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Abstract: The recent emergence of futuristic ships is the result of advances in information and com-
munication technology, big data, and artificial intelligence. They are generally autonomous, which
has the potential to significantly improve safety and drastically reduce operating costs. However, the
commercialization of Maritime Autonomous Surface Ships requires the development of appropriate
technologies, including intelligent navigation systems, which involves the identification of the current
maritime traffic conditions and the prediction of future maritime traffic conditions. This study aims
to develop an algorithm that predicts future maritime traffic conditions using historical data, with
the goal of enhancing the performance of autonomous ships. Using several datasets, we trained
and validated an artificial intelligence model using long short-term memory and evaluated the
performance by considering several features such as the maritime traffic volume, maritime traffic
congestion fluctuation range, fluctuation rate, etc. The algorithm was able to identify features for
predicting maritime traffic conditions. The obtained results indicated that the highest performance of
the model with a valid loss of 0.0835 was observed under the scenario with all trends and predictions.
The maximum values for 3, 6, 12, and 24 days and the congestion of the gate lines around the analysis
point showed a significant effect on performance. The results of this study can be used to improve the
performance of situation recognition systems in autonomous ships and can be applied to maritime
traffic condition recognition technology for coastal ships that navigate more complex sea routes
compared to ships navigating the ocean.

Keywords: maritime autonomous surface ship; intelligent navigation system; prediction of maritime
traffic condition; situation recognition system; long short-term memory

1. Introduction

The application of information and communication technology, big data, and artificial
intelligence technology to the conventional concept of ships has led to the emergence of
futuristic ships, which are safer and more efficient compared to conventional ships. In
general, futuristic ship refers to a Maritime Autonomous Surface Ship that can navigate
without intervention from the crew. Thus far, several countries have implemented policy
support and government-led projects to preempt the autonomous ship industry. In South
Korea, the “autonomous ship technology development project” is being jointly conducted
by the Ministry of Oceans and Fisheries and the Ministry of Trade, Industry, and Energy.

In the commercialization of autonomous ships, it is necessary to develop appropriate
technologies including Intelligent navigation systems, Engine automation systems, Per-
formance verification center and verification technology, and Operation technology and
standardization, which represent the core components of the ‘Intelligent navigation system’
that will replace navigators and captains.

The ‘Intelligent navigation system’ consists of situation recognition of maritime traffic
conditions, generation and following of routes, collision avoidance, and returning routes.
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The situation recognition of maritime traffic conditions involves the identification of the
current traffic conditions and the prediction of future traffic conditions. This is a prior
technology that is essential to ensure the safe navigation of autonomous ships. Situation
recognition technology for determining maritime traffic conditions generally involves the
use of cameras or the identification of the current maritime traffic conditions based on
traffic data. This aspect is a critical component in the development of route generation
algorithms or the collision avoidance algorithms of autonomous ships.

In the process of recognizing a situation, navigators predict future maritime traffic
conditions using empirical and intuitive judgment based on traffic data in addition to a
visual assessment of traffic conditions. Based on these factors, decisions are made regarding
the safety of a route and collision avoidance. Therefore, for an autonomous ship to generate
a safer route and to efficiently perform collision avoidance considering future maritime
traffic conditions, it is necessary to predict future maritime traffic conditions as well as to
assess current conditions.

Consequently, in this study, we aimed to develop an algorithm that predicts future
traffic conditions based on past traffic data to improve the performance of the recognition
system of autonomous ships. It was determined that the developed algorithm can be used
not only to improve the recognition system of autonomous ships but can also be applied to
maritime traffic condition recognition for coastal ship navigation along complex routes.

The Main Contributions of the paper are as follows:

• Development of an intelligent LSTM-based prediction algorithm for Maritime
Traffic Conditions;

• Feature Augmentation for maritime traffic congestion;
• Utilizing large amount of data for traffic conditions;
• Motivation to develop Maritime Autonomous Surface Ships;
• Development of an Intelligent navigation system.

The rest of the paper is structured as follows: We briefly discuss the related work in
Section 2, where we discussed different kind of maritime traffic condition predictions with
linear and nonlinear methodologies. In Section 3, we discussed the theory of maritime traffic
conditions. In Section 4, the LSTM and feature augmentation-based prediction algorithm
of maritime traffic condition is discussed in detail with experimental results. In Section 5,
the algorithm’s validation is given. Finally, the conclusions are drawn in Section 6.

2. Related Work

The prediction of maritime traffic conditions is one of the most challenging tasks,
especially when talking about Maritime Autonomous Surface Ships. The automation
challenges may vary depending on the scenario between land and sea. Vehicles on the road
or highways usually travel in a lane; if we consider ships, they can travel in any direction
depending on the sea currents’ directions. Furthermore, compared to the vehicle traffic
regulations, the Convention on the International Regulations for Preventing Collisions
at Sea (COLREGs) is dependent upon the operator experience, which is less accurately
codified. Consequently, exertion will be increased to predict a ship’s behavior.

The studies about prediction of maritime traffic conditions are based on trajectory
prediction and index prediction. The linear model of trajectory prediction can deal with the
prediction of trajectories when the ship sails straight; these linear models (LM) are called
constant velocity models (CVM). For Example, Perera and Soares [1] proposed an ocean
vessel trajectory prediction based on an Extended Kalman filter with a curvilinear motion
model with the measurements by a linear position model. Pallotta et al. [2] proposed
an Ornstein–Uhlenbeck process based on control theory, and the method was based on
the OU stochastic process used for ship prediction. Historical patterns of life estimated
the parameters. Millefiori et al. [3] proposed a novel technique for long-term target state
prediction, and the method is based on Stochastic Mean-Reverting Process. Sang et al. [4]
developed a three-step closest point of approach (CPA) search method to accurately predict
the ship’s future trajectory. The AIS data used in this paper were based on the Speed Over
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Ground (SOG), Course Over Ground (COG), Change of Speed (COS), and rate of turn
(ROT) data. However, the prediction model’s accuracy depends on the label and physical
knowledge recognition. Jaskolski [5] proposed a discrete Kalman filtering algorithm for
dynamic data estimation to estimate the missing ship’s position distribution of trajectory
points linearly. Zhang et al. [6] solved a trajectory prediction problem with wavelet analysis;
the state transition model they used is based on the Hidden Markov Model to accurately
predict the ship’s future position and large ship trajectory by constructing a Markov chain.

Currently, for predictive traffic management and monitoring, Kongsberg’s C-SCOPE
solution [7] is the current commercial production system mainly dependent on linear
models. Nevertheless, the LM-based techniques perform uncertainly when the vessel
wants to change speed or course and tend to drift under specific conditions. Consequently,
to overcome these limitations of linear models, many papers presented nonlinear models
to enhance prediction accuracy.

The conventional nonlinear marine dynamics [8] utilized machine learning and deep
learning [9]. However, each ML and DL strategy has different benefits and applications.
Sometimes ML makes good predictions, while deep learning is time and space-consuming.
On the other hand, deep learning is outstanding for large amounts of data, and outper-
forms ML models. Zandipour et al. [10] proposed an enhanced neurobiological-inspired
algorithm, which takes real-time maritime tracking data to learn motion pattern models
for situation awareness. Xiaopeng et al. [11] proposed a combination of grey prediction
and an improved Markov model for island vessel trajectory prediction based on AIS data.
Qi and Zheng [12] presented a machine learning and data mining-based vessel trajectory
prediction. The main algorithm they used is a support vector machine (SVM) to cluster
trajectories and classify them. Zhang et al. [13] proposed a big data analytics method to
evaluate ship grounding risk in actual environmental circumstances, and they also applied
big data on AIS nowcast data. Zhao et al. [14] presented an ensemble machine-learning
framework for basic AIS data cleaning and removed all outliers in the data. The clean
data are used to predict trajectory variation tendency in ships. The method is verified with
three ship trajectory segments. Tu et al. [15] did a comprehensive survey from data to
methodology and argued that new algorithms must be developed for accurate maritime
traffic conditions. Most of the present path prediction algorithms are built on a fast update
prediction method such as the Kalman filter. Due to the popularity and advancement
of deep learning methods [16], efficient data-driven methods are becoming increasingly
popular among researchers.

The index prediction includes predicting quantitative indicators expressing various
maritime traffic conditions, including congestion, density, risk of collision, predicting
maritime accidents, and so on. Son et al. [17] proposed a method that predicted maritime
traffic congestion by combining the automatic identification systems of ships and port
management information data. Ramin et al. [18] used timeseries models and the associative
models to predict the maritime traffic density of Port Klang and the Straits of Malacca.
For the prediction of maritime traffic flow, Zhou et al. [19] used deep learning solutions
such as CNN, LSTM, and BDLSTM-CNN. Zhang et al. [20] used an improved PSO-BP
mechanism which is a self-adaptive particle swarm optimization-back propagation. Lastly,
Liang et al. [21] used a Spatio-Temporal Multigraph Convolutional Network to achieve
fine-grained vessel traffic flow prediction.

In order to prevent marine accidents, the possibility of maritime accidents can be
predicted, and there is also a method of predicting the risk of collision, which is the
main cause of marine accidents. Liu et al. [22] and Namgung and Kim [23] proposed
the system to predict regional collision risk using the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) technique and a Recurrent Neural Network (RNN). To
predict maritime accidents, Yang et al. [24] used Machine learning (ML) technology such as
the random forest (RF) model, Adaboost model, gradient boosting decision tree (GBDT)
model, and Stacking combined model and compared the result. Otay and Özkan [25]
proposed a stochastic model using the geographical characteristics of the Istanbul strait
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and visualized risk map. There are studies that have used modern AI algorithms to make
predictions; Abdel-Razek et al. [26] used Artificial Intelligence to improve energy efficiency
in buildings. The focus of the article is on the implementation of an AI model that predicts
room occupancy based on thermal comfort parameters such as temperature, humidity,
and air velocity. Imran et al. [27] focused on the application of artificial intelligence
techniques for predicting and detecting marine corrosion. They present case studies and
experimental results to demonstrate the efficacy of these techniques in detecting and
predicting marine corrosion and conclude that the application of artificial intelligence
has the potential to revolutionize the field of marine corrosion prediction and detection.
El Mekkaoui et al. [28] propose an algorithm that predicts future ship speed based on past
data using a deep learning model. They also perform linear interpolation to handle missing
data and apply feature augmentation to improve the performance of the model. The results
of the study show that the proposed algorithm outperforms existing methods in terms of
prediction accuracy.

In the above related studies, there was no study to identify which feature affected
the prediction of maritime traffic congestion. Therefore, in this study, we tried to find the
significant features for predicting maritime traffic congestion through feature augmentation
and build a prediction algorithm of maritime traffic congestion using LSTM.

3. Maritime Traffic Conditions

Maritime traffic conditions refer to the comprehensive state of ship operators, ships,
and the environment that constitute maritime traffic, and there are various ways to express
them using quantitative indicators.

Maritime traffic congestion is an index that can be expressed as the percentage of the
actual maritime traffic volume against the maritime traffic volume of a navigational passage.
It is often used as a simple indicator of the average traffic volume and congestion of a navi-
gational passage [29,30]. Maritime traffic congestion is also used as an index to select traffic
conditions to evaluate the efficacy of the collision avoidance algorithms of autonomous
ships [31]. Equation (1) is an expression for calculating maritime traffic congestion.

Tc (%) =
Qt

Qp
·100(%) (1)

where

Tc = Maritime traffic congestion,
Qt = Actual maritime traffic volume,
Qp = Practical maritime traffic volume.

Since the area required for safe navigation of a vessel is usually proportional to the
squared length of the ship, the actual maritime traffic volume is the summation of the
length squared conversion traffic volumes by tonnage group, which is calculated as the
product of number of ships and the length squared coefficient. Equations (2) and (3) are the
expressions for calculating actual maritime traffic volume and length squared conversion
traffic volume.

Qt =
∑m

n=1 Vn

D·T (2)

where

Vn = Length squared conversion traffic volume by tonnage group,
D = Port operation day,
T = Port operation time,
m = Number of tonnage group.

Vn = Nn·
(

Ln
2
)

(3)

where

Nn = Number of ships by tonnage group,
Ln = Length coefficient by tonnage group.



Appl. Sci. 2023, 13, 2556 5 of 18

Length coefficient is ratio of the representative length to the standard length of ships,
representative length of ships is proportional to the cube root of average tonnage of ships,
and standard length of ships is a weighted average of the representative length of ships
by tonnage group. Equations (4) and (5) are the expressions for calculating length and
representative length of ships.

Ln =
Rn

S
(4)

where

Rn = Representative length of ships by tonnage group,
S = Standard length of ships.

Rn = 3
√

250·ATn (5)
where

ATn = Average tonnage of ships by tonnage group.

Practical maritime traffic volume is the value obtained by multiplying the maximum
maritime traffic volume by the practical maritime traffic capacity coefficient, and the
practical maritime traffic capacity coefficient generally has a value of 0.2 to 0.25. This
refers to the practically allowable traffic volume depending on sea and weather conditions,
maritime traffic conditions, and maritime traffic management methods, which means that
it is 20 to 25% of the maximum maritime traffic volume. Equation (6) is an expression for
calculating practical maritime traffic volume.

Qp = Qm·Cp (6)

where

Qm = Maximum maritime traffic volume,
Cp = Practical maritime traffic volume coefficient.

Maximum maritime traffic volume is a theoretical value that can be accommodated on
a passage of width W, assuming that ships of a certain size are continuously navigating at
speed V. The size of the ship is determined by the elliptical ship domain, which is the area
necessary for the ship to navigate safely, and α and β mean the major and minor axes of
the ship domain. There are many theories about the shape and size of a ship domain, the
elliptical ship domain is common. α usually has a value of 6.0 to 8.0 and β has a value of
1.6 to 3.2. Equation (7) is an expression for calculating maximum maritime traffic volume.

Qm =
W·V

α·β·S2 (7)

where

W = Width of passage,
V = Velocity of ship,
α = Major axis coefficient,
β = Minor axis coefficient.

Meanwhile, maritime traffic density is a metric that represents the number of navi-
gation units per unit area that exists in an arbitrary period, as opposed to evaluating only
the traffic capacity, which is the number of navigation units per arbitrary unit area per
hour. Based on the evaluation of maritime traffic density, it is possible to derive a result
considering the frequency of the navigating ships (ρ1) and the occupied area of navigating
ships (ρ2) within a gridded sector [32]. Maritime traffic density is also used as an indicator
in the design of coastal routes [33].

In addition, there is a potential assessment of the risk model, which is an index that
includes the subjective risk of ship operators considering the overall condition of the ship
and the environment [34]. It is also used in the development of collision risk notification
algorithms for small ships [35].
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Various quantitative methods for expressing maritime traffic conditions have different
contents, depending on each method, and they must be utilized in compliance with the
characteristics of the sea area and the purpose of the review.

This study aimed to develop a future maritime traffic condition prediction algorithm
for maritime traffic congestion using the quantitative indicators for maritime traffic condi-
tions adopted in the Guidelines on Maritime Traffic Safety Audit in accordance with the
Maritime Safety Act in South Korea [36], which is to evaluate the safety of all types of port
and water facilities in relation to ships’ passages.

4. Prediction Algorithm of Maritime Traffic Condition
4.1. Construction

The construction process of the artificial intelligence algorithm consisted of 6 steps:
obtaining the dataset, data pre-processing, feature augmentation, model design, train-
ing/validation of the model, and results validation. Figure 1 shows a construction diagram
of the algorithm.
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The dataset used in this study included the data from the automatic identification sys-
tem (AIS). AIS is an important equipment required for ship operation, such as monitoring
ship operation and identifying safe navigation conditions. According to the International
Convention for the Safety of Life at Sea (SOLAS), it is compulsory to install AIS on all
passenger ships and sailing ships with a gross tonnage of 300 tons or more.

Data pre-processing refers to the process of creating a shape suitable for data analysis
and processing, and generally interpolates missing data or processes erroneous data. No
matter how good the tool or analysis technique is, it is difficult to obtain good results with
low-quality data, so about 80% of the total time is usually spent on data pre-processing.
In the data pre-processing step, a range was selected according to the characteristics
of the maritime traffic data, and pre-processing was performed using the interquartile
range (IQR).
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Similar to data augmentation, feature augmentation is an operation of extracting
features by processing original data using domain knowledge. In the feature augmentation
step, various features were obtained from the basic features to increase the prediction
reliability for maritime traffic congestion.

Considering that maritime traffic data are time-series data, the long short-term memory
(LSTM) model was used, which is a representative model for processing time-series data.

4.2. Data Preparation

Preparation of the data involves obtaining a dataset and pre-processing the data. There
are various data related to maritime traffic conditions such as AIS, V-PASS, and LTE-M.
AIS data are for ships with a gross tonnage of 300 tons or more. In addition, V-PASS data
are data for fishing boats, and LTE-M data are provided from a wireless communication
network that introduces LTE communication technology to the sea as a basis for providing
intelligent maritime traffic information to ships sailing up to 100 km from the coast of Korea.
However, personal access to LTE-M data is limited. Considering this comprehensively,
AIS data were used in this study. AIS data were collected using AIS transponder capable
of collecting both A class and B class, and position reports messages, ship static and
voyage-related data messages were used. In addition, coordinate transformation was not
performed for gate line analysis using WGS-84(World Geodetic System-84) based software
(XTSSRC_v1.0). Table 1 is the description of the dataset.

Table 1. Description of dataset.

Static Data Dynamic Data

Size 8.22 MB 558 GB

Number of records 142,160 8,259,187,180

Type of information

Maritime Mobile Service Identity
number (Integer),

Ship’s name (Text),
Ship’s type code (Integer),

International Maritime
Organization number (Integer),

Call sign (Text),
Length of all (Integer),

Breath (Integer),
Draft (Integer).

Maritime Mobile Service
Identity number (Integer),

Latitude (Double),
Longitude (Double),

Course of ground (Float),
Speed of ground (Float),

Heading (Integer),
Time (DateTime).

The target sea area was limited to Ulsan Port, the largest industrial support port in
Korea; there are several fairways including the entrance for Ulsan Port. Among those, the
most complicated gate line of No.1 Fairway was selected as the analysis point, which is
near the gate line of No.3 Fairway and the entrance for Ulsan Port. The period of the data
is from 1 September 2019 to 31 August 2020. Figure 2 is an example of the visualization of
the AIS data of the target sea area.

Data pre-processing is a process that increases the reliability of data and is a very
important step since it directly affects training results.

The AIS data consisted of dynamic, static, navigation-related, and safety-related
information. Except for the dynamic information, the reception period of the remainder
was 6 min, and the reception period of dynamic information changed from a minimum
of 2 s to a maximum of 3 min, depending on the class of the AIS equipment and the
dynamic condition of the ship. The occurrence of missing data was addressed through the
implementation of linear interpolation. Moreover, a large number of outliers was present
depending on the marine conditions and the communication environment, and these errors
were addressed during the data pre-processing process.
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The range of outliers was first selected by considering the characteristics of the target
sea area. Outliers were removed using the IQR (interquartile range), which is the difference
between the values in the top 75% and bottom 25% of the quartile. Equations (8) and (9)
are expressions for calculating outliers using IQR.

IQR = Q3 −Q1 (8)

{a | [a < (Q1 − 1.5·IQR)] ∪ [a > (Q3 + 1.5·IQR)]} (9)

where

Q1: Midpoint of the lower half of the data values,
Q2: Midpoint of the upper half of the data values.

4.3. Feature Augmentation

There are many factors to be considered when predicting maritime traffic. The main
factors include the number of ships and the maritime traffic volume, among others. Addi-
tionally, there are other factors such as weather conditions, waves, tidal and surface currents,
the depth of water, the shape of the seabed as obtained from electronic navigational charts,
and maritime traffic regulations, including port speed limits.

Features for predicting maritime traffic congestion include the predicted values of the
number of ships and the maritime traffic volume, which means length squared conversion
traffic volume; however, more features are required for a highly reliable prediction. There-
fore, new features were obtained from the existing features through feature augmentation to
improve the performance of the developed algorithm. Feature augmentation is a technique
used in machine learning to increase the size of the dataset. It is achieved by generating
new instances of the data using transformations or operations that preserve the underlying
structure of the data. These new instances are combined with the original data to create a
larger dataset that can be used to train a machine learning model.

The maritime traffic congestion variance width; variance rate; variance probability;
3-day, 6-day, 9-day, and 24-day averages; and maximum maritime traffic congestion were
selected as features in addition to the number of ships and maritime traffic volume. The
maritime traffic congestion of major gate lines around the target gate line was additionally
selected. The annual average was found to be 11.3% and the maximum value was 94.4%,
when the maritime traffic congestion of gate line A (No. 1 fairway) was analyzed. The
monthly average was the lowest in June (9.4%) and the highest in February (12.9%).
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The annual average was found to be 30.2% and the maximum value was 230.9% when
the maritime traffic congestion of gate line B (No. 3 fairway)—a major gate line around
the target gate line—was analyzed. The monthly average was the lowest in September
(28.3%) and the highest in March (33.2%). The annual average was found to be 6.7% and the
maximum value was 65.3% when the maritime traffic congestion of gate line C (entrance
to Ulsan Port) was analyzed. The monthly average was the lowest in June (5.5%) and the
highest in March (8.1%). Figures 3 and 4 show the hourly and monthly maritime traffic
congestion analysis results by each gate line.
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Among the features, the variance refers to the numerical expression of the degree of
change in maritime traffic congestion over a certain period. The variance analysis includes
the variance width, variance rate, and variance probability.

The variance width is used to obtain the magnitude of the average change in time-
series data; it has the benefit of obtaining estimates on a non-parametric scale because no
specific distribution is assumed. It is obtained using

1
(n− 1) ∑n

t=1(Tc(t)− Tc(t− 1)) (10)

The variance rate is the ratio between the variance width and the maritime traffic
congestion value, and it is expressed as

1
n ∑n

t=1 Tc(t)
1

(n−1) ∑n
t=1(Tc(t)− Tc(t− 1))

(11)

The variance probability is expressed in binary notation by comparing the variance
width with the maritime traffic congestion value. The variance probability is calculated
using

(n− 1)− α

(n− 1)
(12)

a = (n− 1)−∑n
t=1(Tc(t)− Tc(t− 1))

γn =

{
1 , Tc(t) > Frange

0 , Tc(t) ≤ Frange
(13)

where

α = Coefficient of inclusion of fluctuation range considering the period,
γn = Specifies whether the fluctuation range is included.

In addition, considering the characteristics of maritime traffic congestion, the average
and maximum values for 3, 6, 12, and 24 days were selected as the features. Figure 5
illustrates the results of analyzing the average, maximum, and minimum maritime traffic
congestion for 3, 6, 12, and 24 days.
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Figure 5. Average/maximum/minimum maritime traffic congestion (days 3, 6, 12, and 24).

4.4. Training and Experiment

The training model was designed using LSTM considering that maritime traffic data
are time-series data. Although LSTM has the drawbacks of requiring a long training time,
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consuming a large amount of memory, and being vulnerable to overfitting and sensitive
to random weight initializations, it was chosen due to its ability to handle long-term
dependencies and overcome the vanishing gradient problem commonly found in time
series prediction tasks. The LSTM includes three gates: input, forget, and output; each
gate determines the important information from the past and present input information
via the sigmoid and hyperbolic tangent functions [37]. The LSTM was composed of three
layers, and the hidden layer was set to 256 dimensions. The dimension of input layer
changes depending on the scenario. Figure 6 illustrates the configuration of the LSTM in
the developed algorithm while Table 2 summarizes the hyperparameters for training.
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Figure 6. LSTM configuration.

The ratio between the training and validation data for the model was set as 8:2.
We conducted an evaluation by dividing the data into 7:3 for training and validation
and compared the results with the previous 8:2 division. We did not observe significant
differences in the trend of result. The normalized mean square error (NMSE) was used as
the loss function. The mean square error (MSE) and NMSE are calculated using

MSE(x, y) = ∑i(xi − yi)
2/n (14)
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NMSE(x, y) = MSE(x, y)/MSE(x, 0) = ‖x− y‖2
2/‖x‖2

2 (15)

A total of eight training scenarios were created by dividing the features into the trend
and prediction. Table 3 lists the training and experimental scenarios.

Table 2. Hyperparameters for training.

Hyperparameters Value

Batch Size 24

Dropout Rate 0.6

Epoch 500

Learning Rate 0.001

Time Step 24

Optimizer Adam

Weight initializer Glorot_uniform

Gradient clipping Clip_by_value

Table 3. Configuration of training and experimental scenarios.

No.
Input

Output
Trend Prediction

(a) Congestion -

Congestion

(b) Congestion
Variance width/rate/Prob. -

(c) Congestion
3, 6, 12, 24 avg -

(d) Congestion
3, 6, 12, 24 max -

(e) Congestion Num of ship
Traffic Vol

(f)

Congestion
Variance width/rate/Prob.

3, 6, 12, 24 avg
3, 6, 12, 24 max

Num of ship
Traffic Vol

(g) - Congestion (B gate)
Congestion (C gate)

(h)

Congestion
Variance width/rate/Prob.

3, 6, 12, 24 avg
3, 6, 12, 24 max

Number of ships
Traffic Volume

Congestion (B gate)
Congestion (C gate)

4.5. Experimental Result

Based on model training and validation according to the scenario configurations, the
valid loss was determined to be 0.2717 in scenario (a) using only congestion. However, in
scenario (b) where the fluctuation range, fluctuation rate, and probability of varying within
the fluctuation range were examined, the model performance improved to 0.2182.

Scenario (c) considered congestion and the average value of congestion on days 3,
6, 12, and 24 and scenario (d) considered the maximum value on days 3, 6, 12, and 24;
they exhibited valid losses of 0.1490 and 0.1164, respectively. These values were higher
than that of the previous two scenarios. Particularly, in the case of scenario (d), relatively
high congestion was well predicted. Scenario (e) utilized congestion, the number of ships,
and traffic volume, and had a valid loss of 0.2047. This suggested that the performance
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of the model improved, similar to scenario (b). When all the features were used except
for the congestion of the other gate lines in scenario (f), the valid loss was 0.0842, which
exhibited high model performance. When using the congestion of the other gate lines in
scenario (g), the valid loss was 0.1520, which demonstrated that the performance of the
model was further improved compared to scenarios (b) and (e). When all features were
used in scenario (h), the valid loss was 0.0835, which was the highest model performance.

Figure 7 and Table 4 depict the model training results for each scenario, where sky
blue represents the validated data and orange indicates the predicted data.
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Figure 7. Model training results under each scenario: (a) Scenario with input data as Congestion;
(b) Scenario with input data as Congestion, Variance width/rate/Prob.; (c) Scenario with input
data as Congestion, 3, 6, 12, 24 avg.; (d) Scenario with input data as Congestion, 3, 6, 12, 24 max.;
(e) Scenario with input data as Congestion, Num of ship, Traffic Vol.; (f) Scenario with input data as
Congestion, Variance width/rate/Prob., 3, 6, 12, 24 avg., 3, 6, 12, 24 max., Num of ship, Traffic Vol.;
(g) Scenario with input data as Congestion(B Gate), Congestion(C Gate); (h) Scenario with input data
as Congestion, Variance width/rate/Prob., 3, 6, 12, 24 avg., 3, 6, 12, 24 max., Num of ship, Traffic Vol.,
Congestion(B Gate), Congestion(C Gate). The sky blue line represents actual data and orange line
represents predicted data.
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Table 4. Training and valid losses under each scenario.

No. Training Loss Valid Loss

(a) 0.2094 0.2717

(b) 0.1574 0.2182

(c) 0.1205 0.1490

(d) 0.0943 0.1164

(e) 0.1491 0.2047

(f) 0.0647 0.0842

(g) 0.1116 0.1520

(h) 0.0677 0.0835

5. Algorithm Validation

Algorithm validation was performed using additional data that had not been used in
the training and validation processes for the model under scenario (h). Table 5 summarizes
the data used for verifying the results of the model.

Table 5. Data for verifying the results of the model.

Train Data Validate Data
Test Data

0.8 0.2

1 week 1 day

1 month 1 week

3 months 1 month

6 months 3 months

In the model training results, the valid loss was the lowest (0.0605) when using
one-month data and the second lowest (0.0801) when using three-month data. Table 6
summarizes the model training results based on the train/validate data length.

Table 6. Model training results according to the train/validate data length.

Train/Validate Data Train Loss Valid Loss

1 week 0.0514 0.1111

1 month 0.0367 0.0605

3 months 0.0570 0.0801

6 months 0.0744 0.1016

A higher performance was observed as the size of the train/validate data and test
data increased and when the model trained according to the train/validate data length
was validated by changing the length of the test data. The performance was guaranteed to
some extent when the data for more than a week were predicted using the data of at least
three months. Table 7 and Figure 8 present the model validation results based on the data
for the validated result length.
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Table 7. Model validation results according to the length of data.

Train/Valid
Data

Test Data

3 Months 1 Month 1 Week 1 Day

NMSE

1 week 1.3919 1.4061 1.4141 1.4293

1 month 1.2895 1.3209 1.3663 1.4961

3 months 1.1746 1.2337 1.2543 1.3448

6 months 1.2150 1.2136 1.2552 1.5561

RMSE

1 week 0.1133 0.1247 0.1229 0.1242

1 month 0.1100 0.1217 0.1186 0.1206

3 months 0.1041 0.1168 0.1151 0.1186

6 months 0.1058 0.1159 0.1154 0.1224

MAE

1 week 0.0793 0.0882 0.0888 0.0979

1 month 0.0791 0.0871 0.0861 0.0950

3 months 0.0741 0.0844 0.0845 0.0853

6 months 0.0752 0.0826 0.0833 0.0848
Appl. Sci. 2023, 13, x FOR PEER REVIEW  16  of  19 
 

 

Figure 8. Model validation results according to the data for validated result length. 

The results of this study were compared to those of a paper that predicts maritime 

traffic flow, although not in the exactly same field, using a model trained on 6‐month data 

to predict 3‐month data. The comparison showed an improvement in performance, with 

a decrease in RMSE from 0.942 to 1.342 and a decrease in MAE from 1.448 to 1.698. Table 

8 and Figure 9 are comparison of the results. 

Table 8. Comparison of results with other prediction model. 

Performance 

Metrics 

Proposed 

Method 

Son et al. [17] 

CNN  LSTM  BDLSTM‐CNN 

RMSE  0.1058  0.2400  0.2100  0.2000 

MAE  0.0752  0.2450  0.2250  0.2200 

 

Figure 9. Comparison of results with other prediction model. 

6. Conclusions 

This study proposed a method of using data augmentation and LSTM to predict fu‐

ture maritime  traffic conditions. Scenarios were established by combining various  fea‐

tures, and model training and evaluation were performed. The results confirmed that the 

performance of the model improved as more features were applied. The maximum values 

Figure 8. Model validation results according to the data for validated result length.

The results of this study were compared to those of a paper that predicts maritime
traffic flow, although not in the exactly same field, using a model trained on 6-month data
to predict 3-month data. The comparison showed an improvement in performance, with a
decrease in RMSE from 0.942 to 1.342 and a decrease in MAE from 1.448 to 1.698. Table 8
and Figure 9 are comparison of the results.

Table 8. Comparison of results with other prediction model.

Performance
Metrics

Proposed
Method

Son et al. [17]

CNN LSTM BDLSTM-CNN

RMSE 0.1058 0.2400 0.2100 0.2000

MAE 0.0752 0.2450 0.2250 0.2200
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6. Conclusions

This study proposed a method of using data augmentation and LSTM to predict future
maritime traffic conditions. Scenarios were established by combining various features, and
model training and evaluation were performed. The results confirmed that the performance
of the model improved as more features were applied. The maximum values for 3, 6, 12,
and 24 days and the congestion of the gate lines around the analysis point showed a
significant effect on performance. The algorithm validation results based on the length of
train/validate data and test data indicate that a higher performance was observed with an
increase in the size of data. The performance was guaranteed to some extent when data for
more than a week were predicted by constructing the model using the data of at least three
months.

The limitations of this study are as follows:

(1) Maritime traffic congestion was predicted by applying the developed algorithm to a
specific point in one port; therefore, it is necessary to perform evaluation for various
points in several ports.

(2) The congestion of nearby gate lines was used as a feature. This could decrease the
accuracy of the algorithm if the influence of the nearby gate lines on the gate line to be
predicted is insignificant based on the scenario.

Despite these limitations, the results of this study can be used to improve the per-
formance of the situation recognition system of autonomous ships for identifying the
current maritime traffic conditions and predicting the future maritime traffic conditions by
identifying features for predicting maritime traffic conditions, constructing a model, and
presenting the appropriate length of data for prediction. Further, they are expected to be
used in maritime traffic condition recognition technology for coastal ships that navigate
more complex sea routes compared to ships navigating the ocean. As a future study, we
plan to evaluate algorithms developed for various ports and prepare countermeasures
for cases where the influence of neighboring gate lines is small as a feature for predicting
maritime traffic congestion. In addition, the performance of this algorithm will be validated
by combining the situational awareness system of an autonomous ships with generation
routes, collision avoidance, and returning routes of a coastal autonomous ships navigating
complex sea areas.
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