
Citation: Zhang, H.; Li, B.; Li, W.;

Zhu, L.; Chang, C.; Yu, S. MRCIF: A

Memory-Reverse-Based Code

Injection Forensics Algorithm. Appl.

Sci. 2023, 13, 2478. https://doi.org/

10.3390/app13042478

Academic Editor:

Arcangelo Castiglione

Received: 9 December 2022

Revised: 2 February 2023

Accepted: 11 February 2023

Published: 14 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

MRCIF: A Memory-Reverse-Based Code Injection
Forensics Algorithm
Heyu Zhang , Binglong Li *, Wanpeng Li, Lin Zhu, Chaowen Chang and Shilong Yu

College of Cryptographic Engineering, Information Engineering University, Zhengzhou 450001, China
* Correspondence: lbl2017@163.com

Abstract: The new DLL injection method and its variants can prevent the injected process from
calling the common system API to load the injected DLL module so that the malicious module is
invisible to the LDR linked list of the process. Traditional injection detection methods have low
accuracy in forensic detection of new injection attacks. To solve this problem, this paper proposes
a code injection covert memory page detection and forensic detection forensic algorithm based on
a memory structure reverse analysis named MRCIF. First, the physical memory pages containing
DLL features from the memory image are located, and a sub-algorithm is designed for mapping
physical memory space and virtual memory space, thus realizing the reverse reconstruction of the
physical page subset corresponding to the DLL code module. Then, in the virtual memory space,
the LDR linked list structure of the process is reversely reconstructed, and a reverse reconstruction
algorithm of the DLL virtual page subset is developed to reconstruct its virtual space. Finally, a DLL
injection covert page detection sub-algorithm is designed based on the physical memory page subset
and virtual space page subset. The experimental results indicate that MRCIF achieves an accuracy of
88.89%, which is much higher than that of the traditional DLL module injection detection method,
and only MRCIF can accurately detect the Virtual Address Descriptor (VAD) remapping attack.

Keywords: memory forensics; DLL injection; reverse analysis

1. Introduction

DLL injection is a common attack technique of malware, and a series of new variants
have been developed. Different from previous DLL injection methods, the new DLL
injection method prevents the victim process from calling the system API to load the
malicious DLL module so that there is no information about the injected DLL in the LDR
list of the victim process. Meanwhile, the new DLL injection method may tamper with
the properties of the Virtual Address Descriptor (VAD), realizing the covert injection of
malicious DLL modules. Driver-level injection is difficult to implement because Windows
requires drivers to have trusted signatures, so the main target of the new DLL injection
is the user-space process, and the injection method is more complicated and hidden. The
representative injection methods include the reflective code inject technology proposed by
Stephen et al. [1], the Process Hollowing technology proposed by Mieleke et al. [2], and
the VAD remapping technology proposed by Palutke et al. [3]. Moreover, some malware
uses similar attack techniques, such as Duqu2.0 (2015), Dyre banking Trojan (2015), Conti
ransomware (2020), etc., which cause widespread and serious harm [4], so the detection of
new types of DLL injection is very important.

Existing security software uses static and dynamic detection techniques and focuses
on the detection of disk files and the process of injection, but the software has insufficient
detection capability for malicious DLLs in memory after an attack occurs. Detection
technology based on memory forensics can solve this problem. Memory forensics can find,
extract, and analyze volatile evidence from physical memory and page swap files, and
focuses more on the traceability of attacks after they occur. However, the existing memory

Appl. Sci. 2023, 13, 2478. https://doi.org/10.3390/app13042478 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13042478
https://doi.org/10.3390/app13042478
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9224-7374
https://orcid.org/0000-0001-6339-4308
https://doi.org/10.3390/app13042478
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13042478?type=check_update&version=3

Appl. Sci. 2023, 13, 2478 2 of 13

forensics methods only consider the memory management structure in the virtual memory
space, and these methods may be ineffective when the malware tampers with the memory
management structure. For example, the VAD remapping method proposed by Palutke
et al. [3] can modify the protection attribute and address range of VAD so that the VAD
node corresponding to the malicious code page is associated with the benign page. The
malfind plugin of Volatility relies on the VAD attribute for detection, so it cannot detect
VAD remapping attacks. Srivastava et al. [5] proposed a method based on the combined
detection of the thread call stack and VAD attributes, but the method cannot detect injected
code modules that do not trigger execution. Block et al. [6] proposed a method to detect
hidden executable pages based on PTE attributes. Though the method can detect a variety
of new injection attacks, it causes too many false-positive pages, making it difficult to
accurately locate malicious memory pages.

This paper proposes a code injection covert memory page detection and forensic
algorithm named MRCIF (Memory Reverse based Code Injection Forensics). First, the
physical memory pages containing DLL features from the memory image are located, and a
sub-algorithm for mapping physical memory space and virtual memory space is designed,
thus realizing reverse reconstruction of the physical page subset corresponding to the
DLL code module. Then, in the virtual memory space, the LDR linked list structure of
the process is reversely reconstructed, and a reverse reconstruction algorithm of the DLL
virtual page subset is developed to reconstruct its virtual space. Finally, a DLL injection
covert page detection sub-algorithm is designed based on the physical memory page subset
and virtual space page subset. The experimental results indicate that MRCIF achieves
a higher accuracy than that of the traditional DLL module injection detection method,
and only MRCIF can accurately detect the VAD remapping attack. In practice, MRCIF
helps to quickly determine the direction of investigation for forensic analysis because of its
higher accuracy.

The rest of this paper is organized as follows. Section 2 introduces the related work;
Section 3 proposes a code injection forensics detection framework and its sub-algorithms
based on the reverse analysis of the memory structure; Section 4 presents the experiments
and result discussion and analysis; finally, Section 5 concludes this paper.

2. Related Works

The practice of memory forensics technology started in 2005, and was launched by
DFRWS for the Windows system memory forensics analysis challenge [7]. Afterward,
memory forensics technology began to develop rapidly. Schuster proposed a pool tag
search method to extract processes and threads from pool memory [8]; Dolan-Gavitt
developed a method to reconstruct the VAD tree [9]; Kornblum analyzed the PTE structure
and proposed a virtual address to physical address translation method [10]. These studies
lay the foundation for Windows memory forensics.

In terms of the research on memory reconstruction, Guo et al. proposed a method
to reconstruct WinXP system memory based on the KPCR structure [11]; Zhang et al.
improved the KPCR method and applied it to the Win7 system [12]. However, with the
update of Windows versions, the methods based on pool tag scanning and KPCR scanning
are difficult to generalize. To address this issue, Cohen et al. proposed a general Windows
memory reconstruction method based on PDB [13], and the memory forensics framework
Rekall implemented this method [14].

After being able to reconstruct the basic Windows structure, researchers continue to
expand data sources for memory forensics. Cohen proposed a method to extract network
connections from the Windows heap [15]; Li et al. proposed a memory fragment file carving
algorithm based on the reverse of the structure chain [16]; Zhai et al. proposed a stack
trace method that does not rely on process debug symbols [17]. These examples of research
on Windows memory structure reconstruction, including heap, stack, and other objects,
analyze the relationship between Windows memory management objects, which is the
foundation of detecting malware in memory.

Appl. Sci. 2023, 13, 2478 3 of 13

Currently, the injection page detection method based on memory forensics mainly
focuses on VAD objects (e.g., the malfind plugin of Volatility and Rekall) to detect the label,
private state, and protection attribute of VAD. However, the detection conditions of this
method are too rough, and it cannot detect malicious code that modifies the VAD protection
attributes. Pshoul proposed a method to detect thread injection based on the call stack
and developed the malthfind plugin [18]. Srivastava et al. proposed a similar injection
detection method based on call stack analysis, which can detect the injection code [5] that
modifies the VAD protection attribute, but the hidden injection page that has not been
executed cannot be detected based on the stack call.

Considering the limitations of existing VAD and call stack-based detection methods,
researchers turned to exploit the characteristics of physical memory pages. Cohen presented
a method to match YARA signatures in logically discontinuous physical memory [19], but
this method requires input target signature of malware; Block et al. [6] proposed to use
the executable attribute of PTE as a feature of executable physical memory pages, but this
method will report all modified memory maps, including many benign memory pages, so
it cannot accurately locate malicious memory pages.

3. MRCIF Algorithm

In the new DLL injection method, the malware prevents the victim process from
calling the system API to load the malicious DLL module so that there is no information
about the injected DLL in the load module list (LDR linked list) of the victim process. Our
code injection forensic aims to detect covert DLL code modules for new injection attacks
from physical memory image files.

The principle of the code injection forensic detection method named MRCIF is as
follows. First, the physical memory image file is preprocessed, and the original memory
data are read and decomposed into physical memory pages. From a physical point of view,
the corresponding physical memory pages are located in the memory image based on the
DLL characteristics, and then the mapping between the physical memory space and the
virtual memory space is performed. Then, a reverse search for the virtual memory page
corresponding to the physical page of the DLL code module is performed. Subsequently,
from the perspective of virtual memory space, the LDR linked list structure of the process
is reversely reconstructed, and the virtual memory page of the code module is obtained.

Finally, the virtual memory page of the code module reversely searched from the
physical page and that of the code module obtained from the LDR are compared, and the
hidden virtual memory page of the injected code module is found, as shown in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 12

objects, analyze the relationship between Windows memory management objects, which
is the foundation of detecting malware in memory.

Currently, the injection page detection method based on memory forensics mainly
focuses on VAD objects (e.g., the malfind plugin of Volatility and Rekall) to detect the
label, private state, and protection attribute of VAD. However, the detection conditions of
this method are too rough, and it cannot detect malicious code that modifies the VAD
protection attributes. Pshoul proposed a method to detect thread injection based on the
call stack and developed the malthfind plugin [18]. Srivastava et al. proposed a similar
injection detection method based on call stack analysis, which can detect the injection code
[5] that modifies the VAD protection attribute, but the hidden injection page that has not
been executed cannot be detected based on the stack call.

Considering the limitations of existing VAD and call stack-based detection methods,
researchers turned to exploit the characteristics of physical memory pages. Cohen pre-
sented a method to match YARA signatures in logically discontinuous physical memory
[19], but this method requires input target signature of malware; Block et al. [6] proposed
to use the executable attribute of PTE as a feature of executable physical memory pages,
but this method will report all modified memory maps, including many benign memory
pages, so it cannot accurately locate malicious memory pages.

3. MRCIF Algorithm
In the new DLL injection method, the malware prevents the victim process from call-

ing the system API to load the malicious DLL module so that there is no information about
the injected DLL in the load module list (LDR linked list) of the victim process. Our code
injection forensic aims to detect covert DLL code modules for new injection attacks from
physical memory image files.

The principle of the code injection forensic detection method named MRCIF is as fol-
lows. First, the physical memory image file is preprocessed, and the original memory data
are read and decomposed into physical memory pages. From a physical point of view, the
corresponding physical memory pages are located in the memory image based on the DLL
characteristics, and then the mapping between the physical memory space and the virtual
memory space is performed. Then, a reverse search for the virtual memory page corre-
sponding to the physical page of the DLL code module is performed. Subsequently, from
the perspective of virtual memory space, the LDR linked list structure of the process is
reversely reconstructed, and the virtual memory page of the code module is obtained.

Finally, the virtual memory page of the code module reversely searched from the
physical page and that of the code module obtained from the LDR are compared, and the
hidden virtual memory page of the injected code module is found, as shown in Figure 1.

Figure 1. The flowchart of the proposed method.

A formal description of the method is provided below. Denote a virtual memory page
as 𝑣_ௗௗ. A virtual memory page 𝑣 is uniquely determined by the process and the
virtual address. Denote the virtual space of a process as 𝑉. Denote the subset belonging
to the user space as 𝑉_௨ and the set of virtual memory pages of the code module in
the LDR linked list as 𝑉_. Then, the set of virtual memory pages of all processes is 𝑉 =⋃ 𝑉 . Denote a physical memory page as 𝑝ௗௗ . A physical memory page 𝑝 is
uniquely determined by its physical address, and all physical memory pages constitute
the set of physical memory spaces 𝑃. Denote the subset of physical memory pages where

Figure 1. The flowchart of the proposed method.

A formal description of the method is provided below. Denote a virtual memory
page as vproc_addr. A virtual memory page v is uniquely determined by the process and the
virtual address. Denote the virtual space of a process as Vproc. Denote the subset belonging
to the user space as Vproc_u and the set of virtual memory pages of the code module in
the LDR linked list as Vproc_l . Then, the set of virtual memory pages of all processes is
V = ∪procVproc. Denote a physical memory page as paddr. A physical memory page p is
uniquely determined by its physical address, and all physical memory pages constitute
the set of physical memory spaces P. Denote the subset of physical memory pages where
the DLL code module is located as Pe. Denote the virtual address to physical address

Appl. Sci. 2023, 13, 2478 4 of 13

translation as a mapping t(v) : V → P . Further, denote the set of memory pages where the
DLL code module is located in the virtual memory as Ve, which is the preimage set of Pe.

Generally, the DLL code module in user space saves information in the LDR linked
list of the corresponding process, i.e., the set Ve should satisfy Vu ∩Ve ⊆ Vl . When there is
covert DLL injection, denote the set of injected DLL module pages as
Vh = {v|v ∈ Vu ∩Ve and v /∈ Vl}.

According to the expression to detect the covertly injected page set Vh, the following
detection method is proposed:

(1) Preprocess the memory image file to obtain the physical memory page set P.
(2) Locate in the physical memory the set of all physical memory pages that contain the

DLL header feature Pe.
(3) Reverse the virtual memory space and establish the mapping from the virtual memory

space to the physical memory space t.
(4) According to the page map t, traverse each process to obtain Vu and Vl and find the

preimage set Ve. Finally, obtain Vh according to the expression of the covertly injected
page set Vh.

3.1. File Preprocessing

The purpose of file preprocessing is to read the memory data of the original system
from the memory image file. Different memory image formats require different prepro-
cessing approaches. For example, Microsoft’s dmp format crash dump file adds metadata
to the header, and the rest is the original memory image. The VMware memory snapshot
captured by the virtual machine contains two files: the .vmem file is the raw memory data,
and the .vmsn file contains the metadata. The memory image obtained by the EnCase
forensics tool is in EWF format. The metadata and the compressed original memory data
are in the same file, which needs a special tool for parsing.

After parsing the memory image file, the original physical memory data are obtained.
The operating system generally manages memory pages at the size of 4 KB. Thus, the
original memory data can be processed as a set of 4 KB memory pages, and the set of
physical memory pages P is formed.

3.2. Physical Locator Sub-Algorithm

The physical locator sub-algorithm is responsible for locating the load address of the
code module in physical memory. DLL files are organized in the general format of PE files,
whether normally loaded DLLs or covertly injected DLLs. These files need to be applied to
memory pages in the virtual memory and loaded in blocks according to the PE file format.
Meanwhile, these virtual memory pages must be mapped to physical memory before the
DLL module can be executed.

The DLL header code module is less than 4 KB and will be completely loaded at the
beginning of a page in memory, and the characteristic string and relative offset remain
unchanged. Thus, the PE header is also unchanged in the physical memory space (as
shown in Figure 2).

Therefore, a direct search for the PE header character can be performed in the physical
memory P to locate the physical memory address where all DLLs are located. The process
is shown in detail in Algorithm 1.

Appl. Sci. 2023, 13, 2478 5 of 13

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 12

 𝑃 ← 𝑃 ∪ {𝑝}
end

Function is PEheader (𝑝):
 if 𝑝[0,1] = 4d5ah then
 e_lfanew ← 𝑝[0x3c,...,0x3f]
 if 𝑝[e_lfanew, ..., e_lfanew + 4] = 0x50450000 then
 return True
 else return False

Figure 2. Code module physical locator algorithm.

3.3. Virtual Space Reverse Reconstruction Sub-Algorithm
The user-space process and its load module management structure, i.e., LDR linked

list, exist in the virtual memory space. Modern operating systems generally use the Ad-
dress Space Layout Randomization (ASLR) mechanism, so the physical memory pages
are logically discontinuous. To access the virtual address, the system lookups at the page
table of the process to find the physical address to access the data. The lookup mechanism
of the page table is proposed by Russinovich et al. [20]. In reverse analysis and reconstruc-
tion of the image, it is necessary to find the EPROCESS structure of the process, read the
physical-address DTB of the page table (as shown in Figure 3), and then construct the
mapping 𝑡 from virtual pages to physical pages from the memory page table.

_PEB _PEB_LDR_DATA _LDR_DATA_TABLE_ENTRY_EPROCESS

_MMVAD _MMVAD_FLAGS

_KPROCESS

ImageBaseAddress : Ptr Void

Ldr : Ptr _PEB_LDR_DATA

InLoadOrderModuleList : _LIST_ENTRY

InMemoryOrderModuleList : _LIST_ENTRY

InInitializationOrderModuleList : _LIST_ENTRY

DllBase : Ptr VoidPcb : _KPROCESS

ActiveProcessLinks : _LIST_ENTRY

ImageFileName : [15] UChar

Peb :Ptr _PEB

VadRoot : _MM_AVL_TABLE

 LeftChild : _MMVAD

RightChild : _MMVAD

StartingVpn : Uint

EndingVpn : Uint

u : <unnamed-tag>

Subsection : Ptr _SUBSECTION

VadsProcess : Ptr _EPROCESS

VadType : 3 Bits

Protection :5 Bits

PrivateMemory : 1 Bit
DTB : Ptr Void

Figure 2. Code module physical locator algorithm.

Algorithm 1: Code Module Physical Locator Algorithm

Input: Physical memory page set P
Output: DLL code module physical memory page set Pe
Init: Pe ← ∅
for each p ∈ P do:

if is PEheader (p) = True then
Pe ← Pe ∪ {p}

end

Function is PEheader (p):
if p[0,1] = 4d5ah then

e_lfanew← p[0x3c,...,0x3f]
if p[e_lfanew, ..., e_lfanew + 4] = 0x50450000 then

return True
else return False

3.3. Virtual Space Reverse Reconstruction Sub-Algorithm

The user-space process and its load module management structure, i.e., LDR linked list,
exist in the virtual memory space. Modern operating systems generally use the Address
Space Layout Randomization (ASLR) mechanism, so the physical memory pages are
logically discontinuous. To access the virtual address, the system lookups at the page table
of the process to find the physical address to access the data. The lookup mechanism of the
page table is proposed by Russinovich et al. [20]. In reverse analysis and reconstruction of
the image, it is necessary to find the EPROCESS structure of the process, read the physical-
address DTB of the page table (as shown in Figure 3), and then construct the mapping t
from virtual pages to physical pages from the memory page table.

Appl. Sci. 2023, 13, 2478 6 of 13

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 12

 𝑃 ← 𝑃 ∪ {𝑝}
end

Function is PEheader (𝑝):
 if 𝑝[0,1] = 4d5ah then
 e_lfanew ← 𝑝[0x3c,...,0x3f]
 if 𝑝[e_lfanew, ..., e_lfanew + 4] = 0x50450000 then
 return True
 else return False

Figure 2. Code module physical locator algorithm.

3.3. Virtual Space Reverse Reconstruction Sub-Algorithm
The user-space process and its load module management structure, i.e., LDR linked

list, exist in the virtual memory space. Modern operating systems generally use the Ad-
dress Space Layout Randomization (ASLR) mechanism, so the physical memory pages
are logically discontinuous. To access the virtual address, the system lookups at the page
table of the process to find the physical address to access the data. The lookup mechanism
of the page table is proposed by Russinovich et al. [20]. In reverse analysis and reconstruc-
tion of the image, it is necessary to find the EPROCESS structure of the process, read the
physical-address DTB of the page table (as shown in Figure 3), and then construct the
mapping 𝑡 from virtual pages to physical pages from the memory page table.

_PEB _PEB_LDR_DATA _LDR_DATA_TABLE_ENTRY_EPROCESS

_MMVAD _MMVAD_FLAGS

_KPROCESS

ImageBaseAddress : Ptr Void

Ldr : Ptr _PEB_LDR_DATA

InLoadOrderModuleList : _LIST_ENTRY

InMemoryOrderModuleList : _LIST_ENTRY

InInitializationOrderModuleList : _LIST_ENTRY

DllBase : Ptr VoidPcb : _KPROCESS

ActiveProcessLinks : _LIST_ENTRY

ImageFileName : [15] UChar

Peb :Ptr _PEB

VadRoot : _MM_AVL_TABLE

 LeftChild : _MMVAD

RightChild : _MMVAD

StartingVpn : Uint

EndingVpn : Uint

u : <unnamed-tag>

Subsection : Ptr _SUBSECTION

VadsProcess : Ptr _EPROCESS

VadType : 3 Bits

Protection :5 Bits

PrivateMemory : 1 Bit
DTB : Ptr Void

Figure 3. The process management structure of the Windows system. Only the variables involved in
this paper are listed.

According to Cohen’s work [13], the structure of each version of the Windows kernel is
almost the same. There are only 10 structural layouts of EPROCESS from WinXP to Win8.1.
The structure of EPROCESS is easy to exhaust, so a specific process name can be searched
for to locate EPROCESS. Taking the system process “smss.exe” as an example, the search
steps are as follows:

(1) The ImageFileName field in EPROCESS indicates the process name, and it has
a length of at least 15 bytes(as shown in Figure 3). This work uses ‘\0’ to fill the end of
the process name string “smss.exe” to 15 bytes to obtain the hexadecimal character string
“73 6d 73 73 2e 65 78 65 00 00 00 00 00 00 00”. Then, this string is searched in the physical
memory page set P.

(2) If the operating system version is known, the EPROCESS structure is uniquely
determined; otherwise, all possible EPROCESS structures are constructed for each search
result. Figure 4 shows an EPROCESS structure constructed for a process name search result
when the operating system is assumed to be 32-bit Win7.

(3) For each built EPROCESS structure, the system version assumption is verified via
the _KUSER_SHARED_DATA structure. The virtual address of _KUSER_SHARED_DATA
is 7ffe0000 in each system version, and must correspond to a physical memory page. The
NtMajorVersion and NtMinorVersion fields represent the major and minor versions of
the operating system, and the two values should correspond to the assumed operating
system version.

Assuming that the operating system is 32-bit Win7, an EPROCESS structure is con-
structed for the search result of a process name (as shown in Figure 4). Then, the DTB is
read, and the virtual address 0x7ffe0000 of _KUSER_SHARED_DATA is converted to the
physical address 0x1e2010 according to the page table conversion method of the 32-bit
system (as shown in Figure 5). Since the values of the NtMajorVersion and NtMinorVersion
fields are 6 and 1, the system kernel version is 6.1, which is consistent with 32-bit Win7.
Thus, it can be determined that the built EPROCESS structure is correct. Then, the mapping
t(vsmss) : Vsmss → Psmss between all virtual pages in the smss process space to physical
pages can be constructed.

Appl. Sci. 2023, 13, 2478 7 of 13

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 12

Figure 3. The process management structure of the Windows system. Only the variables involved
in this paper are listed.

According to Cohen’s work [13], the structure of each version of the Windows kernel
is almost the same. There are only 10 structural layouts of EPROCESS from WinXP to
Win8.1. The structure of EPROCESS is easy to exhaust, so a specific process name can be
searched for to locate EPROCESS. Taking the system process “smss.exe” as an example,
the search steps are as follows:

(1) The ImageFileName field in EPROCESS indicates the process name, and it has a
length of at least 15 bytes(as shown in Figure 3). This work uses ‘\0’ to fill the end of the
process name string “smss.exe” to 15 bytes to obtain the hexadecimal character string “73
6d 73 73 2e 65 78 65 00 00 00 00 00 00 00”. Then, this string is searched in the physical
memory page set 𝑃.

(2) If the operating system version is known, the EPROCESS structure is uniquely
determined; otherwise, all possible EPROCESS structures are constructed for each search
result. Figure 4 shows an EPROCESS structure constructed for a process name search re-
sult when the operating system is assumed to be 32-bit Win7.

Figure 4. Building the EPROCESS structure in a 32-bit Win7 system.

(3) For each built EPROCESS structure, the system version assumption is verified via the
_KUSER_SHARED_DATA structure. The virtual address of _KUSER_SHARED_DATA is
7ffe0000 in each system version, and must correspond to a physical memory page. The NtMa-
jorVersion and NtMinorVersion fields represent the major and minor versions of the op-
erating system, and the two values should correspond to the assumed operating system
version.

Assuming that the operating system is 32-bit Win7, an EPROCESS structure is con-
structed for the search result of a process name (as shown in Figure 4). Then, the DTB is
read, and the virtual address 0x7ffe0000 of _KUSER_SHARED_DATA is converted to the
physical address 0x1e2010 according to the page table conversion method of the 32-bit

Figure 4. Building the EPROCESS structure in a 32-bit Win7 system.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 12

system (as shown in Figure 5). Since the values of the NtMajorVersion and NtMinorVer-
sion fields are 6 and 1, the system kernel version is 6.1, which is consistent with 32-bit
Win7. Thus, it can be determined that the built EPROCESS structure is correct. Then, the
mapping 𝑡(𝑣௦௦௦): 𝑉௦௦௦ → 𝑃௦௦௦ between all virtual pages in the smss process space to
physical pages can be constructed.

Figure 5. Accessing the _KUSER_SHARED_DATA structure to verify the system version assump-
tion.

Next, the map 𝑡(𝑣): 𝑉 → 𝑃 is established through all processes. The ActiveProcess-
Links of the EPROCESS structure is a doubly linked list containing two virtual address
pointers that point to the ActiveProcessLinks addresses of two adjacent EPROCESSs. As
shown in Figure 6, 0x3f2d0568 is the starting physical address of the smss process. The
virtual addresses of two adjacent EPROCESS structures can be obtained by reading the
virtual addresses of the two linked list items before and after the ActiveProcessLinks
linked list and subtracting the offset of the relative starting position. The physical address
corresponding to the virtual address 0x86049d40 obtained from the mapping 𝑡(𝑣௦௦௦): 𝑉௦௦௦ → 𝑃௦௦௦ is 0x3f249d40. Based on this, a new EPROCESS structure is built,
and it is known that the process is “csrss” from its ImageFileName field. Meanwhile, the
DTB of the process is 0x3f2d2060, according to which the address mapping 𝑡(𝑣௦௦௦): 𝑉௦௦௦ → 𝑃௦௦௦ can be established. The above steps are executed iteratively until
the EPROCESS of all processes is traversed; finally, the mapping 𝑡(𝑣): 𝑉 → 𝑃 from virtual
pages to physical pages of all processes is obtained. Taking InInitializationOrderMod-
uleList as an example, the offset of the linked list in the LDR is 0xc, and the virtual ad-
dresses of two adjacent linked list entries are 0x3b1790 and 0x3b1810, respectively.

Figure 6. Accessing adjacent processes through ActiveProcessLinks in a 32-bit Win7 system.

Figure 5. Accessing the _KUSER_SHARED_DATA structure to verify the system version assumption.

Next, the map t(v) : V → P is established through all processes. The ActivePro-
cessLinks of the EPROCESS structure is a doubly linked list containing two virtual address
pointers that point to the ActiveProcessLinks addresses of two adjacent EPROCESSs. As
shown in Figure 6, 0x3f2d0568 is the starting physical address of the smss process. The vir-
tual addresses of two adjacent EPROCESS structures can be obtained by reading the virtual
addresses of the two linked list items before and after the ActiveProcessLinks linked list
and subtracting the offset of the relative starting position. The physical address correspond-
ing to the virtual address 0x86049d40 obtained from the mapping t(vsmss) : Vsmss → Psmss
is 0x3f249d40. Based on this, a new EPROCESS structure is built, and it is known that
the process is “csrss” from its ImageFileName field. Meanwhile, the DTB of the process
is 0x3f2d2060, according to which the address mapping t(vcsrss) : Vcsrss → Pcsrss can be

Appl. Sci. 2023, 13, 2478 8 of 13

established. The above steps are executed iteratively until the EPROCESS of all processes
is traversed; finally, the mapping t(v) : V → P from virtual pages to physical pages of all
processes is obtained. Taking InInitializationOrderModuleList as an example, the offset of
the linked list in the LDR is 0xc, and the virtual addresses of two adjacent linked list entries
are 0x3b1790 and 0x3b1810, respectively.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 12

system (as shown in Figure 5). Since the values of the NtMajorVersion and NtMinorVer-
sion fields are 6 and 1, the system kernel version is 6.1, which is consistent with 32-bit
Win7. Thus, it can be determined that the built EPROCESS structure is correct. Then, the
mapping 𝑡(𝑣௦௦௦): 𝑉௦௦௦ → 𝑃௦௦௦ between all virtual pages in the smss process space to
physical pages can be constructed.

Figure 5. Accessing the _KUSER_SHARED_DATA structure to verify the system version assump-
tion.

Next, the map 𝑡(𝑣): 𝑉 → 𝑃 is established through all processes. The ActiveProcess-
Links of the EPROCESS structure is a doubly linked list containing two virtual address
pointers that point to the ActiveProcessLinks addresses of two adjacent EPROCESSs. As
shown in Figure 6, 0x3f2d0568 is the starting physical address of the smss process. The
virtual addresses of two adjacent EPROCESS structures can be obtained by reading the
virtual addresses of the two linked list items before and after the ActiveProcessLinks
linked list and subtracting the offset of the relative starting position. The physical address
corresponding to the virtual address 0x86049d40 obtained from the mapping 𝑡(𝑣௦௦௦): 𝑉௦௦௦ → 𝑃௦௦௦ is 0x3f249d40. Based on this, a new EPROCESS structure is built,
and it is known that the process is “csrss” from its ImageFileName field. Meanwhile, the
DTB of the process is 0x3f2d2060, according to which the address mapping 𝑡(𝑣௦௦௦): 𝑉௦௦௦ → 𝑃௦௦௦ can be established. The above steps are executed iteratively until
the EPROCESS of all processes is traversed; finally, the mapping 𝑡(𝑣): 𝑉 → 𝑃 from virtual
pages to physical pages of all processes is obtained. Taking InInitializationOrderMod-
uleList as an example, the offset of the linked list in the LDR is 0xc, and the virtual ad-
dresses of two adjacent linked list entries are 0x3b1790 and 0x3b1810, respectively.

Figure 6. Accessing adjacent processes through ActiveProcessLinks in a 32-bit Win7 system. Figure 6. Accessing adjacent processes through ActiveProcessLinks in a 32-bit Win7 system.

Then, build the _LDR_DATA_TABLE_ENTRY structure at virtual address 0x3b1790,
and the virtual address of the code module is read to be 0x484f0000, vsmss_0x484f0000 ∈ Vsmss_l .
The beginning of the _LDR_DATA_TABLE_ENTRY structure is the virtual address of
two adjacent linked list items, so the InInitializationOrderModuleList linked list can be
traversed. The structures of the other two linked lists in the LDR have the same structure,
and the address of the load module can be traversed and read in the same way (as shown
in Figure 7). Finally, Vsmss_l is obtained, and the LDR linked list is reconstructed for each
process to obtain Vl = ∪procVproc_l .

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 12

Then, build the _LDR_DATA_TABLE_ENTRY structure at virtual address 0x3b1790,
and the virtual address of the code module is read to be 0x484f0000, 𝑣௦௦௦_୶ସ଼ସ ∈𝑉௦௦௦_. The beginning of the _LDR_DATA_TABLE_ENTRY structure is the virtual ad-
dress of two adjacent linked list items, so the InInitializationOrderModuleList linked list
can be traversed. The structures of the other two linked lists in the LDR have the same
structure, and the address of the load module can be traversed and read in the same way
(as shown in Figure 7). Finally, 𝑉௦௦௦_ is obtained, and the LDR linked list is recon-
structed for each process to obtain 𝑉 = ⋃ 𝑉_ .

Figure 7. Find the virtual address of the code module in the LDR linked list in the 32-bit Win7 sys-
tem.

3.4. Code Injection Covert Page Identification Sub-Algorithm
Hidden page identification aims to detect the virtual page set 𝑉 of the hidden code

module in the user space and find the set 𝑉 containing the memory pages where the DLL
code module is located in the virtual memory.

The user-space address range of a process in a 32-bit system is 0~0x7ffffffff, and in a
64-bit system, it is 0~0x7ffffffffff. According to the address range, the user space page set
of the smss process is obtained as 𝑉௦௦௦_௨ = {𝑣௦௦௦_ௗௗ|𝑎𝑑𝑑𝑟 ൏ 0𝑥7𝑓𝑓𝑓𝑓𝑓𝑓𝑓}. The user
space of other processes is obtained in a similar way. The set of user-space memory pages
of all processes is represented as 𝑉௨ = ⋃ 𝑉ೠ .

To reduce physical memory usage by the operating system, when the same module
is used by multiple processes, multiple virtual memory pages are mapped to the same
physical memory page 𝑝. So, there is no inverse mapping for 𝑡(𝑣): 𝑉 → 𝑃. Therefore, to
find the preimage of the physical memory page 𝑝, we can only traverse all the virtual
memory pages 𝑣 and perform the mapping 𝑡(𝑣) to convert the pages. In this way, the
preimage set 𝑉 of 𝑃, 𝑉 = {𝑣|𝑡(𝑣) ∈ 𝑃} can be obtained.

The set 𝑃 contains a part of the driver code module because the header characteris-
tics of the driver module file are the same as that of the DLL file. However, the driver
modules are loaded in the kernel space of virtual memory, and they do not appear in the
LDR linked list. These pages where these driver modules are located need to be excluded
from the detection, so the set of user-space code module virtual memory pages 𝑉௨ ∩ 𝑉 is
obtained. Finally, whether each virtual page appears in the set 𝑉 is judged, and if a

Figure 7. Find the virtual address of the code module in the LDR linked list in the 32-bit Win7 system.

Appl. Sci. 2023, 13, 2478 9 of 13

3.4. Code Injection Covert Page Identification Sub-Algorithm

Hidden page identification aims to detect the virtual page set Vh of the hidden code
module in the user space and find the set Ve containing the memory pages where the DLL
code module is located in the virtual memory.

The user-space address range of a process in a 32-bit system is 0~0x7ffffffff, and in a
64-bit system, it is 0~0x7ffffffffff. According to the address range, the user space page set of
the smss process is obtained as Vsmss_u = {vsmss_addr|addr < 0x7 f f f f f f f }. The user space
of other processes is obtained in a similar way. The set of user-space memory pages of all
processes is represented as Vu = ∪procVprocu .

To reduce physical memory usage by the operating system, when the same module
is used by multiple processes, multiple virtual memory pages are mapped to the same
physical memory page p. So, there is no inverse mapping for t(v) : V → P . Therefore,
to find the preimage of the physical memory page p, we can only traverse all the virtual
memory pages v and perform the mapping t(v) to convert the pages. In this way, the
preimage set Ve of Pe, Ve = {v|t(v) ∈ Pe} can be obtained.

The set Pe contains a part of the driver code module because the header characteristics
of the driver module file are the same as that of the DLL file. However, the driver modules
are loaded in the kernel space of virtual memory, and they do not appear in the LDR linked
list. These pages where these driver modules are located need to be excluded from the
detection, so the set of user-space code module virtual memory pages Vu ∩Ve is obtained.
Finally, whether each virtual page appears in the set Vl is judged, and if a virtual page is
not in Vl , the virtual page is a covertly injected page. The whole covert page detection
process is shown in Algorithm 2.

Algorithm 2: Covert page detection sub-algorithm

Input: Virtual memory page set V, Code module page set Vl in LDR linked list, Code
module physical memory page set Pe
Output: Covert code module virtual page set Vh
Init: Vh ← ∅
for each Vproc ⊂ V do:

for each v ∈ Vproc do:
if t(v) ∈ Pe and v ∈ Vproc_u and v /∈ Vproc_l then:

Vproc_h ← Vproc_h ∪ {v}
end

end
Vh = ∪procVproch

4. Experiment and Discussion

In this section, we first introduce the samples and experimental setup, and then we
conducted a series of experiments to compare with the current commonly used methods.

4.1. Experiment Samples and Setup

The MRCIF algorithm has been implemented using Python 3.8 and some functions of
volatility have been called, regardless of the operating system. The MRCIF algorithm was
evaluated on 32-bit WindowXP, 32-bit Windows 7, and 64-bit Windows10 snapshots, using
a machine with Intel i7-7700K and 16 GB RAM.

The experiment samples are shown in Table 1, including the source of the samples and
the version and size of the system memory image.

Appl. Sci. 2023, 13, 2478 10 of 13

Table 1. Experimental samples.

No Sample Memory Image

1 Process Hollowing

https://github.com/m0n0ph1/Process-Hollowing/tree/
master/executables/ProcessHollowing.exe (accessed on

15 November 2021).
Win7SP0x86, 1 GB

2 Reflective DLL
(Win7)

https://github.com/stephenfewer/
ReflectiveDLLInjection/tree/master/bin/inject.exe

(accessed on 15 November 2021).
Win7SP0x86, 1 GB

3 Reflective DLL
(Win10) Sample 2, Win10x64_19042, 2 GB

4 VAD Remapping
According to the method implementation of Palutke et al.

[3], the default VAD permissions and injection files are
modified. Win7SP1x86, 1 GB

5 Spyeye (Win7)

https://s.threatbook.com/report/file/f097ad77b99b374
4994a646d6a3577cea2faa8b9e656fcccbbd73244e227c850.

(accessed on 15 May 2022)
Win7SP1x86, 1 GB

6 Spyeye (Win10) Sample 4, Win10x64_19042, 2 GB

7 Cridex
https://github.com/volatilityfoundation/volatility/
wiki/Memory-Samples. (accessed on 15 March 2021)

WinXPSP3x86, 512 M

8 Zeus
https://github.com/volatilityfoundation/volatility/
wiki/Memory-Samples. (accessed on 15 March 2021)

WinXPSP3x86, 512 M

9 Coreflood
https://github.com/volatilityfoundation/volatility/
wiki/Memory-Samples. (accessed on 15 March 2021)

WinXPSP3x86, 512 M

4.2. Experiment Results and Discussion

For the above test samples, the method proposed in this paper is compared with the
commonly used detection methods, and the results are presented in Tables 2–4. The process
accuracy is calculated as the number of correctly reported injection processes divided by
the total number of reported processes; the page accuracy rate is calculated as the number
of correctly reported injected pages divided by the total number of reported pages. The
target of malthfind is the thread, so this work uses the page where the calling code module
is located as the hidden page of its report.

Table 2. Process detection accuracy.

Sample
No 1 2 3 4 5 6 7 8 9 Average

MRCIF 100% 100% 100% 100% 100% 100% 100% 100% 0 88.89%
malfind 25% 33.3% 50% 0% 42.9% 96.15% 96% 50% 25% 46.48%

malthfind 0 100% 0% 60% 100% 100% 60% 60%

Ptemalfind 3.9% 3.9% 25% 3.9% 8.6% 89.28% 22.43%

https://github.com/m0n0ph1/Process-Hollowing/tree/master/executables/ProcessHollowing.exe
https://github.com/m0n0ph1/Process-Hollowing/tree/master/executables/ProcessHollowing.exe
https://github.com/stephenfewer/ReflectiveDLLInjection/tree/master/bin/inject.exe
https://github.com/stephenfewer/ReflectiveDLLInjection/tree/master/bin/inject.exe
https://s.threatbook.com/report/file/f097ad77b99b3744994a646d6a3577cea2faa8b9e656fcccbbd73244e227c850
https://s.threatbook.com/report/file/f097ad77b99b3744994a646d6a3577cea2faa8b9e656fcccbbd73244e227c850
https://github.com/volatilityfoundation/volatility/wiki/Memory-Samples
https://github.com/volatilityfoundation/volatility/wiki/Memory-Samples
https://github.com/volatilityfoundation/volatility/wiki/Memory-Samples
https://github.com/volatilityfoundation/volatility/wiki/Memory-Samples
https://github.com/volatilityfoundation/volatility/wiki/Memory-Samples
https://github.com/volatilityfoundation/volatility/wiki/Memory-Samples

Appl. Sci. 2023, 13, 2478 11 of 13

Table 3. Page detection accuracy.

Sample
No 1 2 3 4 5 6 7 8 9 Average

MRCIF 100% 100% 100% 100% 100% 100% 100% 100% 0 88.89%
malfind 20% 25% 25% 0% 40% 90.74% 79% 17% 11.10% 34.20%

malthfind 0% 100% 0% 60% 100% 100% 100% 65.71%
Ptemalfind 0.1% 0.1% 6.45% 0.1% 0.2% 64.2% 11.86%

Table 4. Time consumption (second).

Sample
No 1 2 3 4 5 6 7 8 9 Average

MRCIF 1915 1523 7769 1756 1884 7483 633 651 628 2693.6
malfind 10 9 59 9 15 67 8 10 9 21.8

malthfind 1433 1762 1528 1607 997 1054 1158 1362.7
Ptemalfind 393 377 190 387 353 263 327.2

Note that in Sample 2 and 3, Reflective DLL will first read the payload DLL file as data
directly into the memory during injection, perform this operation again on the memory
space, and remap the payload code module in the executable code mode. So, there are two
injection modules: one is the file data page, and the other is the executable memory page.
Since injected data pages are usually freed, only executable memory pages are counted as
detection target pages in the accuracy rate.

As shown in Tables 2 and 3, the malfind method only detects the private attributes and
protection attributes of VAD nodes, but the detection conditions are rough, which results in
low accuracy.

The malthfind method discovers unknown calling modules by reconstructing the call
stack. It has high accuracy in detecting malicious injected pages, such as samples 2, 5, 6,
and 7, but it cannot detect potential injected pages that are not executed. As for samples 3
and 4, some of the injected pages are not executed, and there is no stack, so the malthfind
method cannot detect these pages. In samples 3 and 6, malthfind fails to rebuild the stack
on Windows10 because of the lack of the necessary objects in Volatility profile.

Ptemalfind only achieved slightly better results in the experiment of Windows10, such
as Sample 3 and 6. It cannot run on samples 5, 6, and 7 because the PTE structure of the
WinXP lacks the properties required for Ptemalfind detection. Meanwhile, this method can
detect almost all the memory pages injected by the method, but its accuracy is extremely
low, which makes it difficult to apply in practice.

In comparison, MRCIF can completely detect the hidden injected pages for samples
1~8 without false positives. Especially in sample 4, only MRCIF can detect the injected code
module with high accuracy. The memory structures used in MRCIF, such as EPROCESS,
LDR linked list, and PTE, are all necessary structures provided in Microsoft PDB files.
Therefore, compared with malthfind and Ptemalfind, MRCIF is more widely applicable in
different versions of Windows with higher accuracy. For sample 9, Coreflood’s injection
code module erases the PE header, while MRCIF is characterized by the PE header, so the
hidden injection page cannot be detected at all.

In terms of time consumption (as shown in Table 4), MRCIF consumes the most time
in all the methods. This is due to the translation of all virtual addresses of all processes.
Because the detection process is not real-time, the time consumption should be worthwhile.
Moreover, the translation of all virtual addresses can be executed in parallel by the process
to improve the efficiency of hardware usage, but we have not realized it at present, which
is our future work.

Appl. Sci. 2023, 13, 2478 12 of 13

5. Conclusions

This paper proposes MRCIF, a code injection covert memory page detection and
forensic detection forensic algorithm based on memory structure reverse analysis. First, the
physical memory pages containing DLL features in the memory image are located, and a
sub-algorithm is designed for mapping physical memory space and virtual memory space,
thus realizing reverse reconstruction of the physical page subset corresponding to the
DLL code module. Then, in the virtual memory space, the LDR linked list structure of the
process is reversely reconstructed, and a reverse reconstruction algorithm of the DLL virtual
page subset is designed to reconstruct its virtual space. Finally, a DLL injection covert
page detection sub-algorithm is developed based on the physical memory page subset
and virtual space page subset. The method proposed in this paper does not use the VAD
structure during detection and is therefore immune to VAD attribute tampering attacks.
The experimental results indicate that MRCIF achieves an accuracy of 88.89%, which is
much higher than that of the traditional DLL module injection detection method, and only
MRCIF can accurately detect the VAD remapping attack. In practice, the proposed method
is a preferred method for detecting hidden memory pages because of its higher accuracy,
and it helps to quickly determine the direction of investigation for forensic analysis. Further
research will be conducted on improving the efficiency of MRCIF and the characteristics of
executable code in physical memory to deal with PE header erasure.

Author Contributions: Conceptualization, H.Z. and B.L.; methodology, H.Z. and B.L.; software
and validation, W.L., L.Z. and S.Y.; formal analysis, H.Z., B.L. and C.C.; writing—original draft
preparation, H.Z. and B.L.; writing—review and editing, B.L. and C.C.; funding acquisition, B.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 60903220.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available from the corresponding author Binglong Li
upon reasonable request.

Acknowledgments: The authors would like to thank all the editors and reviewers who participated
in the review.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fewer, S. Reflective Dll Injection. 2008. Available online: https://dl.packetstormsecurity.net/papers/general/HS-P005

_ReflectiveDllInjection.pdf (accessed on 15 November 2021).
2. Blaam, M. Process Hollowing. 2015. Available online: https://github.com/m0n0ph1/Process-Hollowing (accessed on 23

November 2021).
3. Palutke, R.; Block, F.; Reichenberger, P.; Stripeika, D. Hiding Process Memory Via Anti-Forensic Techniques. Forensic Sci. Int.

Digit. Investig. 2020, 33, 301012. [CrossRef]
4. Galloro, N.; Polino, M.; Carminati, M.; Continella, A.; Zanero, S. A Systematical and Longitudinal Study of Evasive Behaviors in

Windows Malware. Comput. Secur. 2021, 113, 102550. [CrossRef]
5. Srivastava, A.; Jones, J.H. Detecting code injection by cross-validating stack and VAD information in windows physical memory.

In Proceedings of the 2017 IEEE Conference on Open Systems (ICOS), Miri, Malaysia, 13–14 November 2017; pp. 83–89. [CrossRef]
6. Block, F.; Dewald, A. Windows Memory Forensics: Detecting (Un)Intentionally Hidden Injected Code by Examining Page Table

Entries. Digit. Investig. 2019, 29, S3–S12. [CrossRef]
7. DFRWS. DFRWS 2005 Forensics Challenge. 2005. Available online: https://github.com/dfrws/dfrws2005-challenge (accessed

on 23 November 2021).
8. Schuster, A. Searching for processes and threads in Microsoft Windows memory dumps. Digit. Investig. 2006, 3, 10–16. [CrossRef]
9. Dolan-Gavitt, B. The VAD tree: A process-eye view of physical memory. Digit. Investig. 2007, 4, 62–64. [CrossRef]
10. Kornblum, J.D. Using every part of the buffalo in Windows memory analysis. Digit. Investig. 2007, 4, 24–29. [CrossRef]
11. Guo, M.; Wang, L. Windows physical memory analysis method based on KPCR structure. Comput. Eng. Appl. 2009, 45, 74–77+143.

[CrossRef]

https://dl.packetstormsecurity.net/papers/general/HS-P005_ReflectiveDllInjection.pdf
https://dl.packetstormsecurity.net/papers/general/HS-P005_ReflectiveDllInjection.pdf
https://github.com/m0n0ph1/Process-Hollowing
http://doi.org/10.1016/j.fsidi.2020.301012
http://doi.org/10.1016/j.cose.2021.102550
http://doi.org/10.1109/ICOS.2017.8280279
http://doi.org/10.1016/j.diin.2019.04.008
https://github.com/dfrws/dfrws2005-challenge
http://doi.org/10.1016/j.diin.2006.06.010
http://doi.org/10.1016/j.diin.2007.06.008
http://doi.org/10.1016/j.diin.2006.12.002
http://doi.org/10.3778/j.issn.1002-8331.2009.18.024

Appl. Sci. 2023, 13, 2478 13 of 13

12. Zhang, S.; Wang, L.; Zhang, R.; Guo, Q. Exploratory study on memory analysis of Windows 7 operating system. In Proceedings
of the 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, 20–22
August 2010; pp. V6-373–V6-377. [CrossRef]

13. Cohen, M.I. Characterization of the windows kernel version variability for accurate memory analysis. Digit. Investig. 2015, 12,
S38–S49. [CrossRef]

14. Google Rekall Forensics. Available online: http://www.rekall-forensic.com/ (accessed on 24 November 2021).
15. Cohen, M. Forensic analysis of windows user space applications through heap allocations. In Proceedings of the 2015 IEEE

Symposium on Computers and Communication (ISCC), Larnaca, Cyprus, 6–9 July 2015; pp. 237–244. [CrossRef]
16. Li, B.; Zhou, Z.; Zhang, Y.; Zhang, H.; Chang, C. Memory fragment file carving algorithm based on the reverse of the structure

chain. J. Commun. 2021, 42, 117–127. [CrossRef]
17. Zhai, J.; Xu, X.; Chen, P.; Yang, H. Stack Forensics Based on Meta Data and Instruction Flow of 64-bit Windows. J. Harbin Univ. Sci.

Technol. 2021, 26, 51–59. [CrossRef]
18. Pshoul, D. Malthfind Volatility Plugin. 2016. Available online: https://github.com/volatilityfoundation/community/blob/d9fc0

727266ec552bb6412142f3f31440c601664/DimaPshoul/malthfind.py (accessed on 29 April 2022).
19. Cohen, M. Scanning memory with Yara. Digit. Investig. 2017, 20, 34–43. [CrossRef]
20. Russinovich, M.E.; Solomon, D.A.; Ionescu, A. Windows Internals, 6th ed.; Microsoft Press: Redmond, WA, USA, 2012.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ICACTE.2010.5579832
http://doi.org/10.1016/j.diin.2015.01.009
http://www.rekall-forensic.com/
http://doi.org/10.1109/ISCC.2015.7405522
http://doi.org/10.11959/j.issn.1000-436x.2021143
http://doi.org/10.15938/j.jhust.2021.05.007
https://github.com/volatilityfoundation/community/blob/d9fc0727266ec552bb6412142f3f31440c601664/DimaPshoul/malthfind.py
https://github.com/volatilityfoundation/community/blob/d9fc0727266ec552bb6412142f3f31440c601664/DimaPshoul/malthfind.py
http://doi.org/10.1016/j.diin.2017.02.005

	Introduction
	Related Works
	MRCIF Algorithm
	File Preprocessing
	Physical Locator Sub-Algorithm
	Virtual Space Reverse Reconstruction Sub-Algorithm
	Code Injection Covert Page Identification Sub-Algorithm

	Experiment and Discussion
	Experiment Samples and Setup
	Experiment Results and Discussion

	Conclusions
	References

