Real-Time Moving Ship Detection from Low-Resolution Large-Scale Remote Sensing Image Sequence
Abstract
:1. Introduction
2. Low-Resolution Sequence Target Detection Algorithm
2.1. Basic Framework
2.2. Preprocessing
2.3. Feature Identification
2.4. Association Identification
2.5. S-Yolo Identification
3. Experiment and Comparison
3.1. Parameter Description
3.2. Analysis of Experimental Results
3.3. Real-Time Performance Comparisons
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, F.; Wang, X.; Zhou, S.; Wang, Y.; Hou, Y. Arbitrary-oriented ship detection through center-head point extraction. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, J.; Yin, J.; Xie, J.; Wu, B. Review on mission planning strategies and Applications of Earth Observation satellites. Radio Eng. 2021, 51, 681–690. [Google Scholar]
- You, Y.; Ran, B.; Meng, G.; Li, Z.; Liu, F.; Li, Z. OPD-Net: Prow detection based on feature enhancement and improved regression model in optical remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2020, 59, 6121–6137. [Google Scholar] [CrossRef]
- Qi, Y.; Chen, M.; Wang, M.; Xu, Y.; Gao, F.; Zeng, F.; Niu, J.; Shi, W. Exploration practice and development suggestions of commercial remote sensing satellites in China. Spacecr. Eng. 2021, 30, 188–194. [Google Scholar]
- Tan, Y.; Liang, H.; Guan, Z.; Sun, A. Visual Saliency Based Ship Extraction Using Improved Bing. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1292–1295. [Google Scholar]
- Zhang, Y.; Wen, F.; Gao, Z.; Ling, X. A coarse-to-fine framework for cloud removal in remote sensing image sequence. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5963–5974. [Google Scholar] [CrossRef]
- Xiong, Y.; Ding, S.; Deng, C.; Fang, G.; Gong, R. Ship detection under complex sea and weather conditions based on deep learning. J. Comput. Appl. 2018, 38, 3631–3637. [Google Scholar]
- Wang, X.; Jiang, H.; Keyu, L. Ship detection in remote sensing images based on improved YOLO algorithm. J. Beijing Univ. Aeronaut. Astronaut. 2020, 46, 1184–1191. [Google Scholar]
- Liu, Y.; Yao, L.; Xiong, W.; Zhou, Z. Fusion detection of ship targets in low resolution multi-spectral images. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6545–6548. [Google Scholar]
- Zhuang, Y.; Li, L.; Chen, H. Small sample set inshore ship detection from VHR optical remote sensing images based on structured sparse representation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2145–2160. [Google Scholar] [CrossRef]
- Yao, L.; Zhang, X.; Lyu, Y.; Sun, W.; Li, M. FGSC-23: A large-scale dataset of high-resolution optical remote sensing image for deep learning fine grained ship recognition. J. Image Graph. 2021, 26, 2337–2345. [Google Scholar]
- Yu, J.; Peng, X.; Li, S.; Lu, Y.; Ma, W. A Lightweight Ship Detection Method in Optical Remote Sensing Image under Cloud Interference. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021; pp. 1–6. [Google Scholar]
- Kadyrov, A.; Yu, H.; Liu, H. Ship detection and segmentation using image correlation. In Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, 13–16 October 2013; pp. 3119–3126. [Google Scholar]
- Li, H.; Man, Y. Moving ship detection based on visual saliency for video satellite. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1248–1250. [Google Scholar]
- Xue, X.; Du, C.; Chen, Y.; Wang, S.; Yu, W.; Zhang, P. Fast Ship Tracking Algorithm for Remote Sensing Video Based on Background Data Mining And Adaptive Selection. In Proceedings of the 2021 IEEE International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China, 27–29 August 2021; pp. 345–351. [Google Scholar]
- Lin, X.; Yao, L.; Sun, W.; Liu, Y.; Chen, J.; Jian, T. GF-4 target tracking of moving ships in cloud fragmentation environment. Space Return Remote Sens. 2021, 42, 127–139. [Google Scholar]
- Yu, Y.; Yang, X.; Li, J.; Gao, X. A cascade rotated anchor-aided detector for ship detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 60, 1–14. [Google Scholar] [CrossRef]
- Yao, L.; Liu, Y.; Wu, Y.; Xiong, W.; Zhou, Z. Ship target tracking based on Gaofen-4 satellite. In Proceedings of the 4th Annual High Resolution Earth Observation Conference, Wuhan, China, 17–18 September 2017; pp. 1–16. [Google Scholar]
- Tian, Y. Application research and analysis of Gaofen-4 satellite. Sci. Technol. Innov. Guide 2020, 17, 22–23. [Google Scholar]
- Ren, Z.; Tang, Y.; He, Z.; Tian, L.; Yang, Y.; Zhang, W. Ship Detection in High-Resolution Optical Remote Sensing Images Aided by Saliency Information. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Lei, L.; Xu, G.; Li, W.; Song, Q. Ship target detection algorithm and hardware acceleration based on deep learning. Comput. Appl. 2021, 41, 162–166. [Google Scholar]
Type | Filter Number | Size/Stride | Output | |
---|---|---|---|---|
Backbone | Input | 52 × 52 | ||
Convolutional-1 | 16 | 3 × 3 | 52 × 52 × 16 | |
Maxpool-1 | - | 2 × 2/2 | 26 × 26 × 16 | |
Convolutional-2 | 32 | 3 × 3 | 13 × 13 × 32 | |
Maxpool-2 | - | 2 × 2/1 | 13 × 13 × 32 | |
Convolutional-3 | 64 | 3 × 3 | 13 × 13 × 64 | |
Maxpool-3 | - | 2 × 2/1 | 13 × 13 × 64 | |
Prediction | Yolo-1 | - |
No. | Model | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Yolo Tiny V2 [7] | Pt | Rc | F1 | Pt | Rc | F1 | Pt | Rc | F1 | Pt | Rc | F1 | Pt | Rc | F1 |
0.87 | 0.93 | 0.90 | 0.92 | 0.81 | 0.86 | 0.95 | 0.91 | 0.93 | 0.97 | 0.97 | 0.97 | 0.93 | 0.91 | 0.92 | ||
2 | Yolo Tiny V3 [8] | Pt | Rc | F1 | Pt | Rc | F1 | Pt | Rc | F1 | Pt | Rc | F1 | Pt | Rc | F1 |
0.87 | 0.97 | 0.93 | 0.88 | 0.88 | 0.88 | 0.95 | 0.88 | 0.91 | 0.97 | 0.90 | 0.93 | 0.92 | 0.91 | 0.92 | ||
3 | Proposed | Pt | Rc | F1 | Pt | Rc | F1 | Pt | Rc | F1 | Pt | Rc | F1 | Pt | Rc | F1 |
0.91 | 0.97 | 0.94 | 0.98 | 0.93 | 0.95 | 0.89 | 0.96 | 0.93 | 0.97 | 0.99 | 0.98 | 0.93 | 0.97 | 0.95 |
Model | Preprocessing | Feature Identification | Association Identification | S-Yolo Identification | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Poposed | Pt | Rc | F1 | Pt | Rc | F1 | Pt | Rc | F1 | Pt | Rc | F1 |
0.68 | 0.59 | 0.63 | 0.81 | 0.68 | 0.74 | 0.88 | 0.93 | 0.91 | 0.93 | 0.97 | 0.95 |
No. | Step | Sub-Step | Time Consumption |
---|---|---|---|
1 | Preprocessing | Morphological reconstruction | 0.3389 s |
Adaptive threshold segmentation | 0.1207 s | ||
Connected domain marker | 0.2220 s | ||
2 | Feature identification | S-HOG | 0.4245 s |
Binary SVM | 0.1503 s | ||
3 | Association identification | Association identification | 0.4836 s |
4 | S-Yolo identification | S-Yolo identification | 0.0153 s |
5 | Total | 1.7553 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Huang, D.; Shi, X.; Li, W.; Wang, X. Real-Time Moving Ship Detection from Low-Resolution Large-Scale Remote Sensing Image Sequence. Appl. Sci. 2023, 13, 2584. https://doi.org/10.3390/app13042584
Yu J, Huang D, Shi X, Li W, Wang X. Real-Time Moving Ship Detection from Low-Resolution Large-Scale Remote Sensing Image Sequence. Applied Sciences. 2023; 13(4):2584. https://doi.org/10.3390/app13042584
Chicago/Turabian StyleYu, Jiyang, Dan Huang, Xiaolong Shi, Wenjie Li, and Xianjie Wang. 2023. "Real-Time Moving Ship Detection from Low-Resolution Large-Scale Remote Sensing Image Sequence" Applied Sciences 13, no. 4: 2584. https://doi.org/10.3390/app13042584
APA StyleYu, J., Huang, D., Shi, X., Li, W., & Wang, X. (2023). Real-Time Moving Ship Detection from Low-Resolution Large-Scale Remote Sensing Image Sequence. Applied Sciences, 13(4), 2584. https://doi.org/10.3390/app13042584