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Abstract: Machine learning has been widely applied in structural health monitoring. While most
existing methods, which are limited to forecasting structural state evolution of large infrastructures.
forecast the structural state in a step-by-step manner, extracting feature of structural state trends
and the negative effects of data collection under abnormal conditions are big challenges. To address
these issues, a long-term structural state trend forecasting method based on long sequence time-series
forecasting (LSTF) with an improved Informer model integrated with Fast Fourier transform (FFT)
is proposed, named the FFT–Informer model. In this method, by using FFT, structural state trend
features are represented by extracting amplitude and phase of a certain period of data sequence.
Structural state trend, a long sequence, can be forecasted in a one-forward operation by the Informer
model that can achieve high inference speed and accuracy of prediction based on the Transformer
model. Furthermore, a Hampel filter that filters the abnormal deviation of the data sequence is
integrated into the Multi-head ProbSparse self-attention in the Informer model to improve forecasting
accuracy by reducing the effect of abnormal data points. Experimental results on two classical data
sets show that the FFT–Informer model achieves high and stable accuracy and outperforms the
comparative models in forecasting accuracy. It indicates that this model can effectively forecast the
long-term state trend change of a structure and is proposed to be applied to structural state trend
forecasting and early damage warning.

Keywords: structural health monitoring; time series forecasting; FFT; Informer model; FFT–Informer

1. Introduction

Infrastructure structures play a vital role in maintaining the well-being of people,
protecting significant capital investments, and promoting regional and national prosper-
ity [1,2]. Structural health monitoring (SHM) [3–5], which collects a large amount of data
that can reflect the states and changes of a structure, has attracted increasing attention
in both academic and industrial communities to ensure the safe and reliable operation
of infrastructure systems. Compared with short-term forecasting, long-term structural
state forecasting is more focused on disaster early warning and damage repair for large
infrastructures that actually is an LSTF task. However, infrastructure structures suffer from
diverse types of potential damages during their service lives [6–8]. The nonlinear change
process of structural state greatly increases the difficulty of structural state prediction.

Most machine learning forecasting methods have been widely applied in structural state
forecasting. Ren et al. [9] established an incremental Bayesian matrix/tensor learning scheme
to achieve efficient prediction of structural response. Zhang [10] applied ConvLSTM for
three-year structural response forecasting. Suryanita [11] predicted the structural response
using a backpropagation neural network (BPNN) method. Bahrami [12] applied an encoder–
decoder architecture with gated recurrent unit (GRU) and long short-term memory (LSTM)
for bridge response forecasting. Li [13] proposed a novel deep recurrent neural network
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(RNN) model for long-term prediction. Yang [14] proposed a Bayesian modeling approach
embedding model class selection for dynamic forecasting purposes. However, the trend of
structural state forecasting is an LSTF task, while these methods in a step-by-step manner
cannot predict the long-term changing of structural state efficiently. Although some statistical
regression models [8,15–17] fully consider various constraints in specific situations, in order
to achieve good results, these methods must fully consider the professional knowledge and
influence factors of the prediction object, which is impossible to comprehensively consider
under limited data collection conditions.

As the application of various prediction models continues in various domains, such as
energy [18], economics [19], and disease propagation analysis [20], researchers are paingy
more attention to the LSTF problems, which analyze a large amount of time series data
and capture its potential relevance to make long-term forecasts. In order to successfully
apply machine learning to an LSTF task, it is crucial to capture long-term dependence
between input and predicted values. Recently,a Transformer model [21] with an encoder–
decoder system has shown better performance in obtaining long-range dependency than
recurrent neural network (RNN) models [22,23]. It brings the analysis, processing, and
prediction of sequential data into a new stage. The Informer model [24], a new kind of
LSTF model based on Transformer, is able to forecast long sequences in a one-forward
operation instead of in a step-by-step manner, which achieves higher inference speed of
prediction by introducing an encoder–decoder system. Meanwhile, the Informer model has
lower computational complexity with the Multi-head ProbSparse self-attention mechanism
compared to Transformer, which has been applied for LSTF tasks in many domains, such
as wind power [25] and load [26]. By simply employing the Informer model in long-term
structural state forecasting, however, it is easy to fall into the problem of invalid attention
mechanism and an unobvious forecasting trend because of the complex characteristics of
sensing data. Especially, due to the error of data collection and the influence of external
factors, the deviation of some data will not affect the development of the data overall
trend. Because the Multi-head ProbSparse self-attention focuses on the deviation point, this
particularly affects the efficiency and accuracy of prediction.

In many LSTF tasks, feature extraction methods [27–29] have been applied to time series
data, which are able to explain sequence relationships and help forecasting models learn the
nonlinear characteristics of structural state data. Moreover, extracted features, which reflect
the state of the structure to a certain extent, are also widely used in the SHM [30,31], especially
the amplitude and phase of data [32,33]. Among them, FFT has been widely recognized
for its characteristics of decomposing data to make them stable, fast convergence, and
reflecting the trend to a certain extent [29,34].

Therefore, a long-term structural state trend forecasting method based on LSTF with
the improved Informer model integrated with FFT is proposed, namedthe FFT–Informer
model. Specially, by using FFT, the structural state trend feature is represented by extracting
amplitude and phase of a certain period of a data sequence. Structural state trend, a long
sequence, can be forecasted in a one-forward operation by the Informer model that can
achieve high inference speed and accuracy of prediction based on the Transformer model.
Furthermore, a Hampel filter that filters the abnormal deviation of a data sequence, is
integrated into the Multi-head ProbSparse self-attention in the Informer model to improve
forecasting accuracy by reducing the effect of abnormal data points. Experimental results
on two classical data sets show that the FFT–Informer model achieves high and stable
accuracy and outperforms the comparative models in forecasting accuracy. It indicates that
this model can effectively forecast the long-term state trend change of a structure and is
proposed to be applied to structural state trend forecasting and early damage warning.

The main contributions of our work are as follows:

(i) An efficient LSTF method combined FFT with an improved Informer model is pro-
posed, which successfully applies machine learning to long-term structural state
forecasting in a one-forward operation rather than a step-by-step way.
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(ii) The Multi-head ProbSparse attention in the Informer model is integrated with a
Hampel filter, named the Multi-head ProbHamSparse attention, focuses on filtering
abnormal deviations by setting the deviation upper limit, which reduces the impact of
abnormal data items and obtains more accurate trends and dependency.

(iii) Experimental results on two classical data sets show that the FFT–Informer model
achieves high and stable accuracy and outperforms the comparative models in fore-
casting accuracy. It indicates that the proposed method can be applied in real structural
state forecasting.

The rest of this article is organized as follows. In Section 2, the proposed FFT–Informer
model is elaborated in detail. The experiments and results are presented and discussed in
Section 3. Finally, a conclusion and potential direction for future research works is given.

2. Long-Term Structural State Trend Forecasting Based on FFT–Informer Model
2.1. Overview

In this article, a long-term structural state forecasting method combined Fast Fourier
transform (FFT) with an improved Informer model is proposed, as shown in Figure 1.
The model mainly includes two parts: feature extraction by FFT and LSTF by the improved
Informer model. Firstly, structural state data are processed into equally sized data blocks
through sliding windows, which are not overlapping, and feature vectors (amplitude and
phase) of each window are extracted by the FFT method. Then, using the improved Informer
model, the future features are predicted in a one-forward operation. What is more, the
forecasted feature vectors can be transformed back into time series data with a trigonometric
function to obtain predicted long-term structural state in feature analysis.

Figure 1. Framework of the FFT–Informer model.
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2.2. Feature Extraction by FFT

Extracting appropriate features is essential to ensure the performance of machine
learning algorithms. Fast Fourier transform (FFT) [35] is a feature extraction method often
used to pre-process time series. As a time–frequency domain signal feature extraction
method, the resulting approximation reflects the amplitude, vibration frequency, trend,
and other characteristics of the original data to a certain extent and is suitable for further
processing of the data. Because of the fluctuation characteristics of structural state data,
FFT is applied to extract maximum amplitude and its phase key amplitude and phase of
the series as the data characteristics.

The Fourier transform is applied widely in the signal processing field and can be
regarded as a linear transformation operator. Fast Fourier transform (FFT) is a general
term for applying computers to calculate Discrete Fourier transform (DFT), which is more
efficient and faster. Let Z be a time series of length N. Using sliding windows, Z is divided
into m data segments with length n. Its Discrete Fourier transform (DFT) is:

X(n) =
N−1

∑
k=0

cke
−j

2π

N
nk

(1)

Amplitude and phase are extracted by FFT as features. Since the trigonometric func-
tion reflects the amplitude and phase well, the extracted features can be fitted with the
original data through the trigonometric function as Equation (3). Vector Am represents the
feature information (maximum amplitude am1, its phase am2, and moving am3) obtained by
trigonometric function fitting.

Am = [am1, · · · , am3] (2)

ρ(xi) = am1 sin
(

am2
Xπ

n/2

)
+ am3 (3)

The original structural state data Z is transformed into the feature vector A as shown
in Figure 2. Equation (3) is used to fit the window data, in which am1 and am2 are fixed
by maximum amplitude and its phase. The parameter vectors Am as Equation (2), as the
feature vectors, are the input of the Informer model.

Figure 2. Feature extraction based on FFT.

In addition, the least-squares approximation solution is the optimal approximation
of a time series minimalizing the sum of the squared distances between the data points
(samples) and an approximating polynomial. So, the least-squares approximation is applied
to fit the original data and Equation (3). The solution of the least-squares approximation
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fits the coefficients of the approximating polynomial, minimizing the approximation error
σ between the data, samples, and the polynomial.

σ =
1
n

n−1

∑
i=1

(p(xi)− yi)
2 (4)

where p(x) is the approximating of the fitted data. The fitted coefficients of Equation (4)
are then used as features of the data in this window.

2.3. LSTF by the Improved Informer Model

An Informer [24] with an encoder–decoder structure already has the ability to accom-
plish long-term sequence prediction. It is a non-autoregressive predictor, which greatly
improves the inference performance in a forward operation. The prediction error rises
steadily and slowly within the growing prediction range, which distinguishes it from the
existing machine learning and statistical models. However, the Informer model is eas-
ily affected by abnormal deviation because of the deviation attention of the Multi-head
ProbSparse self-attention.

Therefore, the Informer model based on an encoder–decoder is improved by changing
the self-attention mechanism, as shown in Figure 3. In particular, a Hampel filter is integrated
with the Multi-head ProbSparse self-attention, named the ProbHamSparse self-attention.
This Informer model mainly consists of two parts. The left part in Figure 3 is the encoder, and
the right part is the dncoder . In the encoder, the white trapezoid represents the Multi-head
ProbHamSparse self-attention, and the blue trapezoid represents the self-attention distilling
operation. This distilling operation is applied to extract dominating attention and reduce the
network size sharply. In dncoder, the Multi-head ProbHamSparse self-attention is duplicated
to improve the robustness. Then the Multi-head attention measures the weighted attention
composition of the feature map. In addition, encoder and dncoder both receive massive long
sequence inputs, which is depicted in green. However, dncoder pads the target elements into
zero and finally predicts output elements in a generative style.

Figure 3. Improved Informer model.



Appl. Sci. 2023, 13, 2553 6 of 17

2.3.1. Multi-Head ProbHamSparse Attention

Considering sparsity in the distribution of self-attention probability and the influence
of abnormal data on the attention mechanism, the Multi-head ProbHamSparse self-attention
is proposed to reduce computation consumption and make prediction more accurate.
The ProbHamSparse self-attention is a development based on canonical self-attention
and ProbSparse self-attention. Instead of performing a single attention function, the
Multi-head attention is a progress from a single side to a multiple side in the Multi-head
ProbHamSparse self-attention, as shown in Figure 4 which is applied in the attention
mechanism of the Informer model and allows the model to jointly attend to information
from different representation subspaces at different positions.

Canonical self-attention: The canonical self-attention [21] is defined on receiving the
tuple input (query, key, value). It performs the scaled dot-product as Equation (5):

ϕ(Q, K, V) = Softmax
(

QKT
√

d

)
V

(Q ∈ RLQ×d, K ∈ RLK×d,V ∈ RLV×d, Softmax(t) =
1

1 + e−t )

(5)

where d is the input dimension; Q, K, and V represent query, key, and value and Softmax(−)
is a normalized exponential function. Equation (5) computes the dot products of the query
with all keys, divides each by

√
d, and applies the Softmax function to obtain the weights on

the values. To further discuss the canonical self-attention mechanism, qi, ki, vi can represent
the i-th row in Q, K, V; the i-th query’s attention can be defined as a kernel smoother in a
probability form:

ϕ(qi, K, V) = ∑
j

k(qi, ki)

∑l k(qi, kl)
vi (6)

where p(k j|qi) =
k(qi ,ki)

∑l k(qi ,kl)
, and k(qi, k j) selects the asymmetric exponential kernel exp(

qikT
j√
d
).

The relationship between ki and qi can be obtained based on computing the probabil-
ity p(k j|qi),which can be appiled to improve the prediction ability of the self-attention
mechanism. This potential sparsity of distribution of self-attention is recognized by some
studies [36,37]. It reveals that the performance can effectively reduce the computational
burden if the irrelevant p(k j|qi) can be distinguished.

ProbHamSparse self-attention: ProbHamSparse self-attention is proposed to improve
the ProbSparse self-attention by combining a Hampel filter. ProbSparse self-attention is
an improvement on the basis of canonical self-attention, which considers the sparsity of
time series and the dependence of data points. Main contribution points and negligible
points can be distinguished by ProbSparse self-attention. So, Informer can focus on the
main contribution of a small number of dot products. The i-th query’s attention on all the
keys is defined as a probability p(k j|qi), and the output is its composition with values V.
The deviation points, as dominant dot-product pairs, encourage the corresponding query’s
attention probability distribution away from the uniform distribution. If p(k j|qi) = 1/Lk,
p(k j|qi) is close to a uniform distribution, the query is redundant to the attention. The
ProbSparse self-attention mechanism measure the “likeness” through the Kullback–Leibler
divergence:

KL(q||p) = ln
LK

∑
j=1

e
qikT

j√
d − 1

Lk

LK

∑
j=1

qikT
j√
d
− lnLK (7)

Dropping the constant, the sparsity measurement of i-th query is defined as:

M(qi, K) = max
j

(
qikT

j√
d

)
− 1

Lk

LK

∑
j=1

qikT
j√
d

(8)
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where max
j

(
qikT

j√
d

)
is the Log–Sum–Exp (LSE) of qi on the all keys, and 1

Lk
∑LK

j=1
qikT

j√
d

is the

arithmetic mean on them. The dominant dot-product pairs, which gain a larger M(qi, K),
can be obtained in the header field of the long tail self-attention distribution. The attention
mechanism can pay more attention to these points to reduce the computational burden.

Due to the ProbSparse self-attention focusing on distribution away from the uniform
distribution, some outliers will still be selected as main contribution points through KL
divergence, which will have an irreversible impact on the attention. Therefore, a Hampel
filter is combined to filter the outliers by setting the upper bound of deviation. The Hampel
filter is calculated by Formula (9):

|X−mi| < 3σ (9)

where X is the median value, and σ is the standard deviation.
Multi-head attention: Multi-head attention, which uses different and learned linear

projections to project query, key, and value to K, Q, and V dimensions h times, respectively,
is a progress from a canonical single side to multiple side. It allows the model to jointly
attend to information from different representation subspaces at different positions, which
is more effective than using the model query, key, and value to execute a canonical single
attention function, as depicted in Figure 4.

Multi-head attention is defined as:

Multihead(Q, K, V) = Concat(head1, · · · , headh)WO (10)

headi = Attention(QWQ
i , KWK

i , VWV
i ) (11)

where the projection is parameter matrices QQ
i ∈ Rdmodel×dk , KK

i ∈ Rdmodel×dk , VV
i ∈ Rdmodel×dk ,

WO ∈ Rhdv×dmodel . ProbHamSparse attention also uses this projection method, which
changes from single attention to multiple side, named Multi-head ProbHamSparse at-
tention.

Figure 4. Canonical single self-attention function and Multi-head attention.

2.3.2. The Unified Input

In the LSTF task, global information is required to capture long-range dependence
such as hierarchal time stamps. However, canonical self-attention hardly leverages this
global information, which results in query–key mismatches between the encoder and the
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decoder and impact the forecasting performance. In order to solve this problem, a unified
input representation is applied in the Informer models, as shown in Figure 5.

Figure 5. The input representation of the Informer model.

The local context is preserved by using a fixed position embedding first:

PE(pos,2j) = sin(pos/2Lx
2j/dmodel ) (12)

PE(pos,2j+1) = cos(pos/2Lx
2j/dmodel ) (13)

where dmodel represents the feature dimension. Assuming the p types of global time stamps
of t-th sequence input Xt are given, a learnable time stamp embedding SE is employed in
each global time stamp with limited vocabulary size (taking second as the finest granularity).
The similarity computation consumption can have access to a global context and capture
long-range dependence. Then, the scalar context Xt

i is projected into dmodel-dim vector ut
i

with a 1D convolution filter (kernel width = three, stride = one) to align the dimension.

Xt
f eed[i] = αut

i + PE(L×(t−1)+i) + ∑
p
[SE(L×(t−1)+i)]p (14)

where α is the magnitude between the scalar projection and local/global embedding.

2.3.3. Encoder and Decoder

The encoder–decoder system is designed to extract the robust long-range dependency
of long sequential inputs. As shown in Figure 3, in each layer of the encoder, the input is
progressively decreased by the Multi-head ProbHamSparse self-attention. In order to avoid
losing attentional points, encoder consists of the two same layers, and each layer has two
sublayers. The first sublayer is the Multi-head ProbHamSparse self-attention mechanism,
and the second sublayer is a simple fully connected feedforward network ELU. In order
to facilitate the remaining connections, all sublayers and embedded layers in the model
output the results with the same dimension.

However, a natural result of the ProbHamSparse self-attention mechanism is a redun-
dant combination of values V. In order to solve this problem and ensure the connection
between layers, a self-attention distilling operation is applied. This distilling operation
favors dominating features over inferior ones and makes a focused self-attention feature
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map in the next layer, which trims the input’s time dimension sharply. The distilling
operation forward from j-th layer into (j + 1)-th layer can be defined as:

Xt
j+1 = Maxpool(ELU(Conv1d([Xt

j ]AB
))). (15)

where [−]AB represents the Multi-head ProbHamSparse self-attention; Conv1d(−) per-
forms a 1D convolutional filter on the time dimension and the ELU(−) is the activation func-
tion.

The decoder also consists of a stack of n = 2 different layers, which is a standard decoder
structure in the Transformer model. Different from the encoder, in the decoder, the first
layer is composed of the ProbHamSparse self-attention and a full connection sublayer, and
the second layer is composed of the Multi-head self-attention and a full connection sublayer.
The Informer model provides the decoder with the following vectors:

Xt
in = Concat(Xt

token, Xt
O). (16)

which ensures the accuracy of the decoder in predicting X through dependencies. Encoder–
decoder is a forward conversion operation. Input and output are still unified form through
the encoder and the decoder.

3. Experiments and Discussion

In order to verify the efficiency of our method on structural state data, extensive
experiments on two typical data sets were conducted by comparing with different feature
extraction and long-term structural state forecasting methods. All the experiments were
conducted on AMD Ryzen 4600U CPU, 2.5 GHz, 16 GB RAM.

3.1. Datasets and Evaluating Measurements

The SMC data set [38] is a real data set. It is provided by SMC of Harbin Institute
of Technology. More than 150 sensors were installed onto the Yonghe bridge, including
14 uniaxial accelerometers on the deck and one biaxial accelerometer at the top of the south
tower. From 2005 to 2007, a large amount of data was collected, as shown in Figure 6a.

The ASCE benchmark data set [39] is an official data set. The data set was provided
by the International Society for Structural Control and the American Society of Civil Engi-
neering. The ASCE benchmark structural model was built in the Earthquake Engineering
Research Laboratory at the University of British Columbia, Canada, as shown in Figure 6b.
Three types of excitation were used to test it, including an electrodynamic shaker, an impact
hammer, and ambient vibration. In our experiments, the data under ambient vibration was
used for evaluation, which is the natural structural state without external force.

Figure 6. (a) Arrangement of accelerometers on Yonghe Bridge; (b) diagram of ASCE benchmark
structural model.



Appl. Sci. 2023, 13, 2553 10 of 17

In order to keep the structure in a progressive state, segment data were randomly
selected from a sensor as the experimental data. Multiple segment data from multiple
sensors were extracted to train and test the prediction performance, respectively. There are
150,000 data points in each segment of the SMC data set and 60,000 points in each segment
of the ASCE data set. A total of 70% of each segment data set was used as the training set
and the remaining 30% was used as the testing set.

In order to evaluate the forecasting accuracy and facilitate comparison, two classical
evaluation metrics were applied, mean absolute error (MAE) and mean square error (MSE),
as defined in (17) and (18), respectively.

MAE =
1
n

n

∑
i=1
|yi − ȳi| (17)

MSE =
1
n

n

∑
i=1

(yi − ȳi)
2 (18)

where yi is the actual value, and ȳ is the estimated forecasting value of the i-th test value.

3.2. Parameter Setting and Analysis

Since the FFT–Informer model is a combination of FFT and the improved Informer
model, the main parameter settings of the FFT–Informer model were analyzed in two steps,
as shown in Table 1. First, the parameter settings of feature extraction were analyzed by
FFT. In order to ensure the flexibility of the experiments and verify the effectiveness of FFT,
window lengths and sliding distances were fixed, which can be adjusted. For the SMC data
set, the window length was set to 100 and the sliding distance to 100. However, due to the
frequent vibration amplitude of the ASCE data set, it was difficult to fit the function with a
long feature window, so the window length in the ASCE data set was 50.

Secondly, the parameters of the Informer model were analyzed. In this model, the
attention window was used to capture the relationship between feature vectors in the
window and long-term dependence. The training window length, which can also be
adjusted, should be set beyond three times the forecasting length to ensure the correlation
between the forecast and historical data. The training window length was initially set
to 96 by trial and error, and the value of the predicted length was adjusted to verify the
performance of long-term prediction in a one-forward operation. It is worth noting that
feature vectors are predicted by the Informer model and can be transformed into prediction
values by Equation (3), which greatly extends the prediction length as shown in the last
line of Table 1. In addition, the number of Multi-heads was set to 8, and the dimensions of
qi, ki, vi were set to 512, which achieved the best results [24]. When the encoder–decoder
layers are two, the model runs faster and the prediction effect is better.

Table 1. Parameter setting of FFT–Informer model.

SMC ASCE

Feature extraction
Feature window length 100 50

Window sliding distance 100 50
Feature vector length 3 3

Informer model

Attention window 96 96
Predicted length 5 (5 × 100 = 500) 5 (5 × 50 = 250)

Multi-head number 8 8
Dimension of the vectors qi, ki, vi 2 2

Encoder–Decoder layers 2 2

3.3. Feature Extraction by FFT

In our experiment, the feature vectors were extracted from the data in sliding by FFT.
These features can be interpreted as the best estimation of the amplitude and phase of the
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structural state data. The fitted curve is directly interpreted as the characteristic estimator
of the window data, and its parameter vectors can be regarded as the feature vectors of the
windows. The SMC data set is taken as an example to illustrate this step in Figure 7.

As shown in Figure 7, under a window length of 100, the fitting curve of feature extraction
basically simplifies and fits the data features of each window, and the amplitude, vibration
frequency, and other features of structural state data are preserved by the simplification.

Figure 7. Fitting curve of feature vectors by FFT.

To verify the performance of FFT for trend feature extraction, it is compared with
several time-frequency domain feature extraction methods that can also capture the charac-
teristics of amplitude and frequency and have the ability to assist the forecasting algorithm,
as shown in Table 2. Among them, direct signal extraction does not simplify the state
characteristics between segments, stabilize the data, and reduce the randomness of the
data. Each feature (extreme value, disturbance, etc.) still exists independently. The time–
frequency domain feature extraction methods (Fourier polynomial, wavelet transform, and
least-squares approximation) need more items to achieve the efficiency function fitting,
which greatly increases the complexity of prediction.

Table 2. Number of features collected in unit window for each feature extraction method.

Feature Extraction
by FFT

Least-Squares
Approximation

Direct Signal
Extraction

Fourier
Polynomial

Wavelet
Transform

3 5 1 or 1 20 12

3.4. Long-Term Structural State Trend Forecasting

The Informer model obtains the correlation of data in and between windows through
the overall training of windows.The prediction length can be set to different values, but it
needs to be less than the training window length. The one-forward prediction is carried
out through the window.

First, feature vectors of the data set are obtained through the feature extraction by
FFT in the previous step, and they are converted into data tensor. The next step is to add
location information in the attention window, which can capture a correlation between
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the data in the training windows. Finally, the model parameters with an Adam optimizer
are optimized. Adam optimizer [24] is a gradient descent algorithm with an adaptive
learning rate, which can not only adapt to a sparse gradient, but also alleviate the problem
of gradient oscillation. The training error decreases rapidly and becomes stable as training
proceeds and parameter adjustment in epochs as shown in Figure 8.

Figure 8. Training error change during the training phase.

By the early data processing and parameters optimization, the parameters of the model
are determined before the prediction. Like training, the data required by the Informer
model forecasting is still in tensor form, and the size of the forecasting windows is the
same as that of the training windows. The forecasting feature vectors can be obtained
by adjusting the length of the model in a one-forward operation. In this experiment, the
vibration state data collected by SMC sensors are predicted directly, and the prediction
length is set to five eigenvectors, as shown in Figure 9. The feature forecasting is carried out
section by section in the form of windows, and the change of actual value is well captured.
In order to verify its flexibility and consider the impact of noise, the data of the same sensor
separated by half a year are selected to learn the model, which predicts different structural
states under different structural condition, as shown in Figure 10, the change of structural
state can still be captured well. The forecasting windows fit the changes of data well and
achieve good forecasting results.

Figure 9. Structural state trend forecasting based on the FFT–Informer on the SMC data set. (Time
represents the number of the predicted value).
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Figure 10. Structural state trend forecasting separated by half a year at different structure status.

In order to fully verify the effectiveness of the model, we also forecast the structural
state trend using ambient vibration data in the ASCE data set. Different from the data in
the SMC, the data in the ASCE fluctuate more obviously, so the windows size of feature
extraction is reduced to 50 to better fit trend features. The forecasting length is still five
window lengths, as shown in the Figure 11. In order to effectively prove our model
applicable to general cases, the predicted position is also adjusted as in the previous
experiment to verify that the prediction is not sensitive to the change of structural state, as
shown in Figure 12. Experimental results show that the model can be well-applied for a
general case and have good forecasting performance.

Figure 11. Structural state trend forecasting based on long FFT–Informer on the ASCE benchmark
data set.

The Informer model is a nonautoregressive predictor through a forward operation.
The length of prediction can also be adjusted directly to predict long time series. As shown
in Figure 13, in order to show long-term forecasting performance, the forecasting length is
adjusted to 10 and 15, in which each represents the feature vectors of 100 values. When
changing the data set, the size of the feature extraction window and the forecasting length,
the FFT–Informer model still performs well in long time series forecasting.
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Figure 12. Structural state trend forecasting on the ASCE benchmark data set separated by half a year
at different structure status.

Figure 13. Structural state forecasting based on the FFT–Informer on 10 and 15 forecasting lengths.

In order to conduct a comparative experiment, these feature extraction methods are
combined with Informer to compare with FFT–Informer forecasting, which also shows the
advantages and disadvantages of each feature extraction method combined with Informer.
Table 3 indicates that: (1) compared with the Informer model, the MAE of the FFT–Informer
model is reduced by 17%, and the MSE of the FFT–Informer model is reduced by 29% on
average on two data sets, respectively. It indicates that FFT has a better ability to improve
the prediction ability of the Informer model. (2) Compared with other feature extraction
methods-based Informer models, the MAE and MSE of the FFT–Informer is the smallest,
which indicates that FFT has a better ability to extract features and aid in prediction.
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In addition, forecast length is increased to 15, and the predicting accuracy of the
FFT–Informer model is compared with the Informer model and some commonly used
forecasting models, including LSTM, the echo state network (ESN), and the autoregressive
integrated moving average model (ARIMA) ARIMA. Table 4 indicate that: (1) Compared
with the ARIMA model, which is a statistical regression model, the MAE of the FFT–
Informer model is reduced by 61% ,and the MSE of the FFT–Informer model is reduced
by 59% on average. (2) Compared with the ESN and LSTM model, which are machine
learning forecasting methods, the MAE of the FFT–Informer model is reduced by 43% and
37%, and the MSE of the FFT–Informer model is reduced by 49% and 41% on average.
(3) With the increase of prediction length, the prediction ability of the FFT–Informer can
remain relatively stable compared with others. These indicate the FFT–Informer has good
prediction performance and stability.

Table 3. Comparison of the prediction results of the combination of each feature extraction method
for the long-term forecasting algorithm and Informer. (* represents the combination with Informer
model. 5 and 10 represents five and ten feature windows. Bold value is the minimum value).

Method Metric
SMC ASCE

5 10 5 10

FFT–Informer MAE 0.084 0.119 0.091 0.098
MSE 0.017 0.028 0.029 0.031

Least-squares approximation * MAE 0.095 0.131 0.034 0.041
MSE 0.101 0.126 0.03 0.039

Direct signal extraction * MAE 0.123 0.167 0.146 0.175
MSE 0.049 0.062 0.067 0.053

Fourier * MAE 0.114 0.127 0.114 0.132
MSE 0.048 0.052 0.054 0.062

Wavelet transform * MAE 0.121 0.123 0.110 0.118
MSE 0.044 0.052 0.031 0.056

Informer MAE 0.111 0.135 0.117 0.121
MSE 0.024 0.029 0.027 0.031

Table 4. Comparison of long-term forecasting methods. (Bold value is the minimum value).

Method Metric
SMC ASCE

5 10 15 5 10 15

FFT–Informer MAE 0.084 0.119 0.132 0.091 0.098 0.113
MSE 0.017 0.028 0.042 0.021 0.036 0.048

Informer MAE 0.111 0.135 0.147 0.117 0.121 0.134
MSE 0.024 0.029 0.046 0.027 0.031 0.049

ARIMA MAE 0.216 0.181 0.298 0.196 0.165 0.234
MSE 0.053 0.062 0.069 0.055 0.062 0.072

ESN MAE 0.174 0.197 0.213 0.186 0.192 0.226
MSE 0.046 0.052 0.072 0.051 0.059 0.079

LSTM MAE 0.142 0.191 0.231 0.163 0.212 0.246
MSE 0.037 0.041 0.062 0.045 0.057 0.069

4. Conclusions

In order to construct machine-learning-based long-term forecasting methods to obtain
the long-term dependence between historical data and prediction while maintaining high
forecasting accuracy, a long-term structural state trend forecasting method based on LSTF
with the improved Informer model integrated with FFT is proposed, named the FFT–
Informer model. In this method, FFT extracts amplitude and phase, and the improved
Informer model forecasts trends, fully considering trend development and the impact of
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abnormal deviation. The method has a good performance to capture long-term dependence
between input and predicted values. Experimental results on two classical data sets show
that the FFT–Informer model achieves high and stable accuracy and outperforms the
comparative models in forecasting accuracy, which indicates that this model can effectively
forecast the long-term state trend change of structures and is proposed to be applied to
structural state trend forecasting and early damage warning.
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