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Abstract: As an essential branch of artificial intelligence, recommendation systems have gradually
penetrated people’s daily lives. It is the active recommendation of goods or services of potential
interest to users based on their preferences. Many recommendation methods have been proposed
in both industry and academia. However, there are some limitations of previous recommendation
methods: (1) Most of them do not consider the cross-correlation between data. (2) Many treat the
recommendation process as a one-time act and do not consider the continuity of the recommenda-
tion system. To overcome these limitations, we propose a recommendation framework based on
deep reinforcement learning techniques, known as DDRCN: a deep deterministic policy gradient
recommendation framework incorporating deep cross networks. We use a Deep network and a
Cross network to fit the cross relationships between the data, to obtain a representation of the user
interaction data. The Actor-Critic network is designed to simulate the continuous interaction behavior
of users through a greedy strategy. A deep deterministic policy gradient network is also used to train
the recommendation model. Finally, we conduct experiments with two publicly available datasets
and find that our proposed recommendation framework outperforms the baseline approach in the
recall and ranking phases of recommendations.

Keywords: recommendation system; deep deterministic policy gradient; deep cross network; rein-
forcement learning

1. Introduction

With the increasing convenience of information access through the Internet, a large
amount of data are generated when obtaining videos, commodities, news, music, etc. For
example, the transaction volume of Tmall’s Double 11 in 2022 is CNY 557.1 billion, and the
explosion of data causes the problem of information overload [1]. The recommendation sys-
tem simulates the user’s consumption preferences based on the user’s behavior preference.
It also predicts the items that users may be interested in, and provides personalized recom-
mendation services. At the same time, it can also bring commercial value to enterprises.
For example, 80% of Netflix movies come from the recommendation system [2], so more
researchers and multimedia service providers pay attention to the recommendation system.
The current recommendation systems can be divided into three categories: traditional
model-based recommendation systems, deep learning-based recommendation systems,
and deep reinforcement learning-based recommendation systems. However, the following
limitations still exist.

Firstly, the quality of recommendation results mainly depends on the data between
users and the system, while most recommendation systems do not fully exploit the cross
relationship between data. The recommendation framework captures user preferences
based on user data, item data, user–items interaction data, and statistical data. Each
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data point does not exist independently. Early machine learning (ML) practitioners still
sought to improve the expressiveness of their frameworks by manually identifying feature
crossings [3]. Recently, Wang et al. proposed a DCN [4] and improved the DCN-V2 [5]
framework. The framework can effectively learn the explicit and implicit intersection of
features and conduct ranking experiments in Google’s system with high accuracy.

Second, most recommendations are assumed to be static without considering the
impact of long-term returns. However, in fact, the recommendation system strongly
depends on users’ continuous decision-making behaviors. While short-term returns are
essential, a failure to consider the long-term returns of a recommendation may lead to
recommendation bias behavior. Xie et al. proposed a meta-learning framework (LSTTM) for
online recommendations. The framework was deployed on the WeChat Top Stories, with
remarkable results [6]. Shivaram et al. proposed an attention recommendation framework,
which mainly increases the attention to specific topic words to avoid excessive attention to
general hot terms and reduce the homogenization effect in the recommendation system [7].
Specifically, the recommendation system recommends a news article to the user, and the
user has a series of actions, such as likes and favorites for this news. These actions indicate
that the user may be interested in this topic. Still, the user may not like the long-term
recommendation of related news since the user’s long-term preferences are not considered.
For example, the timeliness of news is very strong, and recommending early news to users
may not be very attractive.

Reinforcement learning was first proposed to solve optimal control problems, an
integral part of artificial intelligence. Reinforcement learning aims to maximize the goal,
reward, and expectation through continuous trial and error between the agent and the
environment. In the actual recommendation application, the user’s behavior characteristics
constantly change during interaction with the system. Only by dynamically adjusting
the recommendation action according to the real-time behavior attributes of the user can
the long-term maximum revenue be guaranteed, which is consistent with the features
of the reinforcement learning algorithm. When reinforcement learning is adopted to
perform a recommendation framework, it mainly includes value-based and policy-based
methods. The dynamic recommendation process based on reinforcement learning is shown
in Figure 1, which includes three parts: the user, the agent (recommendation system), and
the item list. Users first view the recommended items in the list and then give feedback
according to their preferences, including clicks, favorites, forwarding, etc. In particular, the
items operated by users are included in the order. According to the user’s feedback, the
agent constantly learns to adjust the recommendation actions, and predicts the items that
the user may be interested in, to make recommendations.

Figure 1. Dynamic recommendation process for reinforcement learning.
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In our study, we provide a deep deterministic policy gradient-based reinforcement
learning recommendation method called DDRCN, which includes Actor and Critic dual
networks for recommendation action generation and action value evaluation, respectively.
In particular, we use a deep cross network to process the basic features of the user data,
and to fit a state representation for strategy selection and value estimation. During the
action selection, the Actor policy neural network may fit the policy function through the
deep cross network, which directly outputs the recommended actions saved to the project
recommendation pool. The Critic network is a value estimation of the current action
and state of the user, and the model is trained by two networks together. Through a
large number of experiments, the proposed recommendation framework achieves good
recommendation results. The contributions of this paper are as follows:

• We provide a deep deterministic policy gradient recommendation framework, DDRCN,
that fuses deep cross networks. The framework uses the Actor-Critic approach, which
maximizes the cumulative reward of recommendations through the continuous ex-
ploration and exploitation of the Actor and Critic networks, combined with greedy
strategies.

• In this recommendation framework, we fit the data features between users and items,
utilizing a deep cross network. The deep cross network consists of a Deep network
and a Cross network, and the two networks work together to compute the cross
relationship between the features.

• We conducted relevant recommendation experiments on the real movie and music
datasets, and the experimental results show that our proposed model outperforms its
competitors regarding recall and ranking effects.

The rest of the sections are organized as follows. Section 2 presents the related work.
Section 3 introduces the preliminary knowledge. Section 4 elaborates on the proposed
recommendation framework. Section 5 discusses the experimental results, and the paper is
concluded in Section 6.

2. Related Work

Recommendation systems have been developed for more than 30 years. From filtering
emails in the beginning to personalized recommendations today, recommendation systems
have undoubtedly penetrated everyone’s life. The recommendation technology develops
from the traditional recommendation framework to deep learning and reinforcement
learning recommendation frameworks.

2.1. Traditional Recommendation Methods

Collaborative filtering [8] is the earliest recommendation framework that has the most
significant impact on the industry. Collaborative filtering approaches assume that users
with similar preferences are interested in the same items. However, the data available
for recommendation are sparse in the actual scenario, so the generalization ability of the
collaborative filtering algorithm is poor. Matrix factorization [9] is also a collaborative
filtering method. It is a decomposition and inner product of the data table to replace the
missing values. However, matrix factorization only considers user behavior characteristics
and it has poor interpretability. Logistic regression [10] regards recommendation as a binary
classification problem and is often used to predict click-through rates. It is based on hy-
pothesis testing, maximum likelihood estimation, and gradient descent to solve parameters,
where the output result is between 0 and 1. Then, the user is judged to click or not to click,
using the threshold, which has certain interpretability. The factorization machine [11] can
be understood as a variant of matrix factorization. It reduces the complexity by learning the
hidden weight feature vector and the feature vector cross-internal product. The factoriza-
tion machine method reduces the time complexity using the pairwise cross inner product of
feature vectors, and can also be generalized to all features. In addition, some combination
frameworks, such as Facebook’s automatic selection feature combination method, generate
discrete random features and feed them into a logistic regression framework to estimate
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the CTR. However, the traditional recommendation method is too simple and can result in
most of the recommended content being very similar. It can lead to user boredom.

2.2. Recommendation Methods with Deep Learning

With more powerful computing power and fitting ability, deep learning has devel-
oped rapidly in recent years, so more researchers apply deep learning to recommendation
systems. AutoRec [12] is the first CF recommendation framework that introduces neural
networks, autoencoders, to predict users’ ratings for recommended items. Since the Au-
toRec framework leads to the pain of insufficient expression ability, the Deep Crossing [4]
framework proposes a four-layer network structure, which perfectly solves the sparsity
problem of feature vectors. The Wide & Deep [13] model guarantees the generalization
ability and memory of the recommendations through a dual network. In the recommenda-
tion scenario, users’ interests are changeable, so the DIN [14] framework introduces the
attention mechanism and learns the attention weight through the framework results to
consider the interest preferences of different users. Nowadays, the scale of the recommen-
dation system is getting larger and larger, which brings low recommendation efficiency.
HS-GCN [15] framework proposes a Hamming space graph convolutional network to
model the ladder similarity in Hamming space, and recommends it through the user-item
bipartite chart. In addition, the recommended data sources are becoming more and more
abundant. The UMPR [16] framework is a multimodal recommendation method based
on deep users, which makes recommendations by constructing a matching between the
visual preference embeddings of users and the visual embeddings of items. Although
deep learning-based recommendation systems have achieved good results, they also have
fatal drawbacks. Deep learning relies entirely on datasets, and it predicts recommended
items by learning the relationships between data. Deep learning recommendation methods
assume that the recommendation is a past behavior that is incompatible with the user’s
behavioral changes.

2.3. Recommendation Methods with Reinforcement Learning

Traditional and deep learning-based recommendation frameworks rely on histor-
ical data to capture user preferences, but the actual recommendation is a continuous
and dynamic decision-making process. Reinforcement learning simulates the ongoing
“exploration-exploitation” process between the agent (recommendation system) and the
environment (user), and finds a balance to obtain the recommendation process with the
maximum cumulative benefit. Common reinforcement learning recommendation methods
include policy-based methods and value function-based methods.

Value-based methods in reinforcement learning decide the recommended action by se-
lecting the maximum Q value of the state. GoalRec [17] is a value-based deep reinforcement
learning framework that addresses high-variability environments and uncertain reward
Settings. FeedRec [18] is a recommendation framework that optimizes user engagement
through reinforcement learning. The framework includes a Q-Network and an S-Network,
and iteratively trains the two networks to optimize the indicators of user engagement.
Policy-based recommendation methods find the optimal policy based on the current state,
and outputs the probability distribution of each action. PDQ [19] is a recommendation
method based on offline policy learning. The framework executes policy functions offline
and introduces a simulation environment to help with policy improvement. OPS2 [20] is a
two-stage off-policy gradient recommendation method, including candidate generation
and ranking stages.

The recommendation method based on the value function is unsuitable for handling
continuous actions. In contrast, the recommendation method based on policy function
cannot evaluate the goodness of the policy. The Actor-Critic network combines the advan-
tages of value function and policy function methods. The dual network’s prediction and
value estimation of recommendation actions can deal with continuous recommendations
and user behaviors. Based on this, we propose a deep deterministic policy gradient rec-
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ommendation method based on the Actor-Critic framework. The technique can handle
large-scale continuous behaviors, is more suitable for recommendation scenarios, and has a
faster model convergence rate.

3. Preliminaries

Reinforcement learning includes the environment and agent, and the goal of maximiz-
ing the cumulative reward is achieved through the continuous interaction between them,
which can be modeled as a Markov Decision Process (MDP), abstracted as a five-tuple
< S, A, R, P, γ >. S denotes the set of states, A denotes the set of actions, R is the reward
function, P is the transition probability, and γ is the discount coefficient. Therefore, the
recommendation system is abstracted as an agent, the user is abstracted as the environment,
the recommendation system performing a recommendation is abstracted as an action, and
the user’s behavior characteristics are abstracted as states. In each recommendation process,
the recommendation system dynamically updates the action based on the user’s status and
feedback to ensure the maximum cumulative profit of the recommendation. The specific
MDP framework of the recommendation process is as follows:

• State space S: S is the set of environment states, and st ∈ S represents the state of the
agent at time t, which is the interaction between the user and the recommendation
system at time t.

• Action space A: A is the set of actions that the agent can take, and at ∈ A represents
the action taken by the agent at time t. In particular, actions here refer to action vectors.

• Reward R: The recommendation system will recommend actions based on the user’s
state and behavior, and the user will provide feedback (click, rating, retweet, etc.).
Recommendation systems receive instant rewards based on user feedback r(s, a).

• State transition P: When the recommendation system recommends action at time step
t, the state of the user at this time is transferred from st to st+1.

• Discount factor γ: γ ∈ [0, 1]is a discount factor used to indicate the importance of
future rewards, with γ being close to 1 to consider long-term rewards, and γ being
close to 0 to consider immediate rewards.

Figure 2 illustrates the interaction process between the agent and the environment.
The agent gives an action at according to the current state st. After receiving the action of
the agent, the environment converts the state from st to st+1 and rewards the agent rt for its
behavior. The agent receives the reward rt and the state st+1, and takes the next action at+1,
and so on. In particular, the agent’s action does not represent the recommended item or
the recommendation sequence, but a continuous parameter vector. This vector is then the
inner product with the item embedding to obtain the item’s rating, and the specific item is
recommended to the user according to the order of the rating. In this paper, we construct a
recommendation framework through the Actor-Critic network. In the Actor-Critic network,
the Actor-network is a policy network, and the Critic-network is a state value estimation
network. Through the dual networks, the model acts toward high cumulative rewards.
In contrast, Q-learning is performed by storing Q-values (values of state action pairs) in
Q-tables and continuously going through the Q-tables to update them. This approach is not
suitable for handling large-scale scenarios. SA2C [21] is a variant based on the Actor-Critic
network for recommendation scenarios. It introduces supervised learning to simulate the
Actor-network to generate correct actions. In this paper, the Actor-Critic network is trained
by a deep deterministic policy gradient network. The model is converged by setting the
Actor Target network and the Critic Target network.
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Figure 2. MDP decision process.

4. The Proposed Framework
4.1. The Architecture

As we mentioned in Section 1, traditional and deep learning recommendation methods
neither treat user decision behavior as being static, nor do they consider immediate rewards.
To address the shortcomings, we propose a deep deterministic policy gradient recommen-
dation method incorporating a deep cross network, which mainly includes two parts: Actor
policy network and Critic value network. In particular, there is a state representation part
in the Actor-network, as shown in Figure 3.

Figure 3. The architecture of the framework.

4.1.1. Actor Policy Neural Networks

The Actor network outputs actions based on user state features, as shown in the left
part of the architecture. The user behavior vector includes user features, item features,
statistical features, and scene features. These vectors are passed through the state represen-
tation module (deep cross network) to obtain the user state representation vector. The user
is a generalized representation of the user’s preferences, and the state at the moment t is
defined as follows:

st = f (Ht), (1)

where f (x) is the state representation function, Ht represents the vector embedding of the
history where the user has interacted with the recommendation system, Ht = {i1, i2, . . . , in}.
When the agent recommends an item according to the policy, if the user makes positive
feedback on the recommended action, then st+1 is updated to f (Ht+1). Otherwise, st+1 is
still equal to f (Ht). The user feature representation vector is input, and the recommended
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action is output after a three-layer activation function. The action under state s is defined
as follows:

a = πθ(s), (2)

where a represents the continuous action vector, which is the output of the Actor network.
πθ represents the selection strategy; here we use ε–greedy. Specifically, the candidate items
are calculated as follows [22]: //

scoret = itaT , (3)

Finally, the recommendation results are obtained by ranking each item according to
its score.

4.1.2. Critic Value Neural Networks

The Critic network is a deep Q network, as shown on the right of the model architecture
figure. It is used to estimate the quality of the state and action, namely, the estimate function
of the Q value. The value function Qπ(s, a) is estimated through neural network fitting out
Qw(s, a). The Q-value is a scalar that allows the model to be updated and optimized to
enhance the action. We update the Actor network based on a deterministic policy gradient
approach [23], formulated as follows:

∇θ J(πθ) ≈
1
N ∑

t
∇aQw(s, a)|s=st ,a=πθ(st)∇θπθ(s)|s=st , (4)

where J(πθ) denotes the expectation of the Q value. N is the size of the batch. The network
of Critic is updated using the temporal difference learning method [24], as follows:

yi = ri + γQw′ (si+1, π
θ
′ (si+1)), (5)

L =
1
N ∑

i
(yi −Qw(si, ai))

2, (6)

where yi represents the time difference target value, γ represents the discount rate, L
represents the mean square error, w

′
represents the parameters of the Critic Target network,

and θ
′

represents the parameters of the Actor Target network.

4.1.3. State Representation Module

The state representation module represents user characteristics and is the input for each
of the two neural networks to make predictions. The BINN framework [25] provides an item
embedding method for user interaction, and it is adopted for subsequent recommendation
tasks. We take the deep cross network to mine the cross relationship between the data of
the recommendation system to obtain the user state representation vector. The advantages
include fully mining the cross relationship between the features, preventing the gradient
from disappearing, and being memory and computation friendly, as shown in Figure 4.

The input of the state representation module is the concatenation of the user feature
vector, the item feature vector, the statistical feature vector, and the scene feature vector in
the recommendation data. DCN includes Deep Network and Cross Network, where Deep
Network is a fully connected network defined as follows [5]:

Hi = Wxi + b, (7)

where xi represents the data feature embedding vector, and W and b are parameter matrices,
which are then passed to the next layer of the network through the Relu activation function.
The Cross Network excavates the features between data by disintegrating vectors into
subspaces and performing feature cross. The feature vector is defined as follows [5]:

xi+1 = x0 � (Wxi + b) + xi, (8)
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where x0 represents the splicing of initial data feature embedding vectors. The Deep
Network and Cross Network output is stacked, and finally, the user state representation
vector is output through a single linear mapping.

Figure 4. State representation module.

4.2. Training Process

We train the framework through the deep deterministic policy gradient algorithm. The
training process mainly includes two stages: transfer (lines 4–12) and parameter update
(lines 13–20), which are shown in Algorithm 1.

In the state transition generation phase, we initialize the Actor network and the Critic
network parameters, and then we fit the user’s state representation vector based on the
deep cross network. Afterward, according to πθ(s) and ε− greedy, the recommended action
vector is calculated, and the inner product is completed with the embedding vector of the
recommended item to obtain the score of the item. Afterward, the reward rt is calculated
based on the user’s current state and action, and the quadruple (st, at, rt, st+1) is saved in
the experience pool.

During the parameters update stage, we first sample a small batch of four-tuples
(si, ai, ri, si+1) from the experience replay pool, then calculate the objective function and
loss function according to lines 14–15 in Algorithm 1. The parameters of the Actor network,
Critic network, and target network are updated through the soft replace strategy.

4.3. Evaluation Process

As for reinforcement learning, the most direct way to evaluate the framework is to
let users interact with the recommendation system, and to evaluate the quality of the
framework through the real environment. However, there are many potential business
risks and deployment costs in the online environment, so we use offline evaluation to
complete this task.

The offline evaluation tests the policy’s effect learned by the framework, as shown
in Algorithm 2. The initial item and state representation are observed in the offline log.
The recommendation agent calculates the recommended action vector at according to the
current state and policy πθ . Then, the item’s score is calculated, and it is recommended
according to the score. Finally, the current reward rt is calculated according to the offline
log, the user’s state st+1 is updated, and the recommended items are deleted from the
candidate pool.
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Algorithm 1: Training Process
Input: Actor learning rate ηa, Critic learning rate ηc, Discount factor γ, Batch size

N, state window size n, Reward function R, target network parameter τ
Output: Parameter θ for Actor network, parameter ω for Critic network

1 Randomly initialize parameters θ of Actor network πθ and parameters ω of Critic
network Qω Initializes parameters θ

′
of Actor Target network π

′
and parameters

ω
′

of Critic Target network Q
′

Initialize the experience replay pool D for
session = 1, M do

2 Observe that the initial state represents s0 according to the state representation
module for t = 1, T do

3 Observe the current state st = f (Ht), where Ht = {i1, i2, . . . , in} Compute
the action a = πθ(st) according to ε− greedy Recommended items it are
ranked according to item scores Calculate the reward rt = R(st, at) based
on user feedback Observe the new state st+1 = f (Ht+1) Save the state
transition quadruple (st, at, rt, st+1) to D Sample a small batch of quad
(si, ai, ri, si+1) from the experience replay pool Setting up
yi = ri + γQw′ (si+1, π

θ
′ (si+1)) Update the Critic network through the

loss function L = 1
N ∑i(yi −Qw(si, ai))

2 Update the Actor network by
sampling the policy gradient function
∇θ J(πθ) ≈ 1

N ∑t∇aQw(s, a)|s=st ,a=πθ(st)∇θπθ(s)|s=st Update the target

network parameters: θ
′ ← τθ + (1− τ)θ

′
ω
′ ← τω + (1− τ)ω

′

4 return θ and ω

Algorithm 2: Offline Evaluation Process
Input: State window size n, and Reward function R

1 Observe the initial project and state set according to the offline log for t = 1, T do
2 Observe that the initial state represents the s0 according to the state

representation module for t = 1, T do
3 Observe the current state st Calculate the action at = πθ(st) according to

the current policy Observe the recommended item it according to the
rating of the item Calculate the reward rt = R(st, at) according to the
feedback in the log Update state st+1 = f (Ht+1) Remove items from the
candidate set

5. Experiment
5.1. Dataset and Evaluation Metrics

The MovieLens dataset contains multiple user ratings of various movies, movie meta-
data, and user attribute information. The Lastfm dataset is a public benchmark dataset
released by HetRec in 2011, including users, artists, and their interactions with each other.
The specific statistics of the dataset are in Table 1, and we use the real-world public Movie-
Lens and Lastfm datasets for our experiments.

Table 1. Dataset Statistics.

Dataset User Item Rating

MovieLens (100k) 943 1682 100,000
MovieLens (1M) 6040 3952 1,000,209

Lastfm 1892 17,632 92,834

• MovieLens (100k): A stable benchmark dataset of 100,000 ratings given to 1700 movies
by 1000 users.
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• MovieLens (1M) : A stable benchmark dataset consisting of 1 million ratings from
6000 users for 4000 movies.

• Lastfm dataset: a stable benchmark dataset of 100,000 listening histories of 17,000
songs by 2000 users.

We evaluated the MovieLens and Lastfm datasets offline, and used Precision@k and
NDCG@k to assess the model’s effectiveness. Precision focuses on prediction accuracy,
while NDCG focuses on the relevance of recommendations. Precision@k indicates that the
first k recommended items are relevant, and Precision@k is defined as follows:

Precision@k =
Relu ∩ Recu

Recu
, (9)

where Relu denotes the items relevant to user u (test set), and Recu represents the top k
lists recommended to the user. NDCG is the metric in the recommendation that indicates
predictive relevance, and NDCG@k is defined as follows:

DCG =
k

∑
i=1

2reli − 1
log2 (i + 1)

, (10)

IDCG =
k

∑
i=1

1
log2 (i + 1)

, (11)

NDCG@k =
DCG@k
IDCG

, (12)

where reli denotes the recommended relevance at position i. Relevance is denoted by 1,
and irrelevance is denoted by 0.

5.2. Baseline Algorithms

As our baseline models, we select the BRP [26], NCF [27], and DRR [22] models, which
are discussed below:

• BPR: BPR is a personalized ranking framework, a general learning algorithm to obtain
the maximum a posteriori estimator via Bayesian analysis.

• NCF: NCF is a recommendation framework based on neural network collaborative
filtering, which uses matrix factorization and neural networks to learn the user–item
interaction function.

• DRR-p: DRR is a recommendation method based on deep reinforcement learning.
This method models the dynamic interaction process of the recommendation system
and uses three state representation structures. DRR-p is a method in the state represen-
tation module that exploits the product between items to capture local relationships
between features.

• DRR-u: DRR-u is another feature representation method in the DRR framework,
which uses the product between items and users to capture the relationship between
features.

• DRR-ave: DRR-ave is also the third method of the state representation module in the
DRR model. It is the average pooling and inner product of embedding vectors of users
and items to obtain the user feature representation.

5.3. Experimental Setup

We randomly divide each user’s session in each dataset with a ratio of 8 to 2 for the
training and test sets, respectively. For the datasets in the paper, the ratings are between
0–5, so we assume that scores of 4 and 5 are positive, and 0–3 are negative. The number of
recent positive scoring items is set to 5, and the discount factor γ is set to 0.9. We apply L2
norm regularization to the framework method with Adam optimizer to prevent overfitting.
In order not to recommend each item repeatedly, the item is removed from the candidate
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set after it has been recommended. For the reward function, we normalize it to [−1,1] and
use the normalized result as the reward.

Specifically, in time step t, the recommendation system recommends item j to user i. If
user u does overestimate item j, ratei,j is obtained from the interaction log. Otherwise, the
ratei,j is calculated by the simulator as follows:

R(s, a) =
1
2
(ratei,j − 3), (13)

We view the recommendation process as modeling an interaction set of size T and
adjusting it for different datasets.

5.4. Experimental Results and Analysis

The offline evaluation results are shown in Tables 2–4, where the best experimental
results are shown in bold. Our recommendation framework is better than the baseline
framework on the indicators Precision@5, Precision@10, NDCG@5, and NDCG@10. It also
proves that our proposed framework is effective. Specifically, the accuracy of our proposed
framework is much better than that of the control frameworks, which shows that our
framework is robust in recommendation relevance. Furthermore, NDCG is also improved,
which shows that our framework performs better in the ranking recommendation results.

Table 2. Experimental Results on MovieLens (100k) Dataset.

Model Precision@5 Precision@10 NDCG@5 NDCG@10

BPR 0.4814+51.9% 0.6532+9.0% 0.3284+188.9% 0.3838+143.4%
NCF 0.5217+40.2% 0.6066+17.4% 0.3501+171.0% 0.4164+124.3%

DRR-p 0.6866+6.5% 0.6679+6.6% 0.9318+1.8% 0.9314+0.3%
DRR-u 0.6991+4.6% 0.6670+6.8% 0.9429+0.6% 0.9247+1.0%

DRR-ave 0.6848+6.8% 0.6562+8.5% 0.9414+0.8% 0.9278+0.7%
DDRCN 0.7312 0.7121 0.9489 0.9341

Table 3. Experimental Results on MovieLens (1M) Dataset.

Model Precision@5 Precision@10 NDCG@5 NDCG@10

BPR 0.5200+53.3% 0.6937+8.3% 0.3528+170.6% 0.4046+131.6%
NCF 0.4478+78% 0.6308+19.2% 0.2985+219.8% 0.2564+164.1%

DRR-p 0.7718+3.3% 0.7483+0.4% 0.9490+0.6% 0.9412+0.1%
DRR-u 0.7712+3.3% 0.7393+1.7% 0.9534+0.1% 0.9341+0.8%

DRR-ave 0.7839+1.7% 0.7415+1.4% 0.9508+0.4% 0.9389+0.3%
DDRCN 0.7970 0.7516 0.9546 0.9413

Table 4. Experimental Results on Lastfm Dataset.

Model Precision@5 Precision@10 NDCG@5 NDCG@10

BPR 0.6173+5.6% 0.6332+1.1% 0.4929+91.1% 0.4359+112.3%
NCF 0.6081+7.2% 0.6390+0.2% 0.4928+91.1% 0.4214+119.6%

DRR-p 0.6266+4.0% 0.5902+8.5% 0.9355+0.7% 0.9152+1.1%
DRR-u 0.6312+3.2% 0.6000+6.7% 0.9343+0.8% 0.9207+0.5%

DRR-ave 0.6492+0.4% 0.6191+3.4% 0.9376+0.5% 0.9238+0.2%
DDRCN 0.6516 0.6402 0.9419 0.9254

Therefore, we can draw two conclusions: (1) Our proposed recommendation frame-
work fully mines the feature relationship between users and data, and the results are better
than the DRR framework [22]. (2) Modeling the recommendation process as a continuous
dynamic process is helpful for the long-term cumulative return of recommendations and
the satisfaction improvement of recommendation results.
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5.5. Parameter Study

We investigate the impact of the length of the episode on the recommendation perfor-
mance, as shown in Figure 5. The dataset is MovieLens (1M), and we calculate Precision@5
and the average reward by setting different episodes. The results show that the accuracy
and average reward of the recommendation framework increase and reach a peak with
the increase in T, and then gradually plateau after decreasing. The reason for is that the
recommendation agent continuously explores and exploits during the training process,
reaching a peak at around T = 11, which is the equilibrium point. Moreover, the small
accuracy and average reward in the early stage are due to insufficient interaction between
the user and the recommendation agent.

Figure 5. Study of episode length T on the MovieLens dataset.

6. Conclusions

In this paper, we propose a deep deterministic policy gradient recommendation
framework incorporating deep cross networks to consider the data cross relationship, and
we solve the continuity problem in recommendation systems. It is based on the Actor-
Critic architecture, where the Actor network and the Critic network are responsible for
recommendation action generation and value estimation, respectively. The dual networks
interact continuously with feedback until the model converges. We use a deep cross
network to mine the feature relationships between data, and a deep deterministic policy
gradient approach to training the DDRCN, based on a greedy policy, to cause the model to
converge to a recommendation reward with high cumulative returns. We use the Precision
and NDCG metrics in the information retrieval domain to evaluate the DDRN. We conduct
relevant experiments on the publicly available datasets MovieLens and Lastfm, and the
experimental results outperform the existing baseline methods in terms of Precision@5,
Precision@10, NDCG@5, and NDCG@10. In the following research, we will consider issues
such as recommendation efficiency, and explore deeper recommendation data features such
as semantics.
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