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Abstract: The existence of multiple reflections brings difficulty to seismic data processing and inter-
pretation in seismic reflection exploration. Parabolic Radon transform is widely used in multiple
attenuation because it is easily implemented, highly robust and efficient. However, finite seismic
acquisition aperture of seismic data causes energy diffusion in the Radon domain, which leads to
multiple residuals. In this paper, we propose a sparse parabolic Radon transform with the nonconvex
Lq1 − Lq2 (0 < q1, q2 < 1) mixed regularization (SPRTLq1 − Lq2 ) that constrains the sparsity of pri-
mary and multiple reflections to overcome the energy diffusion and improve the effect of multiple
attenuation, respectively. This nonconvex mixed regularization problem is solved approximately by
the alternating direction method of multipliers (ADMM) algorithm, and we give the convergence
conditions of the ADMM algorithm. The proposed method is compared with least squares parabolic
Radon transform (LSPRT) and sparse parabolic Radon transform based on L1 regularization (SPRTL1)
for multiple attenuation in the synthetic data and field data. We demonstrate that it improves the
sparsity and resolution of the Radon domain data, and better results are obtained.

Keywords: multiple attenuation; parabolic Radon transform; Lq regularization; sparse inversion

1. Introduction

Multiple reflections are usually regarded as coherent noise in reflection seismic data
especially in marine exploration. The existence of multiple reflections brings difficulty to
seismic data processing [1]. It makes the structural illusion appear in the migrated-stacked
section, which can affect the accuracy of subsequent data interpretation [2]. The Radon
transform is a common method for multiple attenuation because of its high efficiency
and due that it is easily implemented [3,4]. Due to the kinematic differences between
primary and multiple reflections, most multiples are considered as coherent noise with low
velocity [5]. Therefore, the primary reflections are upturned or flat, and multiple reflections
are parabolic after normal movement correction with certain velocities in the CMP gather,
which provides a theoretical basis for multiple attenuation using Radon transform. In 1986,
Hampson [6] used the parabolic Radon transform to suppress multiples. The parabolic
Radon transform makes their seismic events of different curvatures projected in different
regions of the Radon domain, so as to separate primary and multiple reflections. However,
finite seismic acquisition aperture of seismic data causes energy diffusion in the Radon
domain, and it causes the smearing shown by the red arrows in Figure 1b. The energy
diffusion limits the effect of multiple attenuation. To improve the above problem, the
conception of optimization inversion is introduced into Radon transform [7,8].

When solving the inverse problems of Radon transform, the solution of inversion
Radon transform is not unique. That is to say, there will be multiple sets of different solutions
in the Radon domain, and these solutions do not describe the model function well.

Hampson [6] proposed the least squares inversion method, and the original data
are reconstructed by optimizing the data in the Radon domain. This method reduces
the smearing in the radon domain, but there are still some artefacts and data outside the
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offset that are not restricted. After Radon inverse transform, the data within a restricted
offset still consist of the original data, but they are different when the data are outside the
restricted range. In addition, the solution of the Radon domain is not optimal. Therefore, to
solve this problem, it is hoped that the solution of the Radon domain will be sparser [2].
In 1985, the Radon transform was considered as a sparse inversion problem by Thor-
son et al. [9]. However, a lot of computation is disadvantageous. Sacchi et al. [10] adopted
the method of Thorson to implement the sparse inversion Radon transform, and it is in
the frequency domain. A high-resolution Radon transform was proposed by Herrmann
to distinguish primary and multiple reflections, and it tackled the aliasing and resolution
issues of the Radon transform [11]. Trad et al. [12] discussed fast implementations for
the Radon transform in the time and frequency domains. With this sparse constraint,
the seismic events have better localization characteristics in the Radon domain and the
separation effect of primaries and multiples is guaranteed to a certain extent. Lu [13]
proposed iterative 2D model shrinkage to solve the sparse inverse problem of RT and
obtained the analogously sparse Radon model. Xiong et al. [14] established a mathematical
model to combine L2-norm and the adaptive multiple subtraction method on L1-norm by
weighted combination. This method can suppress the energy of multiples relatively better
than non-combination.
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Figure 1. (a) CMP gather after NMO; (b) Radon domain data after parabolic Radon transform. The 
red arrows indicate the smearing. 
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Figure 1. (a) CMP gather after NMO; (b) Radon domain data after parabolic Radon transform. The
red arrows indicate the smearing.

In order to further improve the separation effect, researchers use the regularization
methods of L-norm as the sparsity constraint condition that fully reflects the basic character-
istics of the seismic data [15–17]. We can obtain the high-resolution Radon transform, and
it is constrained sparsely, such as in L0 regularization, but it is generally not used because
it is hard to solve. Tisbshirani [18] proposed L1 regularization, and it provides an alterna-
tive. L1 regularization [19] is a convex optimization problem. This means that L1-norm
regularization is easy to solve. Donoho et al. [20] proved that sometimes the solution of
the L0 regularization is equivalent to that of the L1 regularization for the sparsity problem.
L2 regularization can avoid the overfitting of the model, but its solutions do not have the
sparse property. Moreover, some numerical experiments showed that sparse signals are
recovered from fewer linear measurements by Lq (0 < q < 1) regularization [21–24]. L1/2
regularization can be taken as a representative of the Lq (0 < q < 1) regularization, and it
has been proved that the solution of L1/2 regularization is sparser and more stable than the
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solution of L1 regularization [25]. However, the L1/2 regularization leads to a nonconvex,
nonsmooth and non-Lipschitz optimization problem that is difficult to solve quickly and
efficiently. Some scholars proposed corresponding solving methods. The reweighted itera-
tion algorithm [25], the iterative reweighted least squares method [26], the iterative half
thresholding algorithm [27] and the generalized iterated shrinkage algorithm [28,29] are
efficient methods for solving the L1/2 regularization.

Generally, sparse regularization constrains the sparsity of the whole seismic wavefield,
which means a unique regularization parameter for different wavefields. However, the
different wavefields have different amplitudes, and the same regularization parameter
setting easily causes signal damage or redundant residual information. Sparse regulariza-
tion for multi-tasking exploits differences in features of the data to demix the two distinct
components for constraining the sparsity. For the multiple attenuation case in the Radon
domain, primary and multiple reflections are distributed in different zones of the Radon
domain and have different amplitudes. The unique regularization parameter may limit the
performance of multiple attenuation.

In this paper, we propose a sparse parabolic Radon transform in the frequency domain
with the nonconvex Lq1 − Lq2(0 < q1, q2 < 1) mixed regularization (SPRTLq1 − Lq2) that
constrains the sparsity of primary and multiple reflections, respectively. In addition,
we use the alternating direction method of multipliers algorithm (ADMM) [30–32] to
approximately solve the multi-task regularization problem. Furthermore, conditions for
convergence [33–36] are indicated. The rationality and effectiveness of the proposed method
in multiple attenuation are verified by synthetic and real data. The method in this paper
is compared with least squares parabolic Radon transform (LSPRT) and sparse parabolic
Radon transform based on L1 regularization (SPRTL1) for multiple attenuation. This
method improves the precision and focusing ability of Radon transform, obtains a better
result of multiple suppression, reduces the loss of primary reflections, and improves the
interpretability of seismic data.

2. Methodology
2.1. Parabolic Radon Transform

The fundamental strategy of multiple suppression based on Radon transform is to
use the difference in kinematic features between primary and multiple reflections. The
velocity between primary and multiple reflections is used to perform normal movement
correction of the seismic data of CMP gather, and then the seismic events are more like
parabolas [6]. Therefore, after the parabolic Radon transform, the seismic events with
different curvatures can be mapped to different regions of the Radon domain to realize the
separation of primary and multiple reflections.

The sum trajectories of parabolic Radon transform follow a parabola, and its definition
is as follows:

m
(
τ, qj

)
=

Nx

∑
j=0

d
(

t = τ+qjx
2, x
)

(1)

d(t, x) =
Nq

∑
j=0

m
(

τ = t− qjx2, qj

)
(2)

where d(t, x) is seismic data, m
(
τ, qj

)
is Radon domain data after parabolic Radon trans-

form, x is offset distance, t is time, q is curvature parameter and τ is intercept time. The
meaning of parabolic Radon transform is that the seismic events having a parabolic shape
in the time domain are mapped to a point in the Radon domain.

For the sake of efficiency, Radon transform can be transformed via the time variable to
the frequency domain, as shown in Formulations (3) and (4):

M
(
qj, f

)
=

Nx

∑
k=1

D(xk, f )ei2π f qjx2
k (3)
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D(xk, f ) =
Nq

∑
j=1

M(qj, f )e−i2π f qjx2
k (4)

where f is frequency, k = 1, 2, · · · , Nx and j = 1, 2, · · · , Nq
The matrix vector form of Formulations (3) and (4) can be represented by

m = AHd (5)

d = Am (6)

where d is CMP gather and m is the matrix form of Radon domain data. The Radon
operators A and AH of forward and inversion transform are defined as

AH = ei2π f qjx2
k (7)

A = e−i2π f qjx2
k (8)

Due to the limited aperture and discretization leading to low resolution and aliasing,
Hampson [6] proposed the least squares inversion method, and the solution is presented as

m =
(

AHA
)−1

AHd (9)

The solution of Tikhonov regularization [37] is

m =
(

AHA + σI
)−1

AHd (10)

where σ is a stable factor and I is the identity matrix.
The least squares parabolic Radon transform improves the resolution of the Radon

domain data as well as the accuracy and focusing ability of the transformation. This
method limits partial energy diffusion and ensures the consistency of the reconstructed
data with the original data. However, for multiples and primaries with little difference
in the time difference of normal moveout, this method cannot separate them without
distortion, and there is still some energy overlap in the Radon domain. It is necessary
to improve the parabolic Radon transform to make the solution of the Radon domain
more sparse. Radon transform is regarded as a nonlinear inversion problem. The data
transformation error is constrained by L2-norm, and the model sparsity is constrained by
L-norm to improve the sparsity and resolution of the model. Therefore, L1 regulariza-
tion [20] and Lq regularization [25,27] are proposed to constrain data.

2.2. High-Resolution Sparse Parabolic Radon Transform

The regularization method of using L-norm as a penalty term can make the result
sparse and obtain a high-resolution parabolic Radon transform with sparse constraints.
Common regularization methods include L0 regularization, L1 regularization, L2 regu-
larization, Lq regularization and the unit sphere geometry diagram of L-norm, shown in
Figure 2. Since there are no corners in the constraint region of L0 regularization, and it is
difficult to have zero solutions, this method has sparsity. The constraint region of L2 regu-
larization also has no corners and it can avoid the overfitting of the model, but its solutions
do not have the sparsity property. The constraint region of L1 regularization is a square.
The L1 regularization is convex optimization problem, and it is sparse. It can be solved
using the iterative soft threshold algorithm (ISTA) [38] and the fast iterative shrinkage-
thresholding algorithm (FISTA) [39]. However, some numerical experiments [21] showed
that Lq (0 < q < 1) regularization has much better signal recovery capability than L1 regu-
larization minimization. As shown in Figure 2, the solution of Lq (0 < q < 1) regularization
is more likely to be at a corner, which proves its sparsity.



Appl. Sci. 2023, 13, 2550 5 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 16 
 

 

regularization also has no corners and it can avoid the overfitting of the model, but its 
solutions do not have the sparsity property. The constraint region of 𝐿ଵ regularization is 
a square. The 𝐿ଵ regularization is convex optimization problem, and it is sparse. It can be 
solved using the iterative soft threshold algorithm (ISTA) [38] and the fast iterative shrink-
age-thresholding algorithm (FISTA) [39]. However, some numerical experiments [21] 
showed that 𝐿 (0 < q < 1) regularization has much better signal recovery capability than 𝐿ଵ regularization minimization. As shown in Figure 2, the solution of 𝐿 (0 < q < 1) regu-
larization is more likely to be at a corner, which proves its sparsity. 

 
Figure 2. Unit ball pictures for (a) 𝐿, (b) 𝐿ଶ, (c) 𝐿ଵ and (d) 𝐿ଵ/ଶ regularization. 

The multiple suppression based on the parabolic Radon transform problem can be 
formulated as following minimization problem of 𝐿 regularization: min  {12 ‖𝒅 − 𝑨𝒎‖ଶଶ + 𝛼‖𝒎‖} (11)

where ‖𝒎‖=(∑ |𝑚|ேୀଵ )ଵ/ and 𝛼 > 0 is the regularization parameter. 𝐿 (0 < q < 1) norm constrains whole seismic wavefield data to improve the inversion 
accuracy. However, in order not to cause signal damage and noise residue, sparse con-
straints of primary and multiple reflections are considered, respectively, according to the 
differences between them to achieve a better multiple suppression. 

2.3. High-Resolution Parabolic Radon Transform with 𝐿భ − 𝐿మ Mixed Regularization  
To suppress multiple 𝒎ଶ from d, we use 𝐿భ − 𝐿మ mixed regularization with 0 < 𝑞ଵ, 𝑞ଶ < 1 for sparsity promotion and use the following formulation: min𝒎భ𝒎మ ൜1𝛽 ‖𝑨ଵ𝒎ଵ + 𝑨ଶ𝒎ଶ − 𝒅‖ଶଶ + 𝜇‖𝒎ଵ‖భభ + ‖𝒎ଶ‖మమൠ  (12)

where 𝜇 is a positive parameter, 𝛽 > 0 is a penalty parameter, 𝑨 = 𝑨ଵ = 𝑨ଶ is the Ra-
don operator, 𝒎ଵ is primary and 𝒎ଶ is multiple. To determine 𝑞ଵ and 𝑞ଶ, we explore 
the 𝐿(0 < q < 1) regularization. Xu et al. [25] introduced 𝐿(0 < q < 1) regularization and 
proved that the 𝐿 regularization can obtain much sparser solutions than 𝐿ଵ regulariza-
tion. Meanwhile, they proposed 𝐿ଵ/ଶ regularization, and it is the most representative reg-
ularization method for 𝐿(0 < q < 1) regularization. The study shows that the 𝐿ଵ/ଶ regu-
larization is the sparsest and the most robust among the 𝐿(1/2 ≤ q < 1) regularization, 
and when 0 < q < 1/2, the 𝐿 regularization has similar properties to the 𝐿ଵ/ଶ regulariza-
tion. Therefore, we select 𝑞ଵ = 𝑞ଶ = 1 2⁄  in this paper. 𝐿భ − 𝐿మ mixed regularization is the nonconvex problem, and it is a very compli-
cated process to solve. In this paper, we use an improved alternative direction method of 
multipliers algorithm (ADMM) to approximate the solution [34]. The ADMM algorithm 
can be used to solve many high-dimensional problems and uses a decomposition-

Figure 2. Unit ball pictures for (a) L0, (b) L2, (c) L1 and (d) L1/2 regularization.

The multiple suppression based on the parabolic Radon transform problem can be
formulated as following minimization problem of Lq regularization:

min
m
{1

2
‖d−Am‖2

2 + α‖m‖q
q} (11)

where ‖m‖q=(∑N
i=1|mi|q)

1/q
and α > 0 is the regularization parameter.

Lq (0 < q < 1) norm constrains whole seismic wavefield data to improve the inversion
accuracy. However, in order not to cause signal damage and noise residue, sparse con-
straints of primary and multiple reflections are considered, respectively, according to the
differences between them to achieve a better multiple suppression.

2.3. High-Resolution Parabolic Radon Transform with Lq1 − Lq2 Mixed Regularization

To suppress multiple m2 from d, we use Lq1 − Lq2 mixed regularization with 0 < q1, q2 < 1
for sparsity promotion and use the following formulation:

min
m1m2

{
1
β
‖A1m1 + A2m2 − d‖2

2 + µ‖m1‖q1
q1
+ ‖m2‖q2

q2

}
(12)

where µ is a positive parameter, β > 0 is a penalty parameter, A = A1 = A2 is the Radon op-
erator, m1 is primary and m2 is multiple. To determine q1 and q2, we explore the Lq(0 < q < 1)
regularization. Xu et al. [25] introduced Lq(0 < q < 1) regularization and proved that the Lq
regularization can obtain much sparser solutions than L1 regularization. Meanwhile, they
proposed L1/2 regularization, and it is the most representative regularization method for
Lq(0 < q < 1) regularization. The study shows that the L1/2 regularization is the sparsest
and the most robust among the Lq(1/2 ≤ q < 1) regularization, and when 0 < q < 1/2, the
Lq regularization has similar properties to the L1/2 regularization. Therefore, we select
q1 = q2 = 1/2 in this paper.

Lq1 − Lq2 mixed regularization is the nonconvex problem, and it is a very complicated
process to solve. In this paper, we use an improved alternative direction method of
multipliers algorithm (ADMM) to approximate the solution [34]. The ADMM algorithm can
be used to solve many high-dimensional problems and uses a decomposition-coordination
procedure to decouple the variables [34–36,40]. This algorithm enables the difficult global
problem to be properly solved. The Problem (12) can be formulated as

min
m1m2

{
‖A1m1 + A2m2 − d‖2

2 + βµ‖z1‖q1
q1
+ β‖z2‖q2

q2

}
(13)

where the auxiliary variables are z1 = m1, z2 = m2.
The augmented Lagrangian function is
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L(m1, m2, z1, z2, w1, w2)

= ‖A1m1 + A2m2 − d‖2
2 + βµ‖z1‖q1

q1
+ β‖z2‖q2

q2
+ 〈w1, m1 − z1〉+ 〈w2, m2 − z2〉

+ ρ1
2 ‖m1 − z1‖2

2 +
ρ2
2 ‖m2 − z2‖2

2
where ρ1 and ρ2 are positive penalty parameters and w1 and w2 are the dual variables. The
dual variables and z1, z2, m1, m2 are alternatively updated as follows:

zk+1
1 = argmin

z1
(βµ‖z1‖q1

q1
+

ρ1

2

∥∥∥∥∥mk
1 − z1 +

wk
1

ρ1

∥∥∥∥∥
2

2

) (14)

zk+1
2 = argmin

z2
(β‖z2‖q2

q2
+

ρ2

2

∥∥∥∥∥mk
2 − z2 +

wk
2

ρ2

∥∥∥∥∥
2

2

) (15)

mk+1
1 = argmin

m1
(
∥∥∥A1m1 + A2mk

2 − d
∥∥∥2

2
+

ρ1

2

∥∥∥∥∥m1 − zk+1
1 +

wk
1

ρ1

∥∥∥∥∥
2

2

) (16)

mk+1
2 = argmin

m2
(
∥∥∥A1mk+1

1 + A2m2 − d
∥∥∥2

2
+

ρ1

2

∥∥∥∥∥m2 − zk+1
2 +

wk
2

ρ2

∥∥∥∥∥
2

2

) (17)

wk+1
1 = wk

1 + ρ1(mk+1
1 − zk+1

1 ) (18)

wk+1
2 = wk

2 + ρ2(mk+1
2 − zk+1

2 ) (19)

Due to the proximity operator of Lq regularization, proxq,η(t) is defined as

proxq,η(t) = argmin
m

{
‖m‖q

q +
η

2
‖m− t‖2

2

}
(20)

where η > 0 is a penalty parameter.
When 0 < q < 1, it can be updated as [41]

proxq,η(t)i =


0, |ti| < τ

{0, sign(ti)β}, |ti| = τ

sign(ti)zi, |ti| > τ

(21)

for i = 1, · · · , n, where β = [2(1− q)/η]1/(2−q) and τ = β + qβq−1/η,zi is the result of
h(z) = qzq−1 + ηz− η|ti| = 0. The exact solutions of m1 and m2 denote

mk+1
1 = (2AT

1 A1 + ρ1I)
−1

[2AT
1

(
d−A2mk

2

)
+ ρ1zk+1

1 −wk
1] (22)

mk+1
2 = (2AT

2 A2 + ρ2I)
−1

[2AT
2

(
d−A1mk+1

1

)
+ ρ2zk+1

2 −wk
2] (23)

The standard ADMM algorithm often fails to converge and converges under some
conditions. Therefore, the sufficient condition for the ADMM convergence is [34]

ρ1 >
16λ2

1
ρ1

+
16λ1λ2

ρ2
− 2ϕ1 (24)

ρ2 >
16λ2

2
ρ2

+
16λ1λ2

ρ1
− 2ϕ2 (25)

where λi = λmax(AT
i Ai) and ϕi = λmin(AT

i Ai), i = 1,2. The convergence condition of (24)

and (25) causes the sequence
{
(zk

1, zk
2, mk

1, mk
2, wk

1, wk
2)
}

generated by (14)–(19) to converge
to a critical point of the Problem (13).
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3. Synthetic Data Application

To validate the effectiveness of the proposed method (SPRTLq1 − Lq2), we used least
squares parabolic Radon transform (LSPRT) and sparse parabolic Radon transform based
on L1 regularization (SPRTL1) as the control group to perform a multiple attenuation test
on the noisy synthetic data. The velocity model of the synthetic seismic data is shown in
Figure 3a. Figure 3b is the CMP gather of a full wavefield. There are 750 sampling points in
the time direction, the sampling interval is 4 ms and the offset range is 0 to 2000 m with an
interval dx = 25 m.
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Figure 3. (a) Velocity model; (b) CMP gather; (c) CMP gather after NMO.

In order to make the kinematic characteristics of seismic events closer to parabolas,
the CMP gather should be normal movement corrected first. The primary reflections are
flat and multiple reflections, which are parabolic because of inadequate correction after
normal movement correction with velocities of the primary reflections in the CMP gather,
as shown in Figure 3c.

After the Radon transform, the seismic events of primaries are mapped in the region
with a negative q value and q = 0, and the seismic events of multiples are mapped in the
region with a positive q value, as shown in Figure 4. In Figure 4a, due to the influence of the
noise, the seismic events do not converge to a point well in the Radon domain, and finite
seismic acquisition aperture causes severe smearing. In Figure 4b, although the smearing
is alleviated, the result fell short. Figure 4c shows the result of the SPRTLq1 − Lq2 method.
Because the primary and multiple reflections are sparsely constrained, respectively, only
the results of the primary seismic events are left in the Radon domain, and the mapping of
multiples is removed directly. There is almost no smearing in Figure 4c, and it has higher
resolution. The transformation accuracy and focusing ability are improved.
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Figure 4. Radon domain results: (a) LSPRT method; (b) SPRTL1 method; (c) SPRTLq1 − Lq2 method.

Figure 5b is the multiple attenuation result obtained by LSPRT; Figure 5c is the result
obtained by SPRTL1. Due to the overlapping energy of multiple and primary reflections in
the Radon domain, there are many artifacts at near offset. They still have some residual
multiple energy, especially at near offset. Figure 5d is the result obtained by SPRTLq1 − Lq2 .
There are almost no residual multiples at the arrow, and the reconstructed data have great
consistency with the original data. Figure 6 shows the difference between the suppression
results and those without multiple wavefield data. It is proved that the SPRTLq1 − Lq2

method is effective in suppressing multiples, especially at the near-offset position. In order
to quantitatively analyze the consistency between the reconstructed data and the original
data, the following formula is applied to calculate the reconstruction error [42]:

s =
‖m′ − m̂‖2

2

‖m′‖2
2

× 100% (26)

where m′ is no multiple wavefield data, m̂ is data after multiple attenuation and s is
reconstruction error.

Based on the examples of synthetic data, Table 1 lists the reconstruction error of
three methods. It is obvious that compared with the LSPRT and SPRTL1 methods, the
SPRTLq1 − Lq2 method is superior in reconstruction capability.

Table 1. Reconstruction error comparison.

Method LSPRT SPRTL1 SPRTLq1 − Lq2

Reconstruction error 11.2% 8.3% 7.6%
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Figure 6. Difference image map: (a) by LSPRT; (b) by SPRTL1; (c) by SPRTLq1 − Lq2.

In order to verify whether the proposed method is suitable for seismic data with
missing traces, we randomly selected 30%, 50% and 70% seismic trace from the synthetic
seismic record containing noise and filled them with zero. We applied the proposed method
to suppress multiples of missing seismic trace data. As can be seen from Figure 7a,b, the
result of suppressing multiples is not affected, and there are also no residual multiples at the
near offset. With the increase in the percentage of missing traces, the reconstruction effect
becomes worse. When the percentage of missing traces reaches 70%, the phase distortion
appears in the suppression result. Based on the reconstruction results, it can be proved that
the SPRTLq1 − Lq2 method is also suitable for missing trace data.
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4. Real Data Application
4.1. CMP Gather of Real Data Application

A marine CMP gather after normal movement correction was applied to further
examine the effectiveness of the SPRTLq1 − Lq2 method. We chose the time window of
3.2 s–4.8 s in the field data to process because there exists a large number of multiple
reflections, as shown in Figure 8a. The reason is that this part of the data has more
developed multiple waves, and the effect of suppression can be clearly seen in the final
result. There are 400 sampling points in the time direction and 92 offset traces. The sampling
interval is 4 ms. In addition, those multiple reflections cover the primary data and affect
the imaging effect of the primary reflections.

Figure 8 is the multiple attenuation results. Figure 8b,c show the multiple attenuation
results of the LSPRT and SPRTL1, and there are still some residual multiple reflections,
as indicated by the rectangle. The information of the primaries is masked, and it makes
the seismic events discontinuous. Shown in Figure 8d is the multiple attenuation result
obtained by SPRTLq1 − Lq2, and there are no obvious residual multiples. Because of the
sparsity of SPRTLq1 − Lq2, the multiples are suppressed effectively at both near and far
offsets. The primaries are highlighted, and the black arrows indicate that the continuity of
the seismic events are improved. In addition, we can obviously see that the CMP gather is
clear and clean.

In order to further compare the advantages of the proposed algorithm with respect
to the LSPRT and SPRTL1, we extracted three single trace amplitudes after multiple atten-
uation, and they were compared with single-channel amplitudes before suppression. As
shown in Figure 9, there is almost no disturbance in the original location of multiples after
multiple attenuation by SPRTLq1 − Lq2, and it is obvious at 4.4 s–4.6 s, and the red rectangle
marks the difference in this location. The amplitude of the primary reflection is intact
and not attenuated, as at 3.4 s and 3.6 s. The proposed method is effective in suppressing
multiples and achieves a better performance.
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Figure 9. Comparison of single trace amplitude after multiple attenuation by three algorithms. The red
rectangle indicate that the amplitude of multiple decays more significantly in the proposed method.

4.2. Prestack Field Data

The SPRTLq1 − Lq2 method was further tested with multi-shot prestack field data. In
order to comprehensively evaluate the multiple suppression effect, we used a 3D method
to display the multi-shot data volume, then analyzed the effectiveness of the method from
the time slices, the common middle point gathers and the common offset gathers.

Figure 10a is original data, and multiples can be clearly seen at the arrow position in
the figure. Figure 10b,c are the multiple attenuation results obtained by the LSPRT and
the SPRTL1 methods; Figure 10d is the result obtained by the SPRTLq1 − Lq2. Overall,
all three methods suppress multiples, but the effects are different. In Figure 10b,c, it can
be obviously observed from the time slice that a certain amount of the primary energy
is lost when multiples are suppressed. In the CMP gathers the multiples of far offset are
sufficiently suppressed by SPRTLq1 − Lq2, as indicated by the arrow. In the common offset
gathers, the effectiveness of the SPRTLq1 − Lq2 method is demonstrated by the continuity
of the seismic events. This method has a sparser representation of the seismic data and fully
retains the characteristics and information of the primaries, so as to improve the continuity
of the seismic events.
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Figure 10. Multiple attenuation result: (a) pre-stack real data; (b) LSPRT method; (c) SPRTL1 method;
(d) SPRTLq1 − Lq2 method. The red arrows indicate the cleaner multiple attenuation in the Figure 10d.

Figure 11 shows the stack section after multiple attenuation by three methods. The
residual of multiples leads to the discontinuity of the events of the primaries (black rect-
angle), which increases the difficulty of subsequent interpretation. The continuity of the
seismic events is obviously enhanced in the stack sections using the method presented in
this paper, and the effect of multiple attenuation between 0.5 s and 1 s has a remarkable
effect. In addition, as can be seen by the black arrow region of Figure 11d, there is almost
no multiple energy compared to Figure 11b,c.
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improved in the Figure 11d.

Therefore, the SPRTLq1 − Lq2 method has some advantages in suppressing multiple
reflections and retaining effective reflections.

5. Discussion

Multiple attenuation can provide a good foundation for subsequent data processing
and data interpretation. The traditional parabolic Radon transform is unable to separate
primaries and multiples without distortion. Sparse parabolic Radon transform based on
L1 regularization also does not achieve the desired effect of suppressing multiples. We
introduce the nonconvex Lq1 − Lq2(0 < q1, q2 < 1) mixed regularization sparse inversion
method. This method obviously improves the accuracy of inversion, suppresses multiples
and obtains clean seismic data. Moreover, the reconstructed primary data have higher
accuracy, which was verified by experimental data.

In this paper, L1/2 regularization is used to constrain primary and multiple waves
because it has many properties such as sparsity and unbiasedness and oracle properties [25].
Meanwhile, it is more stable and sparse than the L1 regularization, and easier to solve than
L0 regularization. In other practical applications, the values of q1 and q2 can be selected
according to the actual problem. For example, if the coefficients are not strictly sparse, a
moderate to large value of q can yield better results [34].

In complex geological conditions, the weak effective signals in the wavefield are easily
covered by noise. Therefore, the parameter setting needs to be more careful, otherwise it
may lose an effective signal because of noise suppression.

Since the proposed method introduced the L1/2-norm, the computation time is in-
creased when the sparsity of seismic signals is improved. Therefore, the computational
efficiency of this method has no advantage over the L1-norm sparse inversion method.

In future research, we propose three research directions that can be improved:

1. To solve the problem of the destruction of amplitude versus offset (AVO) signature in seis-
mic data, the proposed method is combined with the orthogonal polynomial transform.

2. The algorithm for solving nonconvex regularization is further improved to improve
the computational efficiency.

3. The proposed method is combined with other multi-wave suppression methods to process
seismic data with high efficiency and high quality under complex geological conditions.
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4. In addition, with the rapid development of deep learning, fields such as mechanics,
medicine and geophysics [43–45] have been actively combined with deep learning,
and more possibilities have been developed. Therefore, in future studies, we will
also combine multiple suppression with deep learning to solve problems such as
computational efficiency.

6. Conclusions

Multiple attenuation is an important problem in seismic data processing. The sup-
pression results directly affect the quality of stacked seismic data. Radon transform is
an efficient and low-cost method. In order to solve the problem of low resolution of
Radon transform, a sparse parabolic Radon transform in the frequency domain with the
nonconvex Lq1 − Lq2(0 < q1, q2 < 1) mixed regularization is proposed. This method has
higher sparsity, and it can restrict primaries and multiples, respectively. The mappings of
multiple seismic events are muted directly in the Radon domain. The theoretical data and
field data results show that the resolution of the parabolic Radon transform and reconstruc-
tion capability are improved when using SPRTLq1 − Lq2 (q1 = q2 = 1/2), especially at near
offset. The effectiveness of the sparse constraint method is demonstrated in the aspect of
seismic event continuity. This method greatly improves the effect of multiple attenuation
and reduces the unnecessary energy loss of useful signals, which provides high-quality
data for the subsequent primary imaging.

The proposed method can also be used in other processing methods, such as data
reconstruction, interpolation and dispersion curve extraction.
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