
Citation: Luca, A.-V.;

Simon-Várhelyi, M.; Mihály, N.-B.;

Cristea, V.-M. Fault Type Diagnosis of

the WWTP Dissolved Oxygen Sensor

Based on Fisher Discriminant

Analysis and Assessment of

Associated Environmental and

Economic Impact. Appl. Sci. 2023, 13,

2554. https://doi.org/10.3390/

app13042554

Academic Editors: Xiongbo Wan,

Sheng Du, Wei Wang and Hao Fu

Received: 19 December 2022

Revised: 11 February 2023

Accepted: 14 February 2023

Published: 16 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Fault Type Diagnosis of the WWTP Dissolved Oxygen Sensor
Based on Fisher Discriminant Analysis and Assessment of
Associated Environmental and Economic Impact
Alexandra-Veronica Luca, Melinda Simon-Várhelyi, Norbert-Botond Mihály and Vasile-Mircea Cristea *

Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University
of Cluj-Napoca, 11 Arany János Street, 400028 Cluj-Napoca, Romania
* Correspondence: mircea.cristea@ubbcluj.ro

Featured Application: For automatically controlled WWTPs, the prompt DO sensor faults iden-
tification is essential, and the efficiency of the straightforward proposed methodology is shown.
Barely revealed by the literature, the presented results also reveal the combined assessment of
the impact on the environment and costs of different sensor failures. They are of great interest
to researchers and practitioners seeking safe and optimal WWTP operation and provide a robust
quantitative impact assessment methodology aimed at improving plant sustainability.

Abstract: Sensor failures are common events in wastewater treatment plant (WWTP) operations,
resulting in ineffective monitoring and inappropriate plant management. Efficient aeration control is
typically achieved by the dissolved oxygen (DO) control, and its associated sensor becomes critical to
the whole WWTP’s reliable and economical operation. This study presents the Fisher discriminant
analysis (FDA) used for fault diagnosis of the DO sensor of a currently operating municipal WWTP.
Identification of the bias, drift, wrong gain, loss of accuracy, fixed value, complete failure minimum
and maximum types of DO sensor fault was investigated. The FDA-proposed methodology proved
efficiency and promptitude in obtaining the diagnosis decision. The consolidated fault identification
showed an accuracy of 87.5% correct identification of the seven faulty and normal considered classes.
Depending on the fault type, the results of the diagnosing time varied from 2.5 h to 16.5 h during
the very first day of the fault appearance and were only based on observation data not included
in the training data set. The latter aspect reveals the potential of the methodology to learn from
incomplete data describing the faults. The rank of the fault type detection promptitude was: bias,
fixed value, complete failure minimum, complete failure maximum, drift, wrong gain and loss of
accuracy. Greenhouse gases (GHGs) such as nitrous oxide (N2O) and carbon dioxide (CO2) emitted
during wastewater treatment, electrical energy quantity in association with costs spent in the WWTP
water line and clean water effluent quality were ranked and assessed for the normal operation and
for each of the DO sensor faulty regimes. Both for CO2 and N2O, the on-site emissions showed the
most significant GHG contribution, accounting for about three-quarters of the total emissions. The
complete failure maximum, fixed value and loss of accuracy were the DO sensor faults with the
highest detrimental impact on GHG-released emissions. The environmental and economic study
reveals the incentives of the proposed DO sensor faults identification for the WWTP efficient and
environmentally friendly operation.

Keywords: fault identification; Fisher discriminant analysis; dissolved oxygen sensor; energy costs
assessment; GHG emissions assessment

1. Introduction

Wastewater treatment plants (WWTPs) are essential for eliminating pollutants from
wastewater and converting it into clean effluent discharged in rivers or reused for different
applications, including irrigation [1]. As treatment regulations on effluent quality are
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continuously tightening, the values of primary variables, such as organic matter, ammonia,
nitrates, phosphorus and suspended solids, have to strictly conform to the challenging wa-
ter quality requirements. The operation of WWTPs has proven to be tough and challenging.
A detailed description of wastewater treatment processes, as well as the models associated
with them, are extremely complicated, exhibit nonlinear behavior and are characterized by
a large number of intensely changing variables. The most difficult challenges for WWTP
management and control of the operation, aside from establishing the appropriate control
system structure and determining optimal values for the operated variables, are the daily,
weekly or seasonal influent composition fluctuations. Comparing control systems’ perfor-
mance in different plants is difficult and necessitates the creation of simulation standards
and benchmarks [2]. Modeling water treatment processes has become a very useful tool
for the design, optimization and automatic control of the WWTP, as the importance of
the treatment plants has grown today within the circular economy concept, and they are
presently considered water resources recovery facilities.

The International Water Association (IWA) is well-known for its vast contributions
to discovering solutions and fighting against global water problems. IWA experts have
created advanced phenomenon-based models to support the construction and control of
sewerage treatment processes as part of the envisioned goal of improving standards for
sustainable water management [3]. Activated Sludge Model #1 (ASM1) is the most common
of these. It was created by the IWA (formerly IAWQ) to standardize nomenclature and
set a milestone in wastewater treatment plant modeling [4]. ASM2, ASM2d and ASM3
have been developed over time with the scope of increasing the capability of revealing the
intrinsic behavior of processes that occur within the activated sludge water processing [5];
they are currently being employed for sewage treatment plant design and control and
are widely used for estimation or optimization [6]. Benchmark Simulation Model #1
(BSM1) was created to enlarge the ASM1 modeling with a defined plant configuration. It
has become a standard tool and method for evaluating the performance of wastewater
treatment plants. BSM1 has been expanded to Benchmark Simulation Model #2 (BSM2) as
a more comprehensive plant description for long-term evaluation, coupled with extensions
to primary sewage treatment plant subunits and processing of sludge by digestion in
anaerobic conditions [7]. Both benchmarks have become powerful tools to support the
development of various control strategies and the evaluation of their performance [8].

Chemical process monitoring is important for evaluating process performance and
improving process efficiency and wastewater quality in wastewater treatment plants. The
advantage of using mechanical or statistical mathematical models is to estimate the behav-
ior of main key process parameters in different operating circumstances and, in association
with real-time measurements, to use them for process design or operational improvement.
Calibrated models are a necessary prerequisite for model-driven control solutions due
to their high usage in advanced process automation. Supervision and control of water
plant process variables are attained to varying extents and complexity depending on the
wastewater inflow, the specificity of the bioreactor configuration, and the actual equipment
available at each facility. Successful, accurate monitoring and control of processes requires
reliable information on the composition, flow rate and temperature for both influents,
recycle flows or effluents. Despite the system’s high level of complexity, process moni-
toring and simple univariate fault detection methods proved critical to ensuring that the
control system has access to consistent data [9]. Consequently, efficient process control is
strongly relying on the capability of detecting sensor faults before the extension of their
undesired effects [10]. Failures that are detected early on can help avert further induced
undesired plant performance consequences and breakdowns. In general, process moni-
toring addresses four different tasks: (1) fault detection, which indicates that something
is wrong in the process operation; (2) fault identification (or diagnosis), which establishes
the cause of the issue; (3) fault estimation, which determines the magnitude of the defect;
and (4) fault reconstruction, which calculates the fault-free process variable values aimed
to perform the operation in the presence of faults [11]. Traditional fault detection and
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isolation methods use a mathematical model of the system to detect and isolate faults.
In order to reveal discrepancies between the fault-affected and fault-free circumstances,
these methods employ state estimation, parameter identification techniques, and parity
relations [12–14]. However, developing precise mathematical models that characterize all
physical and biochemical phenomena that occur in industrial processes is often challenging
and time costly. When analytical models are not available, knowledge-based approaches
such as expert systems might be considered as an alternative or supplement to analyti-
cal model-based approaches [15]. However, the development of these knowledge-based
systems also necessitates a significant amount of time and work [16].

Online field-installed probes and offline laboratory analyses are used in traditional
monitoring of the process variables. Real-time monitoring is difficult to be implemented,
expensive and time-consuming. Field instruments require frequent and qualified main-
tenance, and the lack of satisfying these demands often makes the field measurements
unreliable. On the other hand, time implied by laboratory measurements may range
from a few minutes to several days to build a trustful assessment of the most standard
wastewater monitoring metrics [17]. Both hardware and soft sensors can manifest a series
of problems. While hardware sensors require a long time for maintenance and calibra-
tion, they exhibit insufficient accuracy and high noise levels. Their accuracy can quickly
deteriorate in time and propose the support of soft sensors that can solve some of these
issues. The soft sensors may also be subjected to faults as they rely on some sensor mea-
surements and might depend on insufficiently accurate models [18]. As a result, detecting
fault-affected measurements among the recorded data is critical for obtaining high WWTP
effluent quality results. Sensor deficiencies and techniques utilized for detecting, amending
and identifying faulty information or broken sensors were studied in a few works using
different multivariate statistical process control (MSPC) methods, such as principal com-
ponent analysis (PCA) [10,19–21], independent component analysis (ICA) [22,23], partial
least squares (PLS) [24–26] or control charts [27,28]. Dynamic multiblock partial least
squares (DMBPLS) was implemented to detect chemical oxygen demand (COD) bias and
pH drifting sensor faults at a Chinese papermaking wastewater treatment plant [29], while
a combination of t-distribution stochastic neighbor embedding with a Gaussian mixture
model (t-SNE-GMM) was proposed for detecting bias, drift and complete failure sensor
faults in a similar plant [30]. Because of their natural identification limit, MSPC techniques
show high potential and are proficient in observing the sensor deficiencies occurring in
time-varying, poorly characterized and nonlinear behavior framework of measurements
in wastewater treatment plants [31–33]. MSPC methodologies are most frequently used
and are superior to statistical process control (SPC) methods since they straightforwardly
consider and use idle factors, prompting effective issue identification [34]. Another study
combined sub-period division strategies with multiway principal component analysis for
the fault diagnosis on a sequence batch reactor of the wastewater treatment process in a
paper mill [35].

FDA is a widely used pattern classification technique [36], and its application to
chemical process data analysis has continuously increased in the last two decades [37–40].
FDA application to faulty sensors was studied for air handling units [41]. The target of the
FDA method is to determine the Fisher optimal discriminant vector that maximizes the
Fisher criterion function. Fisher discriminant analysis uses a linear combination of features
to distinguish between two or more classes in an optimal way. It is an empirical method
based on observed characteristics over a large number of cases. FDA for fault identification
provides the best lower dimensionality representation in terms of a discriminant between
data classes, where each class corresponds to data acquired during a specific and known
fault. Unlike PCA, which is looking for directions that are effective for representation, FDA
is looking for directions that are effective for discrimination. From a theoretical standpoint,
FDA has advantages for fault visualization and diagnostics [39].

In general, the economic efficiency and environmental friendliness of sewage treat-
ment plants are primarily based on the process of removing nitrogen from pollutants by
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biologically catalyzed oxidation using aeration control. This control is primarily sustained
by measuring the content of dissolved oxygen (DO) with dedicated sensors. The effective-
ness of an aeration control system can be significantly impacted by wrong information that
emerges from the dissolved oxygen sensors, resulting in unexpected degradation of the
system functionality and problems throughout the wastewater treatment process. Negative
consequences in terms of deterioration consist of a decrease in the quality of the effluent,
an increase in energy consumption, a decrease in environmentally sustainable performance
or even a temporary shutdown of the plant. Few studies have addressed the problem of
DO sensor failure. In typical research, the PCA approach was used to detect the set of
three categories of faults [42]. Another study examined single-type DO and level sensor
failures [28]. The wrong output signal from the sensor was analyzed in another work [19],
and a study was devoted to detecting the clogging bias of the sensor based on PCA [20]. The
variety of the detection tools was extended to element recognition, neural networks with
radial transfer functions [43], binary classification instruments [44], approaches based on
impulse response [45] or deep dropout neural networks (MC-DDNN) to identify incipient
faults of sensors installed in wastewater treatment plants [46]. In a previous investigation,
the current authors developed a study based on the PCA-based methodology that pro-
posed detection solutions for determining the presence of inappropriate functioning of the
dissolved oxygen sensor [47].

The motivation and contributions of the present work originate from several reasons.
The reported fault identification studies referring to the DO sensor defects were typically
focused on a single or on a limited number of fault types. Extending the set of fault types
embedded in a single diagnosing tool hinders the efficiency of the fault categorization but
makes it most appreciated. The DO sensor fault diagnosing in a controlled A2O configured
WWTP, where the sensor is implied in the automatic operation associated with the nitrites
and nitrates concentration control loop, was not specifically reflected in the literature. The
literature presenting the impact of different DO sensor fault types on the WWTP energy,
effluent water quality and GHG emissions performance is still lacking, although they have
become of very high interest. To the best of the authors’ knowledge, no WWTP single study
of fault detection has been conducted on six different sensor fault types combined with the
assessment of associated environmental and economic impact.

The goal of the present paper is to use multivariate statistical methods to construct a
fault diagnosis method for the wastewater treatment facility. This research was intended
to explore efficient diagnostic ways for specific defects caused by faulty DO sensors and
to assess the environmental and cost impact of the faults. Six different fault types were
considered: bias, drift, wrong gain, loss of accuracy, fixed value or complete failure. The
original contribution of the paper addresses the comprehensive and comparative disclosure
of the DO sensor fault types and evaluation of the fault identification benefits for the
automatically controlled treatment plant. Furthermore, for the municipal WWTP case
study, the energy costs and environmental impact on the treatment plant performance were
assessed for the various defects of the DO sensor.

The structure of the present work presents (i) the dynamic model of the WWTP used
for simulations, (ii) the basic theory underpinning the FDA fault-diagnosis methodology
for the identification of the sensors’ faults and (iii) the presentation of the equations used to
compute the GHGs released by the fault affected WWTP process; then, the (iv) results and
discussions of the performance are obtained by the FDA approach and the environmental
and economic study, and the paper ends with (v) the conclusions of the research for
improving the performance of the case study WWTP.

2. Materials and Methods
2.1. Process Model

The sewage treatment plant considered in this work has an anaerobic–anoxic–aerobic
(A2O) arrangement. The sewage enters the treatment plant with a flow rate of about
115,000 m3/day, and it undergoes a series of physical treatments: mechanical filtration,
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separation of sand and grease, and the first sedimentation step. Water exits the first clarifi-
cation step and enters the bioreactor tank. Here, activated sludge technology significantly
reduces the concentration of carbon, nitrogen and phosphorus compounds. Three different
zones characterize the biodegradation basins. The first one is anaerobic and has a capacity
of about 9000 m3; the second is anoxic and has a volume of around 12,800 m3; the third
is aerobic and comprises a total volume of approximately 33,000 m3. Biological phospho-
rous removal is accomplished in the first bioreactor, and the transformation of nitrates
and nitrites (NO) produced in the aerobic reactor occurs in the second bioreactor [48].
Physical separation takes place in a secondary clarifier. The clean water is discharged to
the emissary river as purified water. A small fraction of 0.5% of the secondary clarifier
bottom sludge flow rate is directed to the plant unit for digestion. The bulk is returned
to the anaerobic degradation tank as external recycling. A second recycle flow, called
internal recycling, recycles nitrate from the aerated bioreactor to the anoxic bioreactor for
denitrification [49,50].

The WWTP model constructed and developed in this study was built on the foun-
dations of BSM1 and ASM1. To comply with the A2O configuration, size and operation
characteristics of the case study targeted municipal WWTP, the appropriate modifications
were made to the original BSM1. Each of the basic structural parts of the WWTP was
described by a set of differential and algebraic equations: primary settler [51], anaerobic
bioreactor, anoxic bioreactor, the set of 3 aerated bioreactors [51] and secondary settling
unit [52]. Design and dry weather operation data were collected and reconciled from
municipal WWTP measurements. The plant data were further used to update and calibrate
the modified BSM1 model [53]. The model parameters were calibrated using optimization
techniques. This previously calibrated model of the municipal sewage treatment plant
was used in the current work to carry out the scenarios of simulations for the normal
and faulty sensors. The model was implemented in MATLAB version 8.5 (MathWorks,
Natick, MA, USA) and SimulinkTM version 8.5 software (MathWorks, Natick, MA, USA). In
order to speed up the simulation of Simulink S-functions and save computational resources,
the mathematical model was written in the C++ programming language and compiled as a
MATLAB executable.

Automatic control is widely regarded as critical for the efficient and safe operation
of the WWTP, and the prevention of pollution spread into freshwater ecosystems [54,55].
When associated with optimization, control generates a highly valuable synergy [56,57].
This study employed two typical automatic control structures: one is the dissolved oxygen
control loop, and the other one is devoted to the control of nitrates and nitrites concentration.
Both control loops used proportional–integral (PI) controllers. The DO concentration in the
aerated bioreactor was controlled by the first loop, and the nitrate and nitrite concentrations
in the anoxic bioreactor were controlled by the second loop. For the DO concentration
control loop, the DO reference of 2 mg O2/L was enforced in the aerobic bioreactor in order
to prevent excessive aeration [58]. The DO controller manipulates the air control valves to
supply the necessary oxygen flow rate into the aerated reactors. In the sequence of three
aerobic reactors (No. 3, 4 and 5) of the modified BSM1 plant configuration, the airflow
calculated by the oxygen controller was unevenly distributed. The following weighting
factors for the DO controller generated airflow rate were used: 0.9 for the first aerobic
(reactor no. 3), 0.5 for the second aerobic (reactor no. 4) and 0.3 for the third aerated
bioreactor (reactor no. 5). The oxygen requirements for the nitrification bioreactors were
used to set this distribution strategy, according to the commonly used practice emerged
approach. The concentrations of nitrate and nitrite in the anoxic reactor (reactor #2) were
controlled via a second control loop by adjusting the recycle flow of nitrates and nitrites.
This control loop had a reference of 0.01 mg N/L. The overall configuration of the WWTP
reactors, settlers and the main control loops are shown in Figure 1.
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Figure 1. WWTP general structure.

The main parameters of the plant are presented in Table 1. They correspond to
the typical structure and actual operating configuration of plant equipment and influent
wastewater of the municipal WWTP of Cluj-Napoca, Romania.

Table 1. Municipal WWTP main equipment parameters.

Equipment Parameter Value Measurement Unit

Primary settler Area 2125 m2

Height 3.5 m
Anaerobic bioreactor Volume 9015 m3

Anoxic bioreactor Volume 12,678 m3

Aerated bioreactors
Volume 33,066 m3

Area 6012 m2

Secondary settler Area 11,304 m2

Height 3 m

Data for both the normal state and faulty state of operation were generated by simula-
tion for each of the specifically designed cases (types) of DO sensor failure. Corresponding
data to every individual type of fault and of normal operation were separated into classes
and subjected to global Fisher discriminant analysis in order to obtain a distinct class
representation of the high-dimensional data.

2.2. Sensor Faults

Lack of sensor functioning can be caused by a variety of factors, including a signal
of doubtful quality [59], a bad electrical connection or sensor failure [60]. The diagnosis
of different DO sensor malfunction types is of critical importance for the overall WWTP
operation. The sensor defects investigated in the present work are:

• Bias—caused by the miscalibrated sensor, is a change in the sensor-generated signal,
such as the supplied value being altered typically by a constant value in addition to
the actual sensor signal [59].

• Drift—characterized by the continuous time-varying divergence of the sensor signal
from the genuine one [59].

• Wrong gain—happens when the sensor slope is affected by an inappropriate gain
factor, frequently determined incorrectly during the calibration process [61].

• Loss of accuracy—occurs when the signal of the sensor changes randomly, and its
value is imprecise when it is compared to the genuine value [59].

• Fixed value—the sensor displays the same value all the time [61].
• Complete failure (with two cases, minimum and maximum)—characterized by a

measured value that is equal or close to the sensor minimum calibration limit or is
equal or close to the maximum calibration value [61].
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The majority of the simulated fault types originate from the WWTP operating practice,
and they were chosen to follow the typical behavioral pattern. For the loss of accuracy type
of fault, the random scenario used for the faulty sensor signal was chosen to roughly reflect
an irregular change in the true signal. For other magnitudes of the bias, drift, wrong gain
and loss of accuracy types of faults, where fault samples are not directly available from
the actual WWTP measurements, the use of the calibrated dynamic model can be used
for generating data to be embedded in the FDA fault identification methodology. As new
faults and magnitudes show up, the database of faults behavior can be completed by the
plant measurements, and the diagnosing methodology becomes adaptive.

2.3. Simulation Methodology of the Faults

Specific software modules were created to simulate the behavior of the 6 DO concen-
tration sensor errors. These are integrated into the dynamic WWTP simulator. For each
error type, the error signal produced by the sensor is given to the proportional–integral
oxygen controller as the measured oxygen process variable. The DO control loop adjusts
the airflow accordingly, returning back the controlled DO to the desired reference of 2 mg
O2/L without offset. For each failure, the scenario was run as follows. The simulation was
carried out without any fault for 139 days. Then, each fault was implemented starting from
the 140th day of the simulations and lasted for a period of 28 days. The process variables
taken into consideration for the fault identification were considered from the first day of
faulty operation, i.e., day 140 [47]. The same type period of measurements for 28 days was
considered for collecting data that describe the normal operation.

The DO sensor uses a galvanic measurement technique. The considered scenarios
for the faults were generated, such as to imitate the real DO sensor’s steady state and
dynamic behavior.

For the bias type of fault, the DO sensor signal was considered to have a bias of
+1.5 mg O2/L added to the actual DO process value. It simulates a constant difference
between the true DO value and the DO signal produced by the defective air blast assembly
of the sensor.

To mimic the drift, a constant value of 0.05 mg O2/L was integrated in time, and it
supplemented the DO genuine value. This fault simulates a defect in the electronic circuits
of the transmitter, produced by a time-increasing parasite electric capacitance.

The sensor’s wrong gain type of fault was considered by an incorrect gain factor of
1.4, which consists of an incorrect relationship between the actual DO process value and
the sensor output. This fault type is potentially generated by a wrong calibration of the
sensor or by calibration sudden change due to internal membrane deterioration. The first
order filter with a time constant of 0.3 days was used to smoothly introduce the faulty gain
over time for passing from normal to fault-affected operation.

The defective measured process variable for the case of loss of accuracy type of fault
was generated by adding to the DO true value a random signal value from the interval
−2.5, 2.5. Such sensor fault can originate from the partial dislocation of the anode of the
cathode electrodes of the sensor. Each random sample value had a duration of 0.1 days.

For the fixed value type of fault, the constant of 2.2 mg O2/L was used. This sensor
defect can be produced due to the leak of the sensor filling solution.

For the complete failure minimum and maximum types of faults, the two very low
and very high values of 0.1 mg O2/L and 6 mg O2/L were considered. They correspond to
the practical circumstances when the electrical supply or parts of the transmitter electronic
circuits are malfunctioning or due to the defective self-cleaning assembly, which leads to
sensor clogging.

2.4. Fisher Discriminant Analysis

Fisher discriminant analysis is a pattern categorization approach that features a very
efficient classification potential. FDA’s main goal is to determine the Fisher optimal discrim-
inant vector that maximizes the Fisher criterion function. The higher-dimensional feature
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space of process measurements can be projected onto the obtained optimal discriminant
vector space for constructing a lower-dimensional feature space. Let X ∈ Rn×m be the
matrix that contains the training data for all classes. The total set of n observations for the
m measured variables that build the X matrix contains the submatrix Xi as the subset of
measurements consisting of ni rows and corresponding to the class i of samples. xi denotes
the m-dimensional sample mean vector for the class i and is given by:

xi =
1
ni

∑
xj∈Xi

xj (1)

with xj the set of vectors that belong to class j, then the within-class scatter matrix is defined by:

Sw =
c

∑
i=1

Si (2)

where c is the number of classes, and

Si = ∑
xj∈Xi

(xj − xi)
(
xj − xi

)T (3)

is the within-scatter matrix for class i.
The between-class scatter matrix is then defined by:

Sb =
c

∑
i=1

ni (xi − x)(xi − x)T (4)

where x is the total mean vector of all means of the columns of X.
The optimal discriminant direction is found by maximizing the Fisher criterion:

J(ϕ) =
ϕTSb ϕ

ϕTSw ϕ
(5)

where the maximizer ϕ is the Fisher optimal discriminant direction that maximizes the
ratio of the between-class scatter to the within-class scatter. It may be shown that a vector
ϕ that maximizes J(·) must satisfy the equation:

Sb ϕ = λSw ϕ (6)

for some constants, λ indicates the separability between classes. If Sw is nonsingular, it is
obtained as a conventional eigenvalue problem, described by the following expression:

S−1
w Sb ϕ = λϕ (7)

The total-scatter matrix is given by the sum of Sb and Sw:

St= Sb+Sw (8)

If data vector xj from the m-dimensional space is reduced to the a-dimensional space
of the FDA vectors, then its linear transformation is given by:

zi= WT
a xj (9)

where WT
a has the a FDA vectors as columns and zi ∈ Ra.

To diagnose the faults, FDA examines observed data collected under various faults
and uses a discriminant function that assesses the similarity between the current data and
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the data belonging to each class. When the maximum discriminant function value, gi,
satisfies the following conditions, the observation is allocated to the class i:

gi(x) > gj(x), ∀ j 6= i (10)

gi(x) is the discriminant function given by a measured vector x for class i, and gj(x)
is the discriminant function given by the measured vector x for class j. The discriminant
function can be calculated, for each class i, with the following equations:

gi(x) =− 1
2
(x− xi)

TWa

(
1

ni − 1
WT

a SiWa

)−1
WT

a (x− xi ) + lnPi −
1
2

ln
[

det
(

1
ni − 1

WT
a SiWa

)]
(11)

where Pi is the a posteriori probability of x to belong to class i, and it is computed by the
ratio between the number of observations from a class and the total number of observations
for all classes. FDA was implemented using the Statistics and Machine Learning Toolbox
version 10.0 of Matlab.

2.5. Assessment of the GHGs Impact

Conventional wastewater treatment facilities purify wastewater and reduce water
pollution, but they also discharge GHGs into the air through direct emissions, and as
they require a considerable amount of energy to process the influent, they also indirectly
contribute to the release of GHGs in the atmosphere. Biological wastewater treatment using
activated sludge technology removes organic matter and N and P nutrients from wastew-
ater in an effective manner. Comprehensive environmental implications of the WWTP’s
contribution to GHG emissions have been highlighted in different studies. Greenhouse gas
emissions have been identified as a key negative impact of the WWTP operation and have
been studied in several works [62–64]. Other studies offer a complex image of the total en-
vironmental impact of a wastewater treatment plant through life cycle assessments [65–67].
However, no studies have looked at the environmental impact of the wastewater treatment
plant when anomalies occur in the process due to sensor fault inappropriate operation.
This study emphasizes the differences, with respect to both the environmental impact and
the energy costs, between the plant performance when it is operated normally and when
its operation is affected by faulty operation of the dissolved oxygen sensor.

Overall impact assessment of the WWTP disturbed operation on plant performance
was performed using a cumulative performance index composed of three different perfor-
mance indices: aeration energy (AE), pumping energy (PE) and effluent quality (EQ) [50].
The oxygen mass transfer coefficient of the aerobic bioreactors (KLa), which is directly
related to the airflow rate, is used to compute the aeration energy index, as stated in
Equation (12).

AE =
SOsat

T·1.8·1000
·

T∫
0

∑
aerated reactors

Vbioreactor·KLai(t)dt (12)

where SOsat is the oxygen saturation concentration (mg O2/L), T is the time in days of
faulty operation, Vbioreactor represents the volume of the bioreactor (m3) and KLai is the mass
transfer coefficient in the aerated bioreactor i.

The pumping energy index is calculated using the flow rates of nitrate recirculation,
return-activated sludge recycling and waste, as shown in Equation (13). The energy used
for aeration and pumping is computed in kWh per day. The effluent quality index is
determined by a weighted sum of total suspended solids (TSS), chemical oxygen demand,
biochemical oxygen demand (BOD), total Kjeldahl nitrogen (TKN), and nitrates and nitrites
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concentrations in the effluent flow stream, as indicated by Equation (14). The effluent
quality is expressed in kilograms of pollutant units per day.

PE =
1
T
·

T∫
0

[0.004·QNR(t) + 0.08·QRAS(t) + 0.05·Qwaste(t)]dt (13)

where QNR is the flow rate of the nitrate recirculation (m3/day), QRAS is the flow rate of the
return-activated sludge (m3/day) and Qwaste is the flow rate of waste from the secondary
settler (m3/day).

EQ =
1

T·1000
·

T∫
0

[PUTSS(t) + PUCOD(t) + PUBOD(t) + PUTKN(t) + PUNO(t)]·Qe f f luent(t)dt (14)

where PUTSS denotes total suspended solids, PUCOD refers to the chemical oxygen de-
mand and PUBOD to the biochemical oxygen demand, PUTKN considers the Total Kjeldahl
Nitrogen, PUNO accounts for the nitrates and nitrites, and Qeffluent is the effluent flow rate.

Total GHG emissions generated by the water line of the municipal wastewater treat-
ment plant are composed of both on-site and off-site emissions and consist of CO2 and
N2O gases. Besides CO2, N2O is also considered an important contributor to the GHGs, as
it has a global warming potential (GWP) of about 265–298 times higher than CO2, with an
average residence time of 100 years [68].

Off-site CO2 emissions (kg CO2/day) include indirect CO2 emissions from the electri-
cal power generation plant that are associated with the electrical energy consumed at the
WWTP. They are described by:

PCO2, o f f−site = kPG·eD (15)

where kPG is the site-specific emission factor per unit of energy generated, considered with
a value of 0.19 kg CO2e/kWh, and eD is the total energy demand, calculated as the sum of
the aeration energy and pumping energy [64,69].

Off-site N2O emissions include N2O that results from biological degradation in the
effluent (downstream) of the wastewater treatment plant [64,70]:

PN2O, o f f−site = Ne f f luent · EFe f f luent (16)

where Neffluent is the nitrogen load in the effluent discharged into aquatic environments and
EFeffluent = 0.005 · 44/28 kg N2O/kg N [71] is the emission factor for N2O emissions from
the discharged wastewater.

The on-site CO2 emissions emerging from the water line of the aerobic biological
processes are computed by the following expression:

PCO2,on−site = Qin f luent·0.99·(1−YH)·ηASP·bCOD + Qin f luent·1.03·YH ·ηASP·bCOD·
kd,H ·MCRT

1 + kd,H ·MCRT
(17)

where Qinfluent is the plant influent flow rate (m3/day); 0.99 kg CO2e/kg COD is the
emission factor related to organic compounds; YH is the heterotrophic biomass yield
(massVSS/massCOD) [2]; ηASP is the biodegradable COD (bCOD) removal in the activated
sludge reactors; 1.03 kg CO2e/kg COD is the emission factor related to activated sludge
biomass; kd,H is the decay rate of heterotrophic biomass and has a value of 0.3 day−1 [2];
and MCRT is the mean cell retention time, which is 15 days for this case [64,72].

The on-site N2O emissions from the water line can be estimated using the following relationship:

PN2O,on−site = Qin f luent·(TNin − TNout)·rN2O (18)
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where TNin represents the total nitrogen from the influent (kg N/m3), TNout is the total nitrogen
in the effluent (kg N/m3) [73] and rN2O is the emission rate of N2O (kg N2O/kg N) [74].

3. Results and Discussion
3.1. Normal and Abnormal Operation Data Sets

The FDA methodology relied on 17 WWTP process variables. They were the bottom
effluent sludge concentrations (10 variables), secondary settler clean effluent concentrations
(six variables) and temperature. The set of these variables consisted of total nitrogen (Ntotal);
total Kjeldahl nitrogen; chemical oxygen demand; free and saline ammonia (SNH); nitrate
and nitrite nitrogen (SNO); total suspended solids (TSS); slowly biodegradable substrate
(XS); heterotrophic biomass (XB,H); autotrophic biomass (XB,A); inert particulate products
(XP); particulate biodegradable organic nitrogen (XND); soluble, biodegradable organic
nitrogen (SND); readily biodegradable substrate (SS); alkalinity (Salk); and temperature (T).
The first six of them characterized the secondary settler clean water, while the last eleven
variables described the bottom effluent.

Eight separate scenarios were created, and simulations were performed to generate
the data sets for the different fault classes, one for normal functioning and six for mal-
functioning of the DO sensor. The DO and NO-controlled WWTP were simulated for
168 days of operation. The starting set of 139 days of nominal (faults lacking) function-
ing was considered to bring the plant to a quasi-steady state. Sensor faults were applied
from day 140 in the simulation scenario. Operational data of the simulated wastewater
treatment plant were collected with a sampling time of 15 min. Data generated in the time
period from the 141st to the 145th day of DO sensor normal and faulty operation were
used for training the FDA model. Each set of 480 observations is considered to be a class.
They formed the training matrix of observations (3840 lines and 17 columns). The fault
diagnosis performance of the trained FDA model was tested using data corresponding to
the 140th day, i.e., the first day of faulty sensor operation. The testing data set contained
96 measurements for each fault. This testing approach was designed in order to investigate
the capability of the FDA diagnosis method to identify the type of fault in the very first
hours following the fault appearance.

The chosen scenarios and the emerged dimensions of the data sets used for training
and validation of the fault detection methodology were considered to make a fair trade-off
between diagnosis accuracy and required computational resources.

3.2. Fault Diagnosis

The values obtained for the discriminant function of each class, gi, were compared
in order to diagnose the flawed sensor operation. The discriminant function with the
highest value indicated the class of the faulty sensor, and consequently, it diagnosed the
fault. The values of the discriminant functions gi were computed for each of the 15 min
time-sampled measurements of the testing day no. 140, affected by the different types of
faults (seven classes) and for measurements corresponding to normal operation (one class).
They are presented in Figures 2–9.

Each of these figures presents the values gi(x), i = 1 to 8, i.e., the values of the FDA
discriminant functions associated with the eight classes of the normal and of the seven fault
types. For every sampling time moment of the 140th day (considered as multiples of the
15 min sample time), the eight discriminant function values were computed and presented
with a particular line and marker. The vector of observations x, as the independent
variable of the discriminant functions gi(x), consists of the set of values of the features at a
particular sampling time moment. Separately, each of the Figures 2–9 shows the values of
the discriminant functions at all considered validation sampling time moments and the
corresponding vectors of observations obtained for only one of the normal or of the seven
investigated fault types cases. In each figure, the discriminant function with the permanent
highest value identifies the type of fault indicated by its associated class.
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In order to reveal the moment of time within the first day after the fault appearance,
when the fault is firmly and permanently diagnosed by the maximum discriminant function,
a magnified representation of the time interval in the vicinity of this moment is presented
in the special inserted detailed graphical representation.

As may be observed in Figure 2, all of the gi values confirmed the normal operation
(faulty-free values) diagnosis after 16.5 h of the fault appearance.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 23 
 

function, a magnified representation of the time interval in the vicinity of this moment is 

presented in the special inserted detailed graphical representation. 

As may be observed in Figure 2, all of the gi values confirmed the normal operation 

(faulty-free values) diagnosis after 16.5 h of the fault appearance.  

 

Figure 2. Normal operation diagnosis: graphs of the FDA discriminant functions gi(x) for each of 

the normal and seven fault classes, along the 24 h of the 140th day and the detailed representation 

revealing the class of the observations and the time moment of the firm normal operation identifi-

cation. 

It is worth noticing that for the first part of the testing day (no.140) when sensor faults 

are not yet fully developed, the discrimination between normal operation and faults is 

less evident.  

In Figure 3, the bias fault type diagnosis is performed after 2.5 h, for a time period of 

5.75 h. After that period, the automatic controlled WWTP operation is driven progres-

sively (due to the integral component of the PI controller) to low aeration and to values of 

the process variables that are becoming similar to those corresponding to the maximum 

values of the DO sensor and, as a result, the FDA discrimination is revealing the complete 

failure maximum class for the last part of the day.  

 

Figure 3. Bias diagnosis: graphs of the FDA discriminant functions gi(x) for each of the normal and 

seven fault classes, along the 24 h of the 140th day and the detailed representation revealing the 

class of the observations and the time moment of the firm fault type identification. 

Drift diagnosis is firmly confirmed after 13.75 h, as it is shown in Figure 4. Drift fault 

effects are growing in time due to the intrinsic nature of this fault. 

Figure 2. Normal operation diagnosis: graphs of the FDA discriminant functions gi(x) for each of the
normal and seven fault classes, along the 24 h of the 140th day and the detailed representation reveal-
ing the class of the observations and the time moment of the firm normal operation identification.

It is worth noticing that for the first part of the testing day (no. 140) when sensor faults
are not yet fully developed, the discrimination between normal operation and faults is
less evident.

In Figure 3, the bias fault type diagnosis is performed after 2.5 h, for a time period of
5.75 h. After that period, the automatic controlled WWTP operation is driven progressively
(due to the integral component of the PI controller) to low aeration and to values of the
process variables that are becoming similar to those corresponding to the maximum values
of the DO sensor and, as a result, the FDA discrimination is revealing the complete failure
maximum class for the last part of the day.
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Figure 3. Bias diagnosis: graphs of the FDA discriminant functions gi(x) for each of the normal and
seven fault classes, along the 24 h of the 140th day and the detailed representation revealing the class
of the observations and the time moment of the firm fault type identification.

Drift diagnosis is firmly confirmed after 13.75 h, as it is shown in Figure 4. Drift fault
effects are growing in time due to the intrinsic nature of this fault.
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The diagnosis of wrong gain fault was confirmed after 14 h of the fault incidence
moment. The graphical representation is shown in Figure 5. As the wrong gain fault was
introduced by a time lag constant, the identification was relatively promptly achieved.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 23 
 

 

Figure 4. Drift diagnosis: graphs of the FDA discriminant functions gi(x) for each of the normal and 

seven fault classes, along the 24 h of the 140th day and the detailed representation revealing the 

class of the observations and the time moment of the firm fault type identification. 

The diagnosis of wrong gain fault was confirmed after 14 h of the fault incidence 

moment. The graphical representation is shown in Figure 5. As the wrong gain fault was 

introduced by a time lag constant, the identification was relatively promptly achieved. 

 

Figure 5. Wrong gain diagnosis: graphs of the FDA discriminant functions gi(x) for each of the nor-

mal and seven fault classes, along the 24 h of the 140th day and the detailed representation revealing 

the class of the observations and the time moment of the firm fault type identification. 

The loss of accuracy fault was identified after 16.5 h of the fault start moment of ac-

tion, as it is presented in Figure 6. Despite the irregular character of this fault, determined 

by the random component of the simulated faulty signal, the permanent discrimination 

type of fault was well achieved. 

 

Figure 6. Loss of accuracy diagnosis: graphs of the FDA discriminant functions gi(x) for each of the 

normal and seven fault classes, along the 24 h of the 140th day and the detailed representation re-

vealing the class of the observations and the time moment of the firm fault type identification. 

Figure 7 shows the graphical representation of the fixed value fault, which was cor-

rectly and promptly identified after 6 h of the fault appearance. 

Figure 5. Wrong gain diagnosis: graphs of the FDA discriminant functions gi(x) for each of the normal
and seven fault classes, along the 24 h of the 140th day and the detailed representation revealing the
class of the observations and the time moment of the firm fault type identification.

The loss of accuracy fault was identified after 16.5 h of the fault start moment of action,
as it is presented in Figure 6. Despite the irregular character of this fault, determined by the
random component of the simulated faulty signal, the permanent discrimination type of
fault was well achieved.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 23 
 

 

Figure 4. Drift diagnosis: graphs of the FDA discriminant functions gi(x) for each of the normal and 

seven fault classes, along the 24 h of the 140th day and the detailed representation revealing the 

class of the observations and the time moment of the firm fault type identification. 

The diagnosis of wrong gain fault was confirmed after 14 h of the fault incidence 

moment. The graphical representation is shown in Figure 5. As the wrong gain fault was 

introduced by a time lag constant, the identification was relatively promptly achieved. 

 

Figure 5. Wrong gain diagnosis: graphs of the FDA discriminant functions gi(x) for each of the nor-

mal and seven fault classes, along the 24 h of the 140th day and the detailed representation revealing 

the class of the observations and the time moment of the firm fault type identification. 

The loss of accuracy fault was identified after 16.5 h of the fault start moment of ac-

tion, as it is presented in Figure 6. Despite the irregular character of this fault, determined 

by the random component of the simulated faulty signal, the permanent discrimination 

type of fault was well achieved. 

 

Figure 6. Loss of accuracy diagnosis: graphs of the FDA discriminant functions gi(x) for each of the 

normal and seven fault classes, along the 24 h of the 140th day and the detailed representation re-

vealing the class of the observations and the time moment of the firm fault type identification. 

Figure 7 shows the graphical representation of the fixed value fault, which was cor-

rectly and promptly identified after 6 h of the fault appearance. 

Figure 6. Loss of accuracy diagnosis: graphs of the FDA discriminant functions gi(x) for each of
the normal and seven fault classes, along the 24 h of the 140th day and the detailed representation
revealing the class of the observations and the time moment of the firm fault type identification.



Appl. Sci. 2023, 13, 2554 14 of 22

Figure 7 shows the graphical representation of the fixed value fault, which was cor-
rectly and promptly identified after 6 h of the fault appearance.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 23 
 

 

Figure 7. Fixed value diagnosis: graphs of the FDA discriminant functions gi(x) for each of the nor-

mal and seven fault classes, along the 24 h of the 140th day and the detailed representation revealing 

the class of the observations and the time moment of the firm fault type identification. 

The complete failure minimum is correctly diagnosed after 6.75 h of its intervention, 

as it is revealed in Figure 8. 

 

Figure 8. Complete failure minimum diagnosis: graphs of the FDA discriminant functions gi(x) for 

each of the normal and seven fault classes, along the 24 h of the 140th day and the detailed repre-

sentation revealing the class of the observations and the time moment of the firm fault type identi-

fication. 

The complete failure maximum diagnosis is diagnosed successfully after 9.5 h, as is 

shown in Figure 9. 

 

Figure 9. Complete failure maximum diagnosis: graphs of the FDA discriminant functions gi(x) for 

each of the normal and seven fault classes, along the 24 h of the 140th day and the detailed repre-

sentation revealing the class of the observations and the time moment of the firm fault type identi-

fication. 

Figure 7. Fixed value diagnosis: graphs of the FDA discriminant functions gi(x) for each of the normal
and seven fault classes, along the 24 h of the 140th day and the detailed representation revealing the
class of the observations and the time moment of the firm fault type identification.

The complete failure minimum is correctly diagnosed after 6.75 h of its intervention,
as it is revealed in Figure 8.
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The complete failure maximum diagnosis is diagnosed successfully after 9.5 h, as is
shown in Figure 9.
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The FDA-based identification methodology for the type of DO sensor fault proved to
be successful for all of the investigated faults except the bias one (which has very similar
effects with complete failure maximum failure). This means an accuracy of 87.5% correct
identification of the eight considered cases. The time needed for obtaining the consolidated
diagnosis decision varied from 2.5 h to 16.5 h.

From the rare previous studies that addressed fault diagnosis in WWTPs sensors,
one showed good detection of bias, drift and precision degradation (loss of accuracy)
of sensors used in a WWTP with classic and dynamic PCA-based methods but showed
some limitations regarding the fault identification with variable reconstruction-based
methods [42]. These limitations included the fact that a reconstruction-based method
cannot identify the faulty sensor which causes process transition, so the approach is
inappropriate for identifying the fault type connected to a control loop. Additionally, it did
not study the fault identification time in detail. The present study investigated several fault
types, and the identification time was determined for each of them. Another work proposed
a complex-valued slow independent component analysis (CSICA) based method for fault
detection and diagnosis with applications to wastewater treatment processes. Despite the
fact that the method had good performance in detecting and diagnosing incipient faults,
it was inadequate for scenarios of multi-fault and large-scale nonlinear systems [23]. The
sub-period division strategies combined with multiway principal component analysis for
only two faults diagnosis showed that the used methods could manifest false identification
results during normal operation periods and the inability to detect the fault during some
time intervals [35]. The present investigations considered six different fault types that
implied increased difficulty in the promptitude and accuracy of the fault diagnosis.

The efficiency of the proposed FDA identification is substantiated by the fact that
discrimination was achieved by the FDA discrimination model that was trained with faulty
data from the five days subsequent to the first one, when the fault actually started to act,
and testing was performed for this very first day.

3.3. Performance Indices

AE, PE and EQ were calculated for both normal and faulty operation cases. They were
determined as a mean value over 28 days, i.e., for the period of the days ranging from day
140 to day 168. Table 2 shows the values of the AE, PE and EQ for the normal operation
and for the six different faults.

Table 2. Values of the performance indices for the normal and faulty operation cases.

Operating Regime AE
(kWh/day)

PE
(kWh/day)

Total Energy Demand
(kWh/day)

EQ
(kg PU/day)

Normal operation 16,992 1329 18,321 16,852
Bias fault 14,206 2415 16,621 21,461
Drift fault 15,569 1746 17,315 17,134

Wrong gain fault 15,866 1593 17,459 16,706
Loss of accuracy fault 9150 2403 11,553 219,189

Fixed value fault 1968 2415 4383 338,737
Complete failure
minimum fault 23,537 1039 24,576 19,804

Complete failure
maximum fault 1968 2415 4383 338,750

It can be observed that for the bias, loss of accuracy, fixed value and complete failure
maximum types of faults, the PE and EQ indices values are much higher than the normal
operation values, but AE is lower. The AE values can be explained by the fact that the
four fault types are characterized by high values of the DO sensor signal, sent as a wrong
feedback signal to the DO controller. As a result, the DO controller diminishes the aeration
with the aim of reducing the value of the faulty DO signal, and the aeration energy drops.
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This is followed by a decrease in nitrification, which induces a lower concentration of
nitrates and nitrites in the aerated bioreactor and, subsequently, in the anoxic bioreactor.
Consequently, the NO control loop reacts to this change by increasing the internal recycle
flow rate, which determines higher pumping energy. Additionally, the quality of the
effluent drastically deteriorated due to the inefficiency of the treatment process, affected by
the air-lacking circumstances, and higher amounts of pollutants are discharged with the
clean effluent. The high AE value in the case of the complete failure minimum type of fault
is due to the increase in the DO controller manipulated airflow rate as a response to the
low but faulty value of the DO sensor signal.

It is worth mentioning that in cases of the faulty operation of the DO sensor that is
characterized by reduced values of the DO signal, compared to the true one, the DO con-
troller will drive the aeration to increased airflow rates with straightforward consequences
on the rise of the AE index values.

3.4. Energy Costs Assessment for Operation Affected by Faults

Operating a sewage treatment plant is highly energy intensive, with implicitly high
economic costs. The price of energy is determined by a variety of supply and demand
factors, such as the geopolitical situation, the national particular energy mix, distribution
network expenses, environmental protection taxes, severe weather conditions or excise and
taxation levels. The cost of energy also depends on the energy source. Energy prices vary
from 4.8 to 12.10 eurocents depending on the energy source, as can be seen in Table 3. These
values were extracted from an International Energy Agency (IEA) report on the mean costs
of generating energy. This report provided data for a total of 243 plants in 24 countries
from Europe, Africa and Asia [75].

Table 3. Costs of different energy sources.

Source/Technology Eurocents/kWh

Lignite 9.12
Coal 8.80

Gas (CCGT 1) 6.81
Nuclear 6.62

Wind onshore 4.80
Wind offshore 8.45

Solar PV 2 commercial 5.38
Solar PV residential 12.10

Solar thermal (CSP 3) 11.62
Hydro reservoir 6.91

Hydro run of river 6.53
Geothermal 9.50

Biomass 11.33
1 CCGT—combined cycle gas turbines, 2 PV—photovoltaic, 3 CSP—concentrating solar power.

The daily costs of normal operation and each type of DO sensor malfunction were
determined for the sewage treatment plant considered in this study. The daily costs
were individually evaluated for different potential energy sources or energy production
technologies. The data in Table 4 were obtained by multiplying the costs of different energy
sources [75] with the total energy demand values computed for the normal and faulty
operation cases. Table 4 summarizes the findings.
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Table 4. Source depending sum of AE and PE energy costs computed for normal and fault affected op-
eration.

Source/Technology

Daily Operation Costs (EUR)

Normal
Operation Bias Drift Wrong Gain Loss of

Accuracy Fixed Value
Complete

Failure
Minimum

Complete
Failure

Maximum

Lignite 1671 1516 1579 1592 1054 400 2241 400
Coal 1612 1463 1524 1536 1017 386 2163 386

CCGT 1249 1133 1180 1190 787 299 1675 299
Nuclear 1214 1101 1147 1156 765 290 1628 290

Onshore wind 879 798 831 838 555 210 1180 210
Offshore wind 1548 1404 1463 1475 976 370 2076 370

Solar PV
commercial 985 894 931 938 621 236 1321 236

Solar PV
residential 2216 2011 2094 2112 1397 530 2973 530

Solar thermal
(CSP) 2128 1931 2011 2028 1342 509 2855 509

Hydro reservoir 1266 1149 1197 1207 799 303 1699 303
Hydro run of river 1196 1085 1130 1140 754 286 1604 286

Geothermal 1741 1580 1646 1659 1098 417 2336 417
Biomass 2075 1883 1961 1978 1309 497 2784 497

By analyzing the costs of electrical energy spent for the different cases of the faults, it
may be observed that complete failure minimum fault of the DO sensor implies the largest
energy costs, as the reduced faulty value of the DO sensor determines the control system to
considerably increase the airflow rate. On the contrary, the fixed value and complete failure
maximum faults imply the smallest and comparable energy costs due to the large values of
the DO sensor signal that make the DO controller reduce the airflow rate. However, for
these latter cases, the quality of the effluent dramatically deteriorates by a factor higher
than 20 and ranks these faults as having the worst overall effect.

Values of the daily energy costs presented in Table 4 also reveal that onshore wind,
solar PV commercial and hydro run of rivers are the most favorable sources of energy to be
used from the economic costs point of view, while the solar PV residential, solar thermal
(CSP) and biomass are the most expensive ones. The lignite (CSS) and coal (CSS) energy
sources may be as well considered as having high costs.

Depending on the technical solution availability, switching to the alternative cheaper
energy sources and implementing a customized program for the use of a mixed energy
source in case of faulty sensor operation might reduce the implied energy costs before the
replacement of the defective sensor.

3.5. Environmental Assessment of CO2 and N2O Emissions

The on-site and off-site emissions of CO2 and N2O, as main contributors to the Green
House Gases released by the water line of the WWTP, were estimated for each type of faulty
operation and also for the normal one. Their daily mean values are presented in Table 5.

The data in Table 5 revealed that on-site emissions are the most significant, accounting
in the case of normal operation for about 75% of the total emissions, both for PCO2,total and
PN2O,total . Computed total CO2 emissions, i.e., the sum of the on-site and off-site values,
showed increased values for all cases of the DO sensor faults, with the exception of the
complete failure minimum fault type. Very large total CO2 emissions (more than one order
of magnitude higher than those of the normal operation) were produced in the cases of
the following faults: fixed value, complete failure maximum and loss of accuracy fault.
Complete failure minimum fault type showed the least emission values, while drift and
wrong gain had emissions that were slightly higher than those of the normal operation case.
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Table 5. GHG emissions due to DO sensor defect.

Emissions
Type Source/Technology Emitted Gas

Daily GHG Emissions

Normal Bias Drift Wrong
Gain

Loss of
Accuracy

Fixed
Value

Complete
Failure

Minimum

Complete
Failure

Maximum

Off-site
emissions

Power generation
CO2,

PCO2,o f f−site , kg
CO2/day

3481 3158 3290 3317 2195 833 4669 833

Biological
degradation in the

WWT effluent

N2O,
PN2O,o f f−site , kg

N2O/day
3.61 2.47 2.89 2.97 14.39 21.49 6.50 21.49

On-site
emissions

Water-line aerobic
biological
processes

CO2,
PCO2,on−site , kg

CO2/day
13,689 30,459 17,851 16,178 461,439 921,028 10,604 921,168

N2O,
PN2O,on−site , kg

N2O/day
10.35 10.81 10.64 10.05 6.07 3.27 9.20 3.27

Total emissions

CO2,
PCO2,total , kg

CO2/day
17,170 33,617 21,141 19,495 463,634 921,861 15,274 922,001

N2O,
PN2O, total , kg

N2O/day
13.96 13.28 13.53 13.02 20.46 24.76 15.70 24.76

CO2e,
PCO2e ,overall , kg

CO2e/day
21,330 37,574 25,173 23,375 469,731 929,239 19,953 929,379

Assessment of the total N2O emissions for the fixed value, complete failure maximum
and loss of accuracy faults also reveal increased values for the N2O emissions. They are
characterized by a factor ranging from 1.4 to 1.7 when compared to the normal operation
case. It may be noticed that, contrary to the total CO2 emissions observed trend, complete
failure minimum fault type led to increased values of the N2O emissions. N2O emissions
produced due to bias, drift and wrong gain faults were marginally smaller when com-
pared to the normal reference case, especially due to the decreased values of the off-site
N2O emissions.

The overall CO2e emission values were computed by cumulating the total CO2 and
total N2O (as CO2 equivalent) emissions. According to the results of the overall CO2e
emission, all faults show higher CO2 emission levels than the normal operation case.
The only exception is the complete failure minimum type of fault, but in this particular
case, the effluent quality deteriorates by more than 15%, and the sum of the aeration and
pumping energy has the highest values of all investigated cases. Assessment of the CO2 and
N2O emissions, issued due to different DO sensor faults, provides valuable quantitative
information on the extent and ranking of the most unfavorable sensor fault types that may
affect the sustainable operation of the WWTP.

The results validate the logical assumption that the presence of all faults is detrimental
to the WWTP operation, and the severity assessment of their consequences has to be
considered in an integrated approach of energy, costs, water effluent quality and GHG
issues. These evaluations constitute the foundation for the control and safety systems
design aimed at achieving the plant sustainability objective.

4. Conclusions

The performance of the FDA-based sensor faults identification approach was proposed
and assessed for the key DO sensor belonging to the automatically controlled A2O WWTP
with the typical dissolved oxygen and the nitrates and nitrites concentration control loops.
The DO feedback control system performance is responsible for the WWTP nitrification
process, directly determining the spent energy, effluent quality and GHG emissions of the
entire plant.

The FDA fault identification was investigated for six different types of faults. They
were: bias, drift, wrong gain, loss of accuracy, fixed value and complete failure minimum
and complete failure maximum faults. The data sets of variables for both the normal
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and fault-affected operation of the DO sensor originated from simulations of the cali-
brated plant model in which the scenario of WWTP influent variations emerged from
plant measurements.

The prompt and reliable FDA fault identification methodology was successful. The
time needed for obtaining the consolidated diagnosis decision varied from 2.5 h to 16.5 h
following the moment of the fault appearance. It is noteworthy that data used for building
the training data matrix for all faulty classes, i.e., data from days 2 to 6, did not contain the
data of the first day. The latter was only used for testing the promptitude and efficacy of the
identification methodology. The complexity of the diagnosis increases when the number
of fault types subject to investigation expands or the sensor faults produces comparable
effects on the process variables.

The results showed that the WWTP effluent quality performance index depreciated
during all of the DO sensor faults. From the EQ index perspective, the most detrimental
cases were the complete failure maximum, fixed value and loss of accuracy faults, while
the less affected case was the wrong gain fault type.

The WWTP normal and faulty operation modes were further investigated to assess
the environmental effect of the on-site and off-site emissions of CO2 and N2O GHG and
the economic impact of spent aeration and pumping energy. On-site emissions have the
most significant GHG contribution, being responsible for about three-quarters of the total
emissions, both for CO2 and N2O. The complete failure maximum, fixed value and loss of
accuracy were the DO fault-affected operation modes that had the most undesired impact
on the amount of GHG released emissions. The identification of simultaneous acting fault
types needs specific investigations, and this is the subject of future research work.

The comprehensive evaluation of effluent quality, energy costs and GHG emissions is
a useful quantitative assessment basis for the control and safety systems design aimed at
satisfying multiple objective targets and the overall plant sustainability goal. Instrumen-
tation maintenance tasks, metrological calibration or verification services and designers
of intelligent DO sensors may benefit from the presented results for promoting the safe,
efficient and environmentally friendly operation of the WWTP.
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