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Abstract: The fabrication of hydroxyapatite (HAp) ceramics prepared by existing conventional
sintering requires high-temperature sintering of 1250 ◦C to 1300 ◦C. In this paper, the activated
metakaolin (MK)/HAp specimens were prepared from varied mix design inputs, which were varied
solid mixtures (different amounts of MK loading in HAp) and liquid-to-solid (L/S) ratios, before
being pressed and sintered at 900 ◦C. Phase analysis, thermal analysis, surface morphology, and
tensile strength of the specimens were investigated to study the influences of the Al, Si, Fe, Na, and
K composition on the formation of the hydroxyapatite phase and its tensile strength. XRD analysis
results show the formation of different phases was obtained from the different mix design inputs
HAp (hexagonal and monoclinic), calcium phosphate, sodium calcium phosphate silicate and calcium
hydrogen phosphate hydrate. Interestingly, the specimen with the addition of 30 g MK prepared
at a 1.25 L/S ratio showed the formation of a monoclinic hydroxyapatite phase, resulting in the
highest diametrical tensile strength of 12.52 MPa. Moreover, the increment in the MK amount in
the specimens promotes better densification when sintered at 900 ◦C, which was highlighted in
the microstructure study. This may be attributed to the Fe2O3, Na2O, and K2O contents in the MK
and alkaline activator, which acted as a self-fluxing agent and contributed to the lower sintering
temperature. Therefore, the research revealed that the addition of MK in the activated-HAp system
could achieve a stable hydroxyapatite phase and better tensile strength at a low sintering temperature.

Keywords: alkali-activated-hydroxyapatite; hydroxyapatite phase; diametrical tensile strength; monoclinic

1. Introduction

Over the past four decades, there has been a major advance in the development of
medical materials, and this includes the innovation of ceramic materials for skeletal repair
and reconstruction [1]. These so-called “bio-ceramic materials”, which are known for their
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biocompatibility [2], bioinert, and bioactive [3], are a special kind of biomaterial that is
used to treat, augment, repair, or replace the diseased or damaged hard tissue of the human
body [3,4]. There is currently widespread research being conducted in the development
of bio-ceramic materials; such studies are motivated not only by the beneficial technical
properties of the materials such as phase stability and bioactivity but also by the potential
to reduce energy consumption in the fabrication of bio-ceramic products [5] that are also
effective in their action, minimizing the process and being economical [6]. Other research
additionally incorporated bio-ceramic material with other materials such as an iron oxide
to improve the synthesis methods to produce the HAp with a magnetic core [7]. Hence,
in order to reduce energy consumption during the fabrication of bio-ceramics, there is a
need to explore a new technique to ensure that the densification of ceramic materials can
be achieved at lower sintering temperatures.

Among the various forms of bioceramics, calcium phosphate, particularly hydrox-
yapatite (Ca10(PO4)6(OH)2; HAp), has received great attention due to its chemical and
crystallographic structure which has similar mineral components to those of bones and
teeth of vertebrates [8–11]. Furthermore, HAp is resistant to X-ray radiation and UV irradi-
ation without visible aging and structural damage that may be implied in certain clinical
treatments [12,13]. Kroczek et al. summarize the current knowledge of HAp in medicine
and dentistry from the perspective of their use in the manufacture of transitional implants
for guided bone regeneration [14] and their works have also been supported by other
researchers [15–17]. Meanwhile, HAp nanoparticles have become a matter of interest in
biomedical research not only in bone management but also in the development of cancer
drug delivery systems [18–20] as well as in future perspectives in cosmetics and oral care
products [21,22].

In addition, research conducted in the past has shown that the pure HAp of high crys-
tallinity can be replicated through conventional sintering techniques [23]. The densification
of hydroxyapatite is highly dependent on the sintering temperature, and the optimized
sintering temperature is commonly reported within the range of 1200–1300 ◦C [24–28].
However, HAp tends to decompose at this high temperature. A previous study reported
that the phase transformation which occurs at high sintering temperatures will finally
lead to the formation of α-tricalcium (α-TCP) and calcium oxide at 1400 ◦C, accompanied
by a nanopore formation. The nanopores that disperse in the α-TCP grains are the main
factor leading to low density and decreased mechanical strength of the specimens [29].
Meanwhile, research conducted at low sintering temperatures of ~800 ◦C exhibited slow
dihydroxylation behavior and promoted low densification resulting in poor mechanical
properties [30].

In order to maintain the conventional sintering technique in producing HAp ceram-
ics at a lower sintering temperature, a new approach to activate the HAp with alkaline
activation prior to the sintering process could be considered. This process is called “geopoly-
merization”. A previous study has shown that sintered kaolin ceramics at 900 ◦C can be
achieved by initiating the geopolymerization and that this results in a good performance
of compressive strength [31]. Besides the good performance on mechanical properties of
the sintered activated-ceramic product that can be achieved, the geopolimerization that
uses kaolin/metakaolin as a source of alkali-activated materials (AAM) also exhibited good
bioactivity of the products [32,33]

The geopolymerization process is characterized by the following stages: (1) disso-
lution of oxide minerals from alumina–silica-rich source materials under high alkaline
conditions; (2) transport/orientation of dissolved oxide minerals followed by gelation; and
(3) polycondensation to form a stable 3D network of a silicoaluminate structure. Numerous
aspects influence the geopolymerization process, including the chemical and mineralogical
composition of the starting materials, curing temperature, water content, and alkaline
component concentration [31]. To obtain the reactive or amorphous phase required for
the geopolymerization reaction, thermally heated kaolinite clay in the range of 550–850 ◦C
remains the primary source of metakaolin. The amount of reactive SiO2 and Al2O3 in the
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produced metakaolin is dependent on the purity of the kaolin clay used as the starting
material [34]. In previous work, metakaolin-based geopolymer with up to 30 wt% quartz
sand was found to be more compact, exhibited less drying shrinkage, and possessed greater
mechanical strength than the specimen without quartz [35]. In medical applications, kaolin
has, over time, been used as an additive, adsorbent, and agent for blood clotting because
it enables charge interactions with clotting factors, besides having huge potential to ac-
celerate haemostasis. Kaolin was reported to be mechanically reliable, in addition to its
non-toxicity [36].

Sintering of geopolymers always results in the formation of sintered ceramic bodies
with improved properties [31,37–39]. A particular procedure is required in order to manage
the purity, particle size, particle size distribution, and heterogeneity of ceramic products
which employ naturally occurring rock sand minerals as the raw materials. These param-
eters have a substantial impact on the ultimate qualities of ceramics. The process of the
sintering reaction is affected by impurities and the mineralogical structure of the kaolin
minerals. Extrusion, slip casting, pressing, tape casting, and injection molding are the most
popular techniques used to produce a green body prior to further heat treated to form a
rigid, final product. Conventional sintering remains a popular method for HAp ceramic
fabrication due to its simplicity. However, it still struggles to preserve their compatibility
and prevent the degradation of the HAp structure during the high-temperature sintering.

The objective of this research was to identify the effect of the mix design input on the
preparation of a low sintering temperature of MK/HAp bioceramics. This will lead to an
understanding of the chemical composition, which may act as a self-fluxing agent during
geopolymerization, and thus its contribution to the phase stability and mechanical property.

2. Materials and Methods
2.1. Materials

Several starting materials were used in the formulation of the alkaline activated-
hydroxyapatite (MK/HAp) bio-ceramic which are: hydroxyapatite (HAp), kaolin, sodium
hydroxide (NaOH), sodium silicate (Na2SiO3) pallets, and water. High-purity HAp powder
(heavy metals ≤ 20.0 ppm) with a particle size of 10 µm was obtained from Sigma-Aldrich,
St. Louis, MO, USA, and free-flow grade kaolin powder was additionally obtained from
Sigma-Aldrich, USA. Both were used in the form as received in this study. Metakaolin (MK),
the primary precursor material of the geopolimerization, was obtained by the calcination of
the raw kaolin at 750 ◦C for three hours in the air, using an electric oven. The NaOH used
in this study is type Formosa-P from the Formosa Plastic Corporation, Taipei, Taiwan with
99.0 % purity. In addition, the Na2SiO3 used was obtained from South Pacific Chemicals
Industries Sdn. Bhd. (SPCI), Selangor, Malaysia.

2.2. Preparation of MK/HAp Bio-Ceramic

In total, nine mix designs of activated MK/HAp were prepared, and details of the
design inputs are shown in Table 1. Initially, MK/HAp was activated using the geopoly-
merization technique. For the solid part, 10 g, 20 g, and 30 g of metakaolin were added to
the 100 g of HAp for the ball-milling. The milling process was performed in a PTFE mill
jar with ZrO2 balls using a customized lab roll ball mill (Ultraform Engineering, Bayan
Lepas, Malaysia; 0–570 rpm rotation speed) at 200 rpm for three hours in dry conditions.
The alkaline solution used for geopolymerization was obtained by mixing 8 M of NaOH
solution with sodium silicate solution in the volume proportion of 1:2. The mix solution
was cooled and kept at room temperature for 24 h before use.
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Table 1. Mix design inputs used in the experiment.

Mix Solid Liquid (1:2) L/S Ratio Curing Condition

Hap
(g)

MK
(g)

Total Solid
(g)

8 M NaOH
(g)

Na2SiO3
(g)

Total Liquid
(g) Temperature/Time

HM10-1.00 100 10 110 36.67 73.33 110.00 1.00 60 ◦C/2 d
HM10-1.25 100 10 110 45.83 91.67 137.50 1.25 60 ◦C/2 d
HM10-1.50 100 10 110 55.00 110.00 165.00 1.50 60 ◦C/2 d
HM20-1.00 100 20 120 40.00 80.00 120.00 1.00 60 ◦C/2 d
HM20-1.25 100 20 120 50.00 100.00 150.00 1.25 60 ◦C/2 d
HM20-1.50 100 20 120 60.00 120.00 180.00 1.50 60 ◦C/2 d
HM30-1.00 100 30 130 43.33 86.67 130.00 1.00 60 ◦C/2 d
HM30-1.25 100 30 130 54.17 108.33 162.50 1.25 60 ◦C/2 d
HM30-1.50 100 30 130 65.00 130.00 195.00 1.50 60 ◦C/2 d

In preparing the MK/HAp paste, the raw materials were made by manually mixing
the alkaline solution with the mixture of MK and HAp powder using three different liquid-
to-solid ratios (L/S ratio—1.00, 1.25 and 1.50). The activated specimens were then dried
in the oven at 60 ◦C for two days in order to obtain completely dried specimens prior to
ceramic body fabrication. However, the mix design input of HM30-1.00 prepared at an L/S
ratio of 1.00 could not be achieved because of its poor workability during mixing; thus, it
has not proceeded for further specimen preparation. This was due to the low liquid content
being insufficient to activate the highest metakaolin addition of the specimens.

The dried MK/HAp specimens were crushed into small pieces with the use of a mortar
grinder followed by a dry milling process at 300 rpm for 48 h performed in PTFE mill jar
with ZrO2 balls. The powder was subsequently sieved through a 63 µm stainless steel
test sieve prior to the compaction process. The compression operation was performed
using an Atlas Manual 15T hydraulic hand press (Specac Ltd., Orpington, UK) at 40 MPa
for two minutes, yielding green compacts with a diameter of 15 mm and a thickness of
approximately 5 mm. MK/HAp bio-ceramics were obtained by the two-step sintering
method (Figure 1) using a Carbolite ELF 11/148 chamber furnace (Carbolite, Hope Valley,
UK). During the first step operation, the sample is heated up at 3 ◦C/min to 500 ◦C for two
hours; this was designed to burn out the organic compound from the alkali activator and
to promote the densification of the green compacts. The second step was carried out using
the same heating rate of 3 ◦C/min up to 900 ◦C for another 2 h of dwell time to obtain the
respective MK/HAp bio-ceramic specimens.
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2.3. Physicochemical Characterization

The elemental composition analysis was carried out using the ARL Quant’X (Thermo
Scientific Inc., Waltham, MA, USA) EDXRF spectrometer analyzer. The general chemical
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composition of the starting materials obtained from the EDXRF spectrometer analyzer is
presented in Table 2. The oxide ratio of Ca:P is 3.29 while the Si:Al ratios are found to be
1.41 and 1.52 for kaolin and metakaolin, respectively.

Table 2. Composition of HAp, kaolin and metakaolin.

Chemical Composition
(Compound) CaO P2O5 Al2O3 SiO2 Na2O TiO2 Fe2O3 MgO K2O

HAp 61.35 18.63 14.00 0.38 0.10 - - 5.20 -
Metakaolin (MK) - - 38.70 59.00 0.40 1.10 0.60 - 0.10

The mineralogical analysis of the raw materials and activated HAp were determined
by a Bruker D2 Phaser X-ray diffractometer (XRD) (Bruker, Germany) with Cu Kα radiation
(40 kV and 30 mA). Figure 2 shows the XRD patterns of kaolin, metakaolin, and hydrox-
yapatite. As can be seen, the XRD pattern of kaolin (Figure 2a) exhibits two prominent
reflections at 12.33◦ and 24.90◦ 2θ, and other reflections at 19.84◦, 34.93◦, 38.43◦, and 55.11◦

2θ. These reflections were matched with the PDF card number 01-089-6538, as reported
by Obada et al. [36]. The results indicate that kaolinite was the predominant phase in the
powdery bulk. Heat-treated kaolin at 750 ◦C was converted into metakaolin, where the
X-ray pattern showed a diffuse halo peak with 2θ between 18–38◦ (Figure 2b), which is
the characteristic of the amorphous phase as presented in metakaolin [40,41]. The main
components of metakaolin were SiO2 and Al2O3, although it contained roughly 1.10 wt%
of TiO2 as a major impurity which is identified as anatase in the XRD analysis [42]. Mean-
while, Figure 2c shows the XRD pattern of the raw HAp powder in which the pattern
matched the hydroxyapatite phase as per PDF card number 00-009-0432 (25.85◦, 31.71◦,
and 32.90◦ 2θ) [43]. There was no apparent secondary phase observed from the pattern
which determined the high purity of the HAp powder.
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The Fourier transform infrared spectroscopy (FT-IR) measurement was carried out
to confirm the dihydroxylation of water molecules after the heat treatment of raw kaolin.
The test was conducted on an FT-IR analyzer (Perkin Elmer, Waltham, MA, USA) using
normal potassium bromide (KBr) KBr pellets, and about 2 mg of the specimen was ground
and pressed into disc form to evaluate the shifting of functional groups. The analyses were
performed in the spectral range from 4000 to 400 cm−1 and the number of scans was 60.

Figure 3 shows the FT-IR analysis of kaolin and metakaolin. The FT-IR spectra of
kaolin showing the absorption bands at 3695–3621 cm−1 expressed the stretching vibrations
of -OH groups of kaolinite. The bands located at 3436 and 1631 cm−1 corresponded,
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respectively, to the stretching vibrations of water molecules, while those at 1190–1082 cm−1

and then at 1010 and 789 cm−1 expressed, respectively, the vibrations of the Si-O-Si and
Si-O-Al groups of the network. The bands at 921 and 789 cm−1 indicated the presence
of the stretching vibration of Al-OH where Al is in coordination with VI. The band at
542 cm−1 indicated the vibrations of the Si-O-Si and Si-O-Al groups of the network. Thermal
treatment of kaolin generally causes its transformation to metakaolin. The FT-IR spectra of
metakaolin confirmed the occurrence of kaolinite dihydroxylation during the heat treatment
of kaolin, whereby no fingerprint bands at 3695–3621 cm−1 were observed on the spectra;
contrarily, the metakaolin spectra were mainly characterized by the 1065 cm−1 band which
corresponded to the stretching vibration of the Si-O-Si and Si-O-Al groups of the metakaolin
network [40].
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The thermogravimetric analysis (TGA) was conducted to observe the mass loss during
heating. The heating rate was maintained at 2 ◦C per minute using TGA/DSC 2 HT Mettler
Toledo (Columbus, OH, USA), and the testing was done up to the temperature of 1200 ◦C.

The morphology of the specimens was obtained from various locations on the as-
sintered specimens using a Vega Tescan scanning electron microscope (SEM) (Tescan, Brno,
Czech Republic) equipped with energy-dispersive X-ray spectroscopy (EDS). The analysis
of the tensile strength was performed on the sintered specimens in the form of cylindrical
pallets (15 mm in diameter and 5 mm in height) in accordance with ASTM C 496. The
diametral tensile strength (DTS) values were measured on three specimens from each mix
design input using a Shimadzu, AG-X Plus universal testing machine (Shimadzu, Kyoto,
Japan). The crosshead speed was 0.600 mm/min. The DTS values were calculated using
Equation (1):

σ =
2F

πDT
(1)

where:

σ = diametral tensile strength (DTS) [MPa],
F = force causing the destruction of the specimen [N],
D = diameter of the specimen [mm],
T = thickness of the specimen [mm].

The mean value ± standard deviation values of at least three independent specimens
were used for obtaining all the results [44].
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3. Results and Discussion
3.1. Phase Analysis

Figure 4 shows t the XRD spectra for all the specimens compact sintered at 900 ◦C,
including the as-received HAp as a reference. The patterns indicated the presence of
well-crystallized phases in all specimens, where higher crystallinity is observed in the
as-received HAp compared to others. No apparent structural transition or peak shifts occur
in the specimen as-received HAp, HM10-1.00 and HM30-1.25, indicating a major HAp
phase was present without apparent secondary phases. The HAp reference specimen and
HM10-1.00 displayed main character peaks at 23.26◦, 32.56◦, 33.32◦, and 47.06◦ 2θ, which
correspond to the hexagonal structure of the hydroxyapatite phase (Powder Diffraction
File-PDF No. 01-086-0740).
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HM30-1.25 specimen indicates the formation of the monoclinic HAp phase through
the peak’s determination at 23.49◦, 31.95◦, 34.12◦, 46.98◦, and 68.24◦ 2θ (Powder Diffraction
File-PDF No. 01-089-4405) [45]. To better elucidate the formation of the monoclinic HAp
and taking account that the XRD characteristic peaks (at dominant peaks) of this phase
overlap with the hexagonal by geometric similarity, it was necessary to carry out thorough
observations on the identification of the peaks at high angles (2θ) [45,46]. Reference peaks
from the hexagonal HAp PDF Card indicate that no peaks can be observed within the 2θ
range of 67◦ to 69◦. However, peaks with lower intensity still can be observed within the
2θ range indicating the formation of a monoclinic structure. Figure 5 shows the magnified
region of all HAp phase specimens, where HM20-1.25 and HM30-1.25 indicate the presence
of a peak at 67.71◦ and 68.38◦ 2θ respectively. Sanchez [45] reported that 97% of the related
scientific works observed that almost all the crystallographic analyses referring to natural
and synthetic HAp have shown, exclusively, the presence of the hexagonal crystalline
phase, while only a few articles reported the probable presence of the monoclinic HAp.
The monoclinic phase is thermodynamically more stable and mechanically superior to
others, making it more appropriate for various medical applications. A similar finding
was also reported by Morgan et al. who obtained the monoclinic HAp phase alongside the
hexagonal phase on the specimen sintered at 900 ◦C [47].
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Specifically, the specimen HM20 prepared at the 1.25 and 1.50 L/S ratios indicates the
existence of the HAp phase alongside the calcium phosphate (Ca2P2O7) crystalline phase
(Powder Diffraction File—PDF No. 00-033-0297), and is considered as a byproduct of the
chemical reaction [45], while other specimens indicate that the peak shifted when sintered
at 900 ◦C. The pattern in HM10-1.25, HM10-1.50, and HM20-1.00 indicates the presence of a
well-crystallized structure belonging to sodium calcium phosphate silicate (PDF No. 00-033-
1229) associated with the presence of the calcium phosphate byproduct, while HM30-1.50
shows the phase transformed to calcium hydrogen phosphate hydrate (Powder Diffraction
File—PDF No. 00-011-0184) which may not be suitable for medical application especially
in bone regeneration because of its lower C/P ratio of 1.33. These phase formations
and phase transformations occurred due to the incomplete activation reaction during
the initial preparation of the activated-HAp. This phenomenon refers to the situation
where not all of the reactive silicate species were transformed into activated MK/HAp that
might be contributed from chemical compositions of the metakaolin, activator, and HAp.
Furthermore, the mix design input also influences the structural phase of the monoclinic
and hexagonal hydroxyapatite as well as other phases.
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3.2. Morphology

Figure 6 shows the scanning electron micrographs (SEM) of the selected mix design
inputs of MK/HAp after sintering at 900 ◦C. The results indicated that the MK/HAp
specimens with the highest added amount of metakaolin as shown in Figure 6c,d exhibited
grain growth with a visible thick HAp neck formation. At this stage, pores were reduced
and resulted in lower porosity compared to specimens in Figure 6a,b. The micrographs of
the HM30 specimen clearly show the necking formation that occurred during sintering. On
the other hand, the specimens with the lower added amount of metakaolin, which are HM10
(Figure 6a) and HM20 (Figure 6b), showed the development of grain boundaries and grain
contact growth morphology with the presence of loosely packed particles. This suggests an
initial stage of the sintering mechanism that was contributed by the incomplete densification
of the specimens [48]. Thus, the micrograph proved that the sintering mechanism of the
activated MK/HAp specimens can be achieved at a lower sintering temperature of 900 ◦C
and this is in agreement with Noorina et al. in their study [31]. This was attributed to the
chemical composition of the metakaolin as well as the alkali activator consisting of sodium
and potassium which acted as a self-fluxing agent that lowered the sintering temperature,
as reported by several previous studies [31,49,50]. This is a significant finding because much
research on the sintering of the HAp observed that the optimized sintering temperature of
the HAp ceramic can only be obtained within the range from 1150 ◦C to 1250 ◦C [24,51,52].
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3.3. Diametrical Tensile Strength (DTS) and Volume Shrinkage of MK/HAp Bio-Ceramic Body

Diametrical tensile strength (DTS), also known as the Brazilian method [53], offers
the simplicity of testing brittle materials, in which the ultimate tensile strength of a brittle
material is determined through compressive testing. The maximum tensile stress (σmax)
along the diameter of the load, which was localized at the center of the specimens, decreased
towards the periphery of the disc and changed its sign (compression). Only compressive
stress existed in the vertical direction (y-axis) in which the magnitude became very great
under the load. When the contact angle increases, the compressive stress can dramatically
decrease. Therefore, failure may be initiated in the region with the higher compressive
stress. Compressive stress induced tensile stress, perpendicular to the loaded diameter of
the specimen, which is constant over a wide region around the center of the disc, and the
rupture began at the point of maximum tensile strength. The specimen was then broken in
two according to this diameter, as shown in Figure 7 [54].
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Figure 8 represents the results of the (DTS) test conducted on all the specimens in
conjunction with the as-sintered HAp ceramic as the control. As can be observed from
the results, the strength of all MK/HAp specimens increased as the added amount of
metakaolin increased. Meanwhile, the HAp ceramic sintered at 900 ◦C showed the lowest
tensile strength.
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HM30-1.50 obtained the highest tensile strength of 16.5 MPa. However, this specimen
did not exhibit the structural phase formation of hydroxyapatite (please refer to Figure 4),
and thus it will not be further discussed in this paper. The specimen with the next highest
tensile strength (12.5 MPa) and which recorded the formation of hydroxyapatite phase was
HM30-1.25, which was initially prepared at the L/S ratio of 1.25. As discussed previously,
HM30-1.25 was a unique specimen because it showed the formation of the monoclinic phase
alongside the hexagonal phase, unlike others. This condition led to a significant increase
in the strength due to the thermo-stable nature of the monoclinic structure. According
to the study by Sanchez [45], compared to the HAp hexagonal phase, the monoclinic is
thermodynamically more stable and provides better mechanical properties. Meanwhile,
Obada [36] applied kaolin into the HAp to improve the mechano-biological properties of
the bioceramic in which the material was found to be suitable for the human trabecular
bone as the proposed scaffolds were endowed with an improved mechanical strength
that matched the bearable range of the trabecular bone (2–12 MPa). Further to that, the
contribution of the increased amount of metakaolin in the mixture to the increased strength
is also in agreement with previous work [55]. This is because the composition of metakaolin
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consisting of Al2O3 and SiO2 species influenced the strength of the specimens. Furthermore,
HM30-1.25, which exhibited complete densification, also contributed to a higher tensile
strength (please refer to Figure 6). This can also be related to the higher volume shrinkage
of the HM30-1.25 specimen due to the complete densification, where fewer pores can be
observed in this specimen.

3.4. Thermogravimetric Analysis (TGA)

The thermogravimetric analysis (TGA) serves as an important tool for identifying
the temperature at which organic substances are removed from the specimens. As can be
observed from Figure 9, there was an 8% of weight loss of the HAp ceramics within the
temperature range of 30 ◦C to 282 ◦C. The weight loss was attributed to the removal of
incorporated water and moisture in the HAp ceramics. No significant weight loss was
observed during the temperature rise to above 300 ◦C since no other substance was added
to the specimens.
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Meanwhile, a higher percentage of weight loss was observed for the HM30-1.25
specimen compared to the HAp. It was observed that the weight loss during thermal
calcination in the temperature range of 30 to 630 ◦C occurred due to the removal of water
(8%) and the binder substance (7%). Subsequently, a marginal weight loss curve was
observed within the temperature range of 850 ◦C to 1050 ◦C. In this temperature range,
metakaolin which is the source of aluminosilicate dissolved and resulted in weight loss.
Thus, it can be concluded from the findings that the initial geopolymerization contributed
to lowering the sintering temperature due to the absence of sodium from the alkali activator
and metakaolin which acted as a self-fluxing agent. This was also reported in the previous
work related to kaolin-GGBS geopolymer ceramics [31].

4. Conclusions

In this work, the effects of mix design inputs of MK/HAp on the formation of the
hydroxyapatite phase and tensile strength were investigated. It was observed that the
hydroxyapatite phase can be obtained from all the specimens, except for HM30 prepared
at the L/S ratio of 1.5. Based on the study results, it can be concluded that the sintering
temperature can be lowered to obtain the hydroxyapatite phase due to the resulting sodium
and potassium from the alkali activator and metakaolin which also acted as a self-fluxing
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agent. The XRD spectra of monoclinic and hexagonal structures were found in the HM30-
1.25 specimen. The presence of the monoclinic phase in the HAp and the increased amount
of metakaolin were found to increase the strength of the specimens.
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