scholar] [CrossRef]
- Hawkins, G.E.; Davis, W.E. Changes in Plasma Free Fatty Acids and Triglycerides in Dairy Cattle After Dosing with Coffee or Caffeine. J. Dairy Sci. 1970, 53, 52–55. [Google Scholar] [CrossRef]
- Aresta, A.; Palmisano, F.; Zambonin, C.G. Simultaneous determination of caffeine, theobromine, theophylline, paraxanthine and nicotine in human milk by liquid chromatography with diode array UV detection. Food Chem. 2005, 93, 177–181. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, J.; Ge, W.; Wang, J. Comparative Lipidomics Analysis of Human and Ruminant Milk Reveals Variation in Composition and Structural Characteristics. J. Agric. Food Chem. 2022, 70, 8994–9006. [Google Scholar] [CrossRef]
- Lopez, C.; Briard-Bion, V.; Menard, O.; Rousseau, F.; Pradel, P.; Besle, J.-M. Phospholipid, Sphingolipid, and Fatty Acid Compositions of the Milk Fat Globule Membrane are Modified by Diet. J. Agric. Food Chem. 2008, 56, 5226–5236. [Google Scholar] [CrossRef]
- Sun, T.; Wang, X.; Cong, P.; Xu, J.; Xue, C. Mass spectrometry-based lipidomics in food science and nutritional health: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2530–2558. [Google Scholar] [CrossRef]
- Scano, P.; Carta, P.; Ibba, I.; Manis, C.; Caboni, P. An Untargeted Metabolomic Comparison of Milk Composition from Sheep Kept Under Different Grazing Systems. Dairy 2020, 1, 30–41. [Google Scholar] [CrossRef]
- Manis, C.; Addis, M.; Sitzia, M.; Scano, P.; Garau, V.; Cabiddu, A.; Caredda, M.; Pirisi, A.; Pulina, A.; Roggero, P.; et al. Untargeted lipidomics of ovine milk to analyse the influence of different diet regimens. J. Dairy Res. 2021, 88, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Manis, C.; Scano, P.; Nudda, A.; Carta, S.; Pulina, G.; Caboni, P. LC-QTOF/MS Untargeted Metabolomics of Sheep Milk under Cocoa Husks Enriched Diet. Dairy 2021, 2, 112–121. [Google Scholar] [CrossRef]
- Folch, J.; Ascoli, I.; Lees, M.; Meath, J.; LeBaron, F. Preparation of lipide extracts from brain tissue. J. Biol. Chem. 1951, 191, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Liggi, S.; Hinz, C.; Hall, Z.; Santoru, M.L.; Poddighe, S.; Fjeldsted, J.; Atzori, L.; Griffin, J.L. KniMet: A pipeline for the processing of chromatography–mass spectrometry metabolomics data. Metabolomics 2018, 14, 52. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L.; Byrne, T.; Johansson, E.; Trygg, J.; Vikström, C. Multi-and Megavariate Data Analysis Basic Principles and Applications; Umetrics Academy: Umeå, Sweden, 2013; Volume 1. [Google Scholar]
- Calvaresi, V.; Escuder, D.; Minutillo, A.; Bastons-Compta, A.; García-Algar, O.; Alonso, C.R.P.; Pacifici, R.; Pichini, S. Transfer of Nicotine, Cotinine and Caffeine Into Breast Milk in a Smoker Mother Consuming Caffeinated Drinks. J. Anal. Toxicol. 2016, 40, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Lad, S.S.; Aparnathi, K.; Mehta, B.; Velpula, S. Goat Milk in Human Nutrition and Health—A Review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1781–1792. [Google Scholar] [CrossRef]
- Lara-Guzmán, O.J.; Álvarez, R.; Muñoz-Durango, K. Changes in the plasma lipidome of healthy subjects after coffee consumption reveal potential cardiovascular benefits: A randomized controlled trial. Free. Radic. Biol. Med. 2021, 176, 345–355. [Google Scholar] [CrossRef]
- Contarini, G.; Povolo, M. Phospholipids in Milk Fat: Composition, Biological and Technological Significance, and Analytical Strategies. Int. J. Mol. Sci. 2013, 14, 2808–2831. [Google Scholar] [CrossRef]
- Norris, G.H.; Milard, M.; Michalski, M.-C.; Blesso, C.N. Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. J. Nutr. Biochem. 2019, 73, 108224. [Google Scholar] [CrossRef]
- Oshida, K.; Shimizu, T.; Takase, M.; Tamura, Y.; Shimizu, T.; Yamashiro, Y. Effects of Dietary Sphingomyelin on Central Nervous System Myelination in Developing Rats. Pediatr. Res. 2003, 53, 589–593. [Google Scholar] [CrossRef]
- Yang, F.; Chen, G. The nutritional functions of dietary sphingomyelin and its applications in food. Front. Nutr. 2022, 9, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Altmaier, E.; Kastenmüller, G.; Römisch-Margl, W.; Thorand, B.; Weinberger, K.M.; Adamski, J.; Illig, T.; Döring, A.; Suhre, K. Variation in the human lipidome associated with coffee consumption as revealed by quantitative targeted metabolomics. Mol. Nutr. Food Res. 2009, 53, 1357–1365. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Theophylline. Am. J. Respir. Crit. Care Med. 2013, 188, 901–906. [Google Scholar] [CrossRef]
- Garattini, S.; Erba, E.; Morasca, L.; Peri, G.; Mantovani, A.; Filippeschi, S.; Spreafico, F.; Arnaud, M. In vitro and in vivo cytotoxicity of 6 amino-5-formylmethylamino-1,3-dimethyl uracil, a uracilic metabolite of caffeine. Toxicol. Lett. 1982, 10, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Adewuyi, A.; Gruys, E.; van Eerdenburg, F. Non esterified fatty acids (NEFA) in dairy cattle. A review. Vet. Q. 2005, 27, 117–126. [Google Scholar] [CrossRef]
- Kaneda, T. Iso- and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbiol. Rev. 1991, 55, 288–302. [Google Scholar] [CrossRef] [PubMed]
- Venn-Watson, S.; Lumpkin, R.; Dennis, E.A. Efficacy of dietary odd-chain saturated fatty acid pentadecanoic acid parallels broad associated health benefits in humans: Could it be essential? Sci. Rep. 2020, 10, 8161. [Google Scholar] [CrossRef]
- Sholichah, E.; Desnilasari, D.; Karim, M.A.; Putra, A.; Purwono, B. Purification and characterization of catechin from cascara and its evaluation on antioxidant and antibacterial activities. In AIP Conference Proceedings; AIP Publishing LLC.: Melville, NY, USA, 2022; Volume 2493, p. 070022. [Google Scholar] [CrossRef]
HD | LD | Random Effect | |||
---|---|---|---|---|---|
(n = 20) | (n = 20) | Doses | Weeks | Animals | |
Mean ± SD | p a | ||||
Conc (µg/100 mL) | 33 ± 16 | 59 ± 20 | *** | n.s. | n.s. |
Carryover (%) | 3.0 ± 1.5 | 3.1 ± 1.2 | n.s. | n.s. | n.s. |
Chemical Class | Metabolite | Regulation b |
---|---|---|
Catechins | 8,8′-Methylenebiscatechin | Up |
Ceramides phosphate | CerP(d18:1/26:1) | Up |
CerP(d18:0/16:0) | Up | |
Diacylglicerols | DG(18:4/20:5) | Up |
DG(20:5/20:5) | Up | |
DG(12:0/22:6) | Up | |
Flavonoids | Quercetin 3-(6′′′′-ferulylsophorotrioside) | Down |
Glucosylceramides | GlcCer(d18:1/24:0) | Up |
GlcCer(d15:1/18:0) | Down | |
Glycerophosphocholines | PC(24:0/P-18:1) | Up |
PC(O-17:0/20:4) | Up | |
Glycerophosphoethanolamines | PE(12:0/15:1) | Up |
PE(15:0/18:2) | Up | |
PE(13:0/20:0) | Up | |
PE(18:0/24:0) | Up | |
Glycerophosphoethanolamines ceramides | PE-Cer(d14:1/25:0) | Up |
PE-Cer(d15:2/20:0(2OH)) | Up | |
PE-Cer(d14:2/18:0(2OH)) | Down | |
Glycerophosphoglycerols | PG(20:0/16:1) | Up |
Glycerophosphoserines | PS(16:0/16:0) | Down |
Monoacylglicerols | MG(22:2) | Up |
Monogalactosyldiacylglicerols | MGDG(18:2/18:2) | Up |
N-Acylamides | N-docosahexaenoyl glutamine | Up |
Polyprenols | Arachisprenol 12 | Down |
Secosteroids | α,25-dihydroxy-2β-(6-hydroxyhexyl) vitamin D3 | Up |
Sesquiterpenoids | 1,2-Epoxy-1,2,7,7′,8,8′,11,12-octahydro-ψ, ψ -carotene | Up |
Sphingomyelins | SM(d16:1/24:1) | Up |
SM(d16:1/22:1) | Up | |
Sterols | Stigmasteryl ester (16:3) | Up |
CE(20:4) | Up | |
CE(22:5) | Up | |
CE(22:4) | Up | |
Cholesteryl beta-D-glucoside | Up | |
11-acetoxy-3β,6α-dihydroxy-24-methyl-27-nor-9,11-seco-5α-cholesta-7,22-dien-9-one | Up | |
Triacylglicerols | TG(14:1/14:1/17:2) | Up |
TG(12:0/12:0/14:0) | Up | |
TG(14:1/14:1/19:1) | Up | |
TG(17:2/18:0/18:0) | Down | |
TG(16:0/14:0/18:0) | Down | |
TG(12:0/18:2/22:0) | Down | |
TG(19:0/20:0/20:0) | Up | |
TG(17:1/18:0/18:0) | Down | |
TG(10:0/10:0/14:0) | Up | |
TG(13:0/15:0/22:2) | Down | |
TG(10:0/10:0/10:0) | Up | |
Thioester | Propionyl-CoA | Down |
Triterpenoids | Methyl-6′-apo-y-caroten-6′-oate | Down |
Chemical Class | Metabolite | Regulation b |
---|---|---|
Caffeine and caffeine metabolites | Caffeine | Up |
Theobromine/Theophylline c | Up | |
6-Amino-5-(formyl-N-methylamino)-1,3-dimethyluracil (1,3,7-DAU) | Up | |
Ceramides | Cer(d18:0/24:1) | Up |
Cer(d14:1/28:0) | Up | |
Glucosylceramides | GlcCer(d18:1/24:0) | Down |
GlcCer(d15:1/18:0) | Down | |
β-keto acids | Acetoacetic acid | Down |
NEFA | Propionic Acid | Up |
Palmitic Acid | Down | |
Oleic Acid | Down | |
Myristic Acid | Down | |
2-Hydroxyadipic acid | Down | |
Stearic Acid | Down | |
Lysophosphatidylethanolamines | LysoPE (18:1/0:0) | Up |
Sterols | ST 22:4;O4 | Down |
ST 29:4;O4 | Down | |
ST 25:3;O | Up | |
ST 23:4;O2 | Down | |
ST 23:5;O3 | Down | |
ST 27:4;O4 | Down | |
ST 27:2;O | Up | |
ST 23:5;O3 | Up | |
ST 23:4;O2 | Down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casula, M.; Scano, P.; Manis, C.; Tolle, G.; Nudda, A.; Carta, S.; Pulina, G.; Caboni, P. UHPLC-QTOF/MS Untargeted Lipidomics and Caffeine Carry-Over in Milk of Goats under Spent Coffee Ground Enriched Diet. Appl. Sci. 2023, 13, 2477. https://doi.org/10.3390/app13042477
Casula M, Scano P, Manis C, Tolle G, Nudda A, Carta S, Pulina G, Caboni P. UHPLC-QTOF/MS Untargeted Lipidomics and Caffeine Carry-Over in Milk of Goats under Spent Coffee Ground Enriched Diet. Applied Sciences. 2023; 13(4):2477. https://doi.org/10.3390/app13042477
Chicago/Turabian StyleCasula, Mattia, Paola Scano, Cristina Manis, Giulia Tolle, Anna Nudda, Silvia Carta, Giuseppe Pulina, and Pierluigi Caboni. 2023. "UHPLC-QTOF/MS Untargeted Lipidomics and Caffeine Carry-Over in Milk of Goats under Spent Coffee Ground Enriched Diet" Applied Sciences 13, no. 4: 2477. https://doi.org/10.3390/app13042477
APA StyleCasula, M., Scano, P., Manis, C., Tolle, G., Nudda, A., Carta, S., Pulina, G., & Caboni, P. (2023). UHPLC-QTOF/MS Untargeted Lipidomics and Caffeine Carry-Over in Milk of Goats under Spent Coffee Ground Enriched Diet. Applied Sciences, 13(4), 2477. https://doi.org/10.3390/app13042477