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Abstract: Actuator failure and joint flexibility will dramatically impact space robot system control. In
this paper, free-floating flexible-joint space-manipulator dynamic-modeling is studied and a state-
observer-based robust backstepping fault-tolerant control is proposed for the system joint actuator
failure. Based on the flexible-joint simplified model, the system’s rigid-flexible coupled-dynamic
equations are established according to momentum conservation, angular momentum conservation,
and the Lagrange equation. Then the system is decoupled based on the singular perturbation method.
For the slow subsystem, a robust backstepping fault-tolerant controller base on a state observer
is designed to eliminate the angle error, compensate for the uncertain parameter and the external
disturbance, and achieve the joint-trajectory asymptotic-tracking. The use of a speed filter makes it
inappropriate to measure and provide feedback about the system’s velocity signals, so the controller is
simpler and more precise. For the fast subsystem, a velocity differential-feedback control is adopted to
suppress the system vibration caused by the flexible joint, to ensure the stability of the system. Finally,
the feasibility and effectiveness of the model and control method are proved by some simulations. The
simulation results indicate that the proposed fault-tolerant control method can make the free-floating
flexible-joint space manipulator system track the desired trajectory accurately and steadily, regardless
of whether the actuator fails or not.

Keywords: free-floating space manipulator; flexible joint; robust; backstepping; singular perturbation

1. Introduction

With the development of space technology, space robots have begun to undertake
more and more important tasks, such as the construction of space stations, the installation
and maintenance of space equipment, and the refueling of spacecraft. So research into the
dynamics and control of space robots is of great significance. The research in this field has
become a hotspot and has made remarkable progress [1–9].

For most manipulators, the motor is mounted at the joint to drive the link to complete
the motion. Therefore, research on the motion control of manipulator joints is extremely
important. Considering engineering practice, the connection between the motor rotor and
the link is connected through a harmonic-gear drive, so the joint shows flexibility. The
flexible joint can alleviate the impact force when the manipulator performs a task, reducing
the collision damage. However, flexible joints also introduce additional system errors
and unwanted vibrations, which will affect the control quality of the system [10,11]. The
free-floating flexible-joint space manipulator system is a nonlinear and strongly-coupled
system [12]. The interaction between rigid and flexible motion makes system-dynamics
analysis and control more difficult. The control method of ground-based robot systems
cannot be directly applied to the control of free-floating robot systems. At the same time,
the dynamic model of free-floating space manipulator systems is often uncertain due to
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the influence of parameter perturbation, load variation, fuel consumption, external distur-
bance, and other uncertain factors. The uncertainty will affect the system’s control quality.
At present, the modelling and the control of the flexible-joint have received extensive
attention, and many control methods have been proposed [13–20]. However, less research
exists on free-floating flexible-joint space manipulators. Zhan [21] proposed an extended
state-observer-based adaptive controller for flexible-joint space manipulators with dy-
namic uncertainties and joint-stiffness uncertainties. Liu [22] studied the compliant control
problem of a free-flying flexible-joint space robot. A non-singular composite impedance
controller with finite-time convergence based on backstepping method is designed. Xie [23]
studied the problems of dynamic modeling, motion control, and the vibration suppression
of free-floating flexible-links and flexible-joint space manipulators, and proposed a robust
fuzzy-sliding mode control method to achieve an accurate and stable control of the system.
Liu [24] proposed a robust control law, based on the backstepping technique for the case of
unknown time-varying disturbances and input saturation. A performance function and a
transformation function are introduced to improve the tracking performance. Based on
the singular perturbation method, Chen [25] designed a double adaptive control method,
which combines the multi-parameter adjustable non-deterministic-equivalent adaptive con-
trol method of the slow subsystem and the adaptive control method of the fast subsystem,
to realize the motion control and flexible vibration suppression of the flexible-joint space
robot on the flexible base with unknown parameters.

At the same time, we also consider that the actuator of the space robot may break
down after long-term work. The specific performance aspects drive the failure. Especially
in the harsh space environment, the probability of actuator failure is greatly increased.
However, due to the limitation of physical conditions, and the high cost of raw materials
and maintenance, maintenance of the actuator is quite difficult. Therefore, the space robot
system requires strong fault tolerance. At present, some achievements have been made
in the research of fault-tolerant algorithms [26–32]. Wu [33] developed an output-based
adaptive neural-tracking control strategy for the considered system against an actuator
fault. An observer is used to estimate the unavailable states. Li [34] proposed a finite-time-
command-filtered adaptive fault-tolerant control for a class of uncertain nonlinear systems.
The control method is an effective method to compensate for the influence of an actuator
fault in nonlinear systems; it can also guarantee the tracking performance and closed-loop
stability of the system. However, most of the research objects are ground-based rigid robotic
systems. They cannot be directly applied to the motion control of the space robot, and
their joint flexibility is not considered. There are few studies on fault-tolerant control of
space robots. Lei [35] designed an adaptive fault-tolerant controller for space robot systems
with uncertain parameters and local control failure of the joint actuator. The method can
estimate and give feedback on the effective fault factors, so it does not require the definite
value of the fault-effective factor. It is more suitable for practical engineering applications.
Yu [36] presented an adaptive sliding-mode fault-tolerant control method for a six-DOF
space robot with flexible panels. This method can ensure that the space robot with the
actuator fault reaches the predetermined position, and that it can suppress the vibration of
the flexible plate. Lei [37] proposed a hybrid controller consisting of a decentralized neural
network fault-tolerant controller for a slow subsystem and a PD feedback controller for a
fast subsystem. It can compensate unknown actuator faults and uncertain dynamics, obtain
H∝ convergence performance, and suppress residual vibration of the elastic base. Lei [38]
proposed an adaptive sliding mode fault-tolerant controller based on a fault observer. The
fault observer can accurately estimate the gain faults. Yet the subject of this study is the
rigid space robot system. The possibility of the existence of flexible joints in the robot
structure is not considered.

In conclusion, research into flexible-joint or fault-tolerant control has been carried out,
but most studies are aimed at the ground-based robot system. Although the modeling
and control method can be used as a reference for the free-floating flexible-joint space
manipulator, there are great differences because of the space robot’s free-floating base,
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which will make the nonlinear and coupling characteristics of the system more intense,
and system control more difficult. More importantly, current research on flexible-joint
space robots rarely considers the case of actuator failure, and some consider that the
actuator failure is mostly for rigid space robots. In this paper, we consider both flexible-
joints and actuator faults, and study the fault-tolerant control of the free-floating space
manipulator with uncertain system parameters and external disturbances. Firstly, the
system-dynamics equation is established by combining the flexible-joint model and the
Lagrange equation. Then the system-dynamics equation is decoupled into two subsystems
according to singular perturbation theory. For the slow subsystem, a speed filter is designed,
based on the system-state equation, to reconstruct the speed signal. Therefore, it is not
necessary to measure the real speed signal during the control process, which improves
the robustness and reliability of the system. Instead, a robust sliding mode fault-tolerant
controller based on the backstepping technique is proposed. The proposed control method
can compensate for the influence of the uncertainty parameters and external interference,
and ensure the asymptotic tracking of the expected trajectory when the actuator fails. A
linear-velocity feedback control is proposed for the fast subsystem. It can suppress the
vibration of the system and ensure the stability of the system. Finally, the feasibility of the
proposed hybrid control method is verified by comparison simulation.

2. The System’s Dynamics Modeling

According to Spong’s simplified model of the “rotor-torsion spring system” [39], in
the case of small deformations, a flexible joint can be regarded as a linear spring with no
moment of inertia between the motor rotor and the link. The structures of rigid joints and
flexible joints are shown. Figure 1a is the rigid-joint, and Figure 1b is the flexible-joint.
From Figure 1a we can see that the rotor’s rotation angle is equal to that of the link Bi. Their
rotation angles are all θi. However, the rotor’s rotation angle is θi and the link Bi’s rotation
angle is qi in Figure 1b. So, there is an angle error σi = θi − qi caused by the spring: kθi is
the spring’s stiffness coefficient.

Figure 1. The simple model of joint. (a) The rigid-joint; (b) The flexible-joint.

The free-floating multi-flexible space manipulator system is composed of a rigid-base
B0, n links B1~Bn, and n flexible-joints O1~On, as shown in Figure 2. (OXY) is the inertial
frame, (O0x0y0) is the base frame, (Oixiyi) is the coordinate frame attached to the link
Bi(i = 1, 2, · · · , n). The base’s center of mass is O0, its position vector is r0; ri is the position
vector of Bi‘s center of mass. C is the system’s center of mass, its position vector is rc.
Meanwhile, q0 is the attitude angle of the base, which is the angle between the x0 axis and
the X axis; qi is the angle between the xi−1 axis and the xi axis, θi is the rotation angle of the
motor rotor in the joint Oi.
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Figure 2. The free-floating flexible-joints space manipulator.

The position vector ri is:

ri = r0 +
i−1

∑
j = 0

ljej + diei (1)

where, ei(i = 0, · · · , n) is the unit vector for axle xi,ei =

[
sin (

n
∑

i=0
qi)

T
cos (

n
∑

i=0
qi)

T]T

. lj is

the distance between Oj and Oj+1, di is the distance between Oi and Oci.
Without losing the generalization, the system satisfies the conservation of momentum

and moment of momentum. The system is initially stationary, the initial momentum and
momentum is zero.

The system’s kinetic energy T is:

T = Tr + Tθ (2)

where, Tr is the kinetic energy of the base and links, Tr =
n
∑

i = 0
Ti, Ti =

1
2 mi

.
r2

i +
1
2 Jiω

2
i . Tθ is

the kinetic energy of the motor rotors, Tθ =
n
∑

i = 1
Tθi, Tθi =

1
2 Jθiω

2
θi. mi is the mass of Bi. Ji

is the moment of inertia of Bi, Jθi is the moment of inertia of the motor rotor in joint Oi. ωi
is Bi’s angular velocity. ωθi is the motor rotor’s angular velocity.

The space environment is microgravitational, so the gravity is ignored. The system’s
potential energy U is the flexible-joints’ elastic potential energy:

U =
1
2

n

∑
i = 1

ki(θi − qi)
2 (3)

Let θ = [θ1 θ2 · · · θn]
T , qθ = [q1 q2 · · · qn]

T ,q = [q0 qθ ]
T . The motor’s

output torque τ = [τ1 τ2 · · · τn]
T . We choose Q = [θT qT ]

T to be the system’s

generalized coordinate, F = [τT 01×(n+1)]
T

to be the generalized force. Then according to

the Lagrange equations: L = T−U and d
dt

(
∂L
∂

.
Q

)
− ∂L

∂Q = F, the system’s dynamic equation

is:
Jθ

..
θ−Kθ(qθ − θ) = τ (4)

Mθ(q)
..
q + Hθ(q,

.
q)

.
q +

[
0

Kθ(qθ − θ)

]
=

[
0
τd

]
(5)
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where, Kθ = diag(kθ1, kθ2, · · · , kθn) ∈ Rn×n,Jθ = diag(Jθ1, Jθ2, · · · , Jθn) ∈ Rn×n is
the motor rotors’ inertia matrix, Mθ(q) ∈ R(n+1)×(n+1) is the system’s inertia matrix,
Hθ(q,

.
q)

.
q ∈ R(n+1)×1 is a column vector that contains the Coriolis force and centrifugal

force. τd ∈ Rn×1 is an external disturbance signal.
Decompose matrix Mθ(q) and Hθ(q,

.
q)

.
q into the following form:[

Mθ11 Mθ12
Mθ21 Mθ22

]
·
[ .

q0..
qθ

]
+

[
Nθ1
Nθ2

]
+

[
0

Kθ(qθ − θ)

]
=

[
0
τd

]
(6)

where, Mθ11 ∈ R1×1, Mθ12 ∈ R1×n,Mθ21 ∈ Rn×1 and Mθ22 ∈ Rn×n are the sub-matrices of
Mθ(q). Nθ1 =

[
1 01×n

]
Hθ(q,

.
q)

.
q, Nθ2 =

[
0n×1 In×n

]
Hθ(q,

.
q)

.
q.

By eliminating
..
q0 in (6), we can obtain:

Dθ(q)
..
qθ + Cθ(q,

.
qθ,

.
θ) + Kθ(qθ − θ) = τd (7)

where, Dθ(q) = Mθ22 −Mθ21M−1
θ11Mθ12, Cθ(q,

.
qθ,

.
θ) = −Mθ21M−1

θ11Nθ1 + Nθ2.

3. Singular Perturbation Decomposition and Control Law Design

The free-floating base and the flexible-joints give the space robot strong nonlinearity
and rigid-flexible coupling characteristics. The interaction between rigid and flexible
motion, and the rotation angle error and system vibration caused by the flexible-joints,
will affect the control accuracy and stability of the system. The control methods used for
ground-based robot systems cannot be directly applied to the control of a space robot
system. Also, the actuator failure is bound to affect the control quality of the system,
and even lead to system failure. Therefore, it is more difficult to realize the asymptotic
tracking of the system trajectory for a free-floating space robot with actuator failure and
flexible-joints than a system without flexible-joints and actuator failure. In order to achieve
asymptotic tracking and vibration suppression of nonlinear and strongly coupled systems,
we use the singular perturbation method, which is considered to be a mature and effective
control method for the flexible system, to decouple the system’s rigid and flexible motion.
Then the system is divided into two subsystems with independent time scales. The slow
subsystem characterizes the rigid motion of the system, the fast subsystem characterizes
the flexible motion of the system. Then, the appropriate control method is designed for the
slow subsystem to realize the asymptotic tracking of the system motion trajectory, and the
appropriate method is designed for the fast subsystem to realize the active suppression of
the system vibration.

Let qθ be the slow variable, zθ = Kθ(θ− qθ) be the fast variable.
Let

Kθ =
K1

ε2 (8)

where, ε is a positive factor, K1 is a positive definite diagonal matrix.
Then the system’s dynamic Equations (4) and (7) can be rewritten as follows:

ε2 ..
zθ = J−1

θ K1[τ + Jθ
..
qθ − zθ] (9)

..
qθ = D−1

θ (q)[zθ − Cθ(q,
.
qθ,

.
θ) + τd] (10)

3.1. The Fast Subsystem

We designed the fast subsystem’s control τf ∈ Rn×1 as:

τf = Kf(
.
qθ −

.
θ) (11)

where, Kf = K2/ε, K2 is a positive definite diagonal matrix. The fast subsystem’s control
adjusts the system gain matrix Kf according to the angular velocity difference (

.
qθ −

.
θ) to
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improve the system’s response speed, compensate for the error, and to suppress vibration
and ensure stability.

3.2. The Slow Subsystem

From Equation (8) we can see that when ε→ 0 , the flexible-joint’s stiffness coefficient
matrix Kθ → ∞ . At this time, the connection between the motor rotor and the manipulator
can be regarded as a rigid connection. θ = qθ,

.
θ =

.
qθ,

..
θ =

..
qθ, zθ = 0. Let ε = 0 in

Equations (9) and (10), and the slow subsystem’s dynamic equation can be obtained:

Dθs(q)
..
qθ + Cθs(q,

.
qθ) = ρτs + τd (12)

where, τs ∈ Rn×1 is the slow subsystem’s controller. ρ = diag(ρ1 · · · ρi · · · ρn),
ρi ∈ (0, 1] is actuator’s efficiency factor. Dθs(q) = Dθ(q) + Jθ, Cθs(q,

.
qθ) is a new matrix

by letting
.
θ =

.
qθ in Cθ(q,

.
qθ,

.
θ).

Firstly, we rewrite Equation (12) into the following form:

Dθs(q)
..
qθ + Hθs(q,

.
qθ)

.
qθ = ρτs + τd (13)

The matrix in Equation (13) has the following properties:
Property 1 [40]: The inertial matrix Dθs(q) is symmetric positive definite and bounded.

so 0 < ξ1‖y1‖
2 ≤ yT

1 Dθs(q)y1 ≤ ξ2‖y1‖
2, ∀y1 ∈ Rn×1. Where, ξ1 is the minimum

eigenvalues of Dθs(q), ξ2 is the maximum eigenvalues of Dθs(q).
Property 2 [41]: Hθs(q,

.
qθ) ∈ Rn×n can satisfy that:xT[

.
Dθs(q) − 2Hθs(q,

.
qθ)]x = 0,

∀x ∈ Rn×1. Also Hθs(q,
.
qθ) is bounded.

Property 3 [42]: for ∀y2, y3, y4 ∈ Rn×1, there are: ‖Hθs(y2, y3)‖ ≤ ζh‖y3‖, Hθs(y2, y3)y4 =
Hθs(y2, y4)y3. where, ζh is a positive constant.

Property 4: τd is bounded, and ‖τd‖ ≤ ζd, ζd > 0.
Defining state variables:

x0 = q0, x1 = qθ, x2 =
.
qθ (14)

Thus, Equation (13)’s state-space form is:{ .
x1 = x2
.
x2 = D−1

θs (x0, x1)[ρτs + τd −Hθs(x0, x1, x2)x2]
(15)

Let x̂1 be x1’s estimated value, x̂2 be x2’s estimated value. Then the link’s rotational
angle error x1 is:

x1 = x1 − x̂1 (16)

And the link’s rotational angular velocity error x2 is:

x2 = x2 − x̂2 (17)

A velocity filter is designed for the slow subsystem:{ .
x̂1 = x̂2 + Kpx1 + Λ1sgn(x)1
.
x̂2 = D−1

θs (x0, x1)[ρτs −Hθs(x0, x1, x̂2)x̂2] + Kvx1 + Λ2sgn(x)1
(18)

where, the matrix Hθs(x0, x1, x̂2) is a new matrix gotten by letting x2 = x̂2 in Hθs(x0, x1, x2).
Kp and Kv are positive definite diagonal matrices. Λ1 = diag(λ1, · · · , λi, · · · , λn), λi is
positive.Λ2’s definition will be given below.

Subtracting Equations (15) and (18), we have:{ .
x1 =

.
x1 −

.
x̂1 = x2 −Kpx1 −Λ1Sgn(x)1

.
x2 =

.
x2 −

.
x̂2 = D−1

θs (x0, x1)[Hθs(x0, x1, x̂2)x̂2 −Hθs(x0, x1, x2)x2 + τd]−Kvx1 −Λ2Sgn(x)1
(19)
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Defining a sliding surface:
S = x1 (20)

When the velocity filter’s the sliding mode occurs, that means x1 = 0 and
.
x1 = 0. Then

from Equations (17) and (19), we have:

.
x2 = −D−1

θs (x0, x1)[−Hθs(x0, x1, x̂2)x̂2 + Hθs(x0, x1, x2)x2 − τd]−Λ2Λ−1
1 x2

= −Λ2Λ−1
1 x2 −D−1

θs (x0, x1)[Hθs(x0, x1, x̂2)x2 + Hθs(x0, x1, x2)x2 −Hθs(x0, x1, x̂2)x2 − τd]
(21)

According to property 3, there is:

Hθs(x0, x1, x̂2)x2 = Hθs(x0, x1, x2)x̂2 (22)

Thus, Equation (21) can be rewritten into the following form:

.
x2 = −Λ2Λ−1

1 x2 −D−1
θs (x0, x1)[Hθs(x0, x1, x̂2)x2 + Hθs(x0, x1, x2)x2 −Hθs(x0, x1, x2)x̂2 − τd]

= −Λ2Λ−1
1 x2 −D−1

θs (x0, x1)[Hθs(x0, x1, x̂2)x2 + Hθs(x0, x1, x2)x2 − τd]
(23)

Then, the stability of the system needs to be proved. For nonlinear systems, we choose
the Lyapunov function:

V =
1
2

xT
2 Dθs(x0, x1)x2 (24)

We take the derivative of V with respect to time:

.
V =

1
2

xT
2

.
Dθs(x0, x1)x2 + xT

2 Dθs(x0, x1)
.
x2 (25)

Substituting Equation (23) into Equation (25), we can obtain:

.
V =

1
2

xT
2 [

.
Dθs(x0, x1)− 2Hθs(x0, x1, x2)]x2 − xT

2 Dθs(x0, x1)Λ2Λ−1
1 x2 − xT

2 Hθs(x0, x1, x̂2)x2 + xT
2 τd (26)

According to Properties 2, we have:

.
V = −xT

2 Dθs(x0, x1)Λ2Λ−1
1 x2 − xT

2 Hθs(x0, x1, x̂2)x2 + xT
2 τd (27)

Let Λ2 = D−1
θs (x0, x1)[Ks −Hθs(x0, x1, x̂2)]Λ1, where, Ks ∈ Rn×n. Then

.
V = −xT

2 Ksx2 + xT
2 τd = −yTPy− τd

Tτd (28)

where, y =

[
x2
τd

]
, P =

[
Ks I/2
I/2 I

]
.

Let Ks = ksI, ks > 0. From Equation (28) we can find that, when ks > 0.25, P is a
symmetric positive definite matrix, and λmin{P} < 1. When ks → ∞ , λmin{P} → 1 .

Therefore, we have:

.
V ≤ −λmin{Q}‖y‖2 + ‖τd‖ ≤ 2− ‖x2‖+ 2(

1− λmin{Q}
λmin{Q}

)ζ2
d (29)

From Equation (29) we can see that when the parameter ks is properly selected, the

following equation is satisfied: when ‖x2‖ ≥ ζd

√
1−λmin{Q}

λmin{Q}
= ζ0,

.
V ≤ 0. Otherwise, ‖x2‖

will converge to ζ0.
The backstepping method is a feasible controlling method for uncertain and nonlinear

systems [43,44]. It is a step-by-step recursive design method: it can save the time for online
calculation, and is more suitable for online control. This method combines the design of the
control method with the choice of Lyapunov function and divides the system into several
subsystems according to the design order. Firstly, a virtual controller and a Lyapunov
function are designed for the lowest-order subsystem. Then continuing backstepping until
the last subsystem. Finally, the control method is designed.
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The slow subsystem’s desired output vector x1d and x2d are defined as:

x1d = qθd =
[
q1d · · · qid · · · qnd

]T, x2d =
.
qθd =

[ .
q1d · · · .

qid · · · .
qnd
]T (30)

where, qid is qi’s desired value, q.id is
.
qi’s desired value.

The output error vector x̃1 is:

x̃1 = x1d − x1 (31)

The velocity error vector x̃2 is:

x̃2 =
.
x̃1 = x2d − x2 (32)

The velocity estimation error vector ˆ̃x2 is:

ˆ̃x2 = x2d − x̂2 (33)

Then, according to Equations (15), (31) and (32), the error equation is:{ .
x̃1 = x̃2.
x̃2 =

.
x2d −D−1

θs (x0, x1)[ρτs + τd −Hθs(x0, x1, x2)x2]
(34)

Step 1: Design for the system’s first-order variables.
Firstly, defining variables:

z1 = x̃1 (35)

and
z2 = x̃2 − uz =

.
z1 − uz (36)

where, uz is a virtual controller. uz = −Az1, A is a positive definite diagonal matrix.
Choosing the following Lyapunov function:

V1 =
1
2

zT
1 z1 (37)

Differentiating V1 with respect to time, and according to Equation (36), there is:

.
V1 = zT

1
.
z1 = zT

1 (z2 + uz) = zT
1 z2 − zT

1 Az1 (38)

From Equation (38) we can find that, if and only when z2 = 0, V1 is z1’s quadratic
function, and

.
V1 = −zT

1 Az1 ≤ 0. However, z2 = 0 is a special case. So further design is
needed.

Step 2: Based on Step 1, design for the second-order variables.
Selecting a new Lyapunov function to seek a control method to ensure that z1 and z2

can converge to zero. Firstly, from Equations (35) and (36), we have:

z2 = x̃2 + Ax̃1 (39)

and
.
z2 =

.
x̃2 + A

.
x̃1 (40)

Substituting Equation (34) into Equation (40):

.
z2 =

.
x2d −D−1

θs (x0, x1)[ρτs + τd −Hθs(x0, x1, x2)x2] + A
.
z1 (41)

Defining a new Lyapunov function:

V2 =
1
2

zT
2 Dθs(x0, x1)z2 (42)
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According to property 2, Equations (35), (39) and (41), V2’s time derivative is:

.
V2 = 1

2 zT
2

.
Dθs(x0, x1)z2 + zT

2 Dθs(x0, x1)
.
z2

= zT
2 [Dθs(x0, x1)(

.
x2d + Ax̃2) + Hθs(x0, x1, x2)(x2d + Ax̃1)− ρτs − τd]

(43)

In practical application, the free-floating space robot system is often uncertain. There-
fore, the matrix in Equation (13) should be exactly expressed as follows:

Dθs(q) = D̂θs(q) + ∆Dθs(q), Hθs(q,
.
qθ) = Ĥθs(q,

.
qθ) + ∆Hθs(q,

.
qθ) (44)

where, D̂θs(q) is Dθs(q)’s estimate matrix, Ĥθs(q,
.
qθ) is Hθs(q,

.
qθ)’s estimate matrix.

∆Dθs(q) and ∆Hθs(q,
.
qθ) are the error. It is assumed that the system’s uncertain param-

eters are bounded. So, from Properties 1 and 2, we know that Dθs(q) and Hθs(q,
.
qθ) are

bounded. Therefore, D̂θs(q), Ĥθs(q,
.
qθ), ∆Dθs(q) and ∆Hθs

(
q,

.
qθ
)

are also bounded.
We design a robust control law:

τs = D̂θs(x0, x1)
.
x2d + Ĥθs(x0, x1, x̂2)(x2d + Ax̃1) + ABx̃1 + [D̂θs(x0, x1)A + B] ˆ̃x2 + u (45)

where, Ĥθs(x0, x1, x̂2) is a new matrix by letting x2=x̂2 in Ĥθs(x0, x1, x2). B is a positive
definite diagonal matrix, u is a robust compensation controller for compensating the
uncertainty of the system.

As can be seen from Equation (45), the control method does not include the speed
variable x2 of the system, so there is no need to measure the system’s speed in real time
during the control process.

By substituting Equation (45) into Equation (44) and combining with Equations (32),
(33) and (39), we have:

.
V2 = −zT

2 Bz2 + zT
2 (η− u) (46)

where,

η = [Dθs(x0, x1)− D̂θs(x0, x1)](
.
x2d + A ˆ̃x2)− [Dθs(x0, x1)A + B]x2+

[Hθs(x0, x1, x2)− Ĥθs(x0, x1, x2)](x2d + Ax̃1) + τd
(47)

Defining variable:
ẑ2 = ˆ̃x2 + Ax̃1 (48)

Substituting Equations (17), (32), (33) and (39) into Equation (48), we have:

ẑ2 = z2 + x2 (49)

Then, by substituting Equation (49) into Equation (46):

.
V2 = −zT

2 Bz2 + ẑT
2 (η− u)− xT

2 (η− u) (50)

Combining with Equations (14), (17), (33) and (48), we can rewrite Equation (47) as:

η = ∆Dθs(x0, x1)(
.
x2d + A ˆ̃x2)− [Dθs(x0, x1)A + B]x2 + [∆Hθs(x0, x1, x2) + Ĥθs(x0, x1, x2)](ẑ2 + x̂2) + τd (51)

As we know,

‖η‖ ≤ ‖∆Dθs(x0, x1)‖(
∥∥ .

x2d
∥∥+ A

∥∥∥ ˆ̃x2

∥∥∥) + ‖Dθs(x0, x1)A + B‖ · ‖x2‖+
(‖∆Hθs(x0, x1, x2)‖+

∥∥Ĥθs(x0, x1, x2)
∥∥) · (‖ẑ2‖+ ‖x̂2‖) + ‖τd‖

(52)

According to property 2, property 3 and Equation (14), Ĥθs(x0, x1, x2) is bounded. A
and B are positive definite matrices, according to Property 1, Dθs(x0, x1)A + B is bounded.
From the above analysis we know x2 is bounded. According to Property 4, τd is bounded.
So η is bounded, ‖η‖ ≤ p,p is a positive constant.
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The robust controller u is designed as following:

u =

{ p
‖ẑ2‖

ẑ2 ‖ẑ2‖ ≥ a
p
a ẑ2 ‖ẑ2‖ < a

(53)

where, a is a positive constant.
According to Equations (50) and (53), when ‖ẑ2‖ = a

2 ,

.
V2 ≤ −λmin{B}‖z2‖2 + (

a
4
− ζ0

2
)p (54)

where, λmin{B} is the minimum of B’s eigenvalue.
Obviously, when

‖z2‖ ≥

√
p( a

4 −
ζ0
2 )

λmin{B}
(55)

,
.
V2 ≤ 0.

Because V2 ≥ 0 and
.
V2 ≤ 0, V2 is bounded in t ∈ (0, ∞). Because V2 is a function

of z2, z2 is bounded. z2 = x̃2 + Az1, z1 = x̃1, and x̃2 =
.
x̃1, so x̃2, z1,

.
z1, x̃1 and

.
x̃1 are

bounded. x̃2 =
.
qθd − x2, so x2 is bounded. Then according to Equation (34),

.
x̃2 is bounded,

.
z2 =

.
x̃2 + A

.
z1 is also bounded. Therefore, according to Equation (43),

.
V2 is consistent and

continuous in t ∈ (0, ∞). Because V2 is bounded and
.
V2 ≤ 0, lim

t→∞

.
V2 = 0. Because

.
V2 is a

function of z2, lim
t→∞

z2 = 0, and lim
t→∞

x̃1 = 0, lim
t→∞

x̃2 = 0. That is, the system is asymptotically

stable. Otherwise, when Equation (55) is not satisfied, ‖z2‖ will converge to a small field
near zero. At this time, the system’s tracking errors x̃1 and x̃2 are also consistent and
ultimately bounded.

The block diagram of the control system is shown in Figure 3.

Figure 3. The control system.

4. Simulation

We use the proposed robust backstepping fault-tolerant hybrid control (RBFTHC) to
simulate the system shown in Figure 1. The parameters of the system are shown in Table 1.
In the simulation, it is assumed that the load’s mass mp and the moment of inertia Jp are
uncertain parameters. The estimate values are: m p̂ = 1.5 kg,Jp = 1 kg ·m2. The parameters
of the control and simulation are shown in Table 2.
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Table 1. The parameters of the system.

Body Mass (kg) Length (m) Moment of
Inertia (kg·m2)

Stiffness Coefficient
(N·m/rad)

base 40 1.5 34.17
Link B1 2 3 1.5
Link B2 1 3 0.75

Motor rotor 0 0 0.5 100
load uncertain uncertain

Table 2. The parameters of the control.

The control parameters
Λ1 = diag(0.1,0.1), Kp = diag(50,50), Kv = diag(10,10), Ks = diag(10,10), A = diag(30,30),

B = diag(100,100), a = 0.05, p = 5+0.1
∥∥∥∥^

z2

∥∥∥∥
The desired trajectories q1d = sin

(
π
10 t
)
,q2d = cos

(
π
10 t
)

The system initial values q(0) = [1.9 0.1 1.5]Trad, θ(0) = [0.1 1.5]Trad
The external disturbance τd = [sin(t) cos(t)]T N ·m
The simulation time t = 40s

Simulation 1: The actuators work without fault, that is, ρ1 = 1, ρ2 = 1.
Case 1: Figures 4–7 are the simulation results by using the proposed RBFTHC. The

simulation results show that the system can achieve the asymptotic tracking of the joint
desired motion trajectory accurately and stably. The output error x̃ is very small (only from
−6 to 3 ×10−3 rad), which reflects the excellent control precision of the system. The error
angles caused by the flexible-joint are only from −1 to 7 ×10−3 rad, which indicates that
the influence of the flexible-joints on the system is compensated, and that motion accuracy
and stability of the system are achieved. The observation of the joint velocity based on
the speed filter is also accurate, which reflects the validity and correctness of the proposed
speed filter. In conclusion, the effectiveness of RBFTHC is verified.

Figure 4. The trajectories of the joint angle qθ .

Case 2: To prove the control effect of the robust controller up in RBFTHC, we turn off
up. The simulation results are shown in Figures 8–11. From the results we can find that
when up is off, the tracking accuracy of the joint angle’s desired trajectory is not good. The
output error x̃ becomes larger (from −116 to 70 ×10−3 rad) than the case of up is on (from
−6 to 3 ×10−3 rad). The system angle error σ becomes larger (from −5.8 to 10 ×10−3 rad)
than the case of up is on (from −1 to 7 ×10−3 rad). The observation of the joint velocity is
not accurate. The reason for these results is that the uncertain parameters and the external
disturbances of the system are not effectively compensated for. So, the simulation results
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prove that the proposed robust controller up can compensate for the system’s uncertain
parameters and external disturbances effectively.

Figure 5. The output error x̃.

Figure 6. The angle error σ.

Figure 7. The joint angular velocity
.
qθ .
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Figure 8. The trajectories of the joint angle qθ when up is off.

Figure 9. The output error x̃ when up is off.

Figure 10. The angle error σ when up is off.

Case 3: In order to verify the control effect of the fast subsystem’s controller τf in
RBFTHC, we turn off τf. The simulation results are shown in Figures 12–15. At this time,
the system-elastic vibration caused by the flexible-joint is not suppressed, so the joint
angle trajectories have seriously deviated from the expected trajectories in only 1.2 s. The
output error and the angle error were large. So, the control failed. The effectiveness of the
proposed fast subsystem controller τf is verified. At the same time, the simulation results
also prove that the strategy proposed in this paper, which uses a singular perturbation
method to decompose the system and control the slow and fast subsystems separately, will
be beneficial to the effective control of the strong rigid-flexible coupling system.
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Figure 11. The joint angular velocity
.
qθ when up is off.

Figure 12. The trajectories of the joint angle qθ when τf is off.

Figure 13. The output error x̃ when τf is off.

The comparison results of the three cases in Simulation 1 are shown in Table 3. It can
also be seen from Table 3 that RBFTHC is effective and feasible. The robust controller up
and the fast subsystem’s controller τf in RBFTHC can guarantee the accuracy and stability
of the system effectively.
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Figure 14. The angle error σ when τf is off.

Figure 15. The joint angular velocity
.
qθ when τf is off.

Table 3. The simulation results.

The Output Error
~
x(×10−3rad) The Angle Error σ(×10−3rad)

RBFTHC −4.6~5.1 −4.6~5.8
up is off −100~80 −10~10
τf is off ∞ ∞

Simulation 2: The actuator is slightly faulty. The change of ρ is as follows:

ρ1 =


1 0 < t ≤ 5s

0.7 5s < t ≤ 10s
0.6 10s < t ≤ 20s

, ρ2 =


1 0 < t ≤ 4s

0.6 4s < t ≤ 12s
0.5 12s < t ≤ 20s

In the simulation, we compare the control effect with the proposed RBFTHC and the
computed torque control method (CTC) proposed by Angel and Viala [45], which does not
consider the fault-tolerant control. The CTC is:

τs = Dθs(q)
( ..

qθd −Kv
.
x̃1 −Kp x̃1

)
+ Cθs

The comparison simulation results are shown in Figures 16–19. The numerical com-
parison results of x̃ and σ under the two control methods are shown in Table 4. According
to the results, we find that when actuator failure occurs, RBFTHC can still ensure that the
system has good control quality. The motion trajectory of the joint angle of the system can
still track the desired motion trajectory, and the vibration is suppressed. However, CTC has
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a poor trajectory-tracking effect. The output error x̃ in CTC is 12 times larger than that in
RBFTHC. The angle error σ in CTC is 2 times larger than that in RBFTHC.

Figure 16. The trajectories of the joint angle qθ (a) RBFTHC, (b) CTC.

Figure 17. The output error x̃. (a) RBFTHC, (b) CTC.

Figure 18. The angle error σ. (a) RBFTHC, (b) CTC.
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Figure 19. The joint angular velocity
.
qθ . (a) RBFTHC, (b) CTC.

Table 4. The simulation 2 results.

The Output Error
~
x(×10−3rad) The Angle Error σ(×10−3rad)

RBFTHC −6~3 −1.5~7
CTC −46~63 −4~14

Simulation 3: The actuator has a serious fault. The change of ρ is as follows:

ρ1 =


1 0 < t ≤ 5s

0.5 5s < t ≤ 10s
0.3 10s < t ≤ 20s

The comparison simulation results are shown in Figures 20–23. The numerical compar-
ison results of x̃ and σ under the two control methods are shown in Table 5. According to
the results, we find that when an actuator has a serious fault, RBFTHC can also ensure that
the system has good control quality. The motion trajectory of the joint angle of the system
can still track the desired motion trajectory, and the vibration is suppressed. However,
CTC cannot track the trajectory. The output error x̃ in CTC is 35 times larger than that in
RBFTHC. The angle error σ in CTC is three times larger than that in RBFTHC. The excellent
fault tolerance performance of RBFTHC is proved.

Figure 20. The trajectories of the joint angle qθ . (a) RBFTHC, (b) CTC.



Appl. Sci. 2023, 13, 2634 18 of 21

Figure 21. The output error x̃. (a) RBFTHC, (b) CTC.

Figure 22. The angle error σ. (a) RBFTHC, (b) CTC.

Figure 23. The joint angular velocity
.
qθ . (a) RBFTHC, (b) CTC.
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Table 5. The simulation 3 results.

The Output Error
~
x(×10−3rad) The Angle Error σ(×10−3rad)

RBFTHC −7~3 −1.5~7
CTC −153~198 −9~16

5. Conclusions

We studied the control of free-floating flexible-joint space robots having uncertain pa-
rameters, external disturbance, and actuator faults. According to the singular perturbation
method, the RBFTHC method consists of the slow subsystem’s robust backstepping fault-
tolerant control, and the fast subsystem’s speed differential feedback control is proposed.
The design process is evident, systematic, and structured. The RBFTHC method can reduce
the flexible-joint angle error, compensate for the uncertain parameters and external inter-
ference, and realize the system’s joint angle trajectory tracking. The backstepping control
makes the control system structure clear, the time of online calculation short, and does
not require an uncertain system to meet the “matching condition”. The observer makes
it inappropriate to measure and provide feedback on the system’s speed signal during
the control process, so the control becomes simpler and more accurate. More importantly,
when the actuator fails, the RBFTHC method can still ensure that the system maintains
good control quality. It greatly improves the safety, reliability, maintainability, and service
life of the space robot system. To the method has important practical significance and
theoretical value.
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