
Citation: Ala’anzy, M.A.; Othman, M.;

Ibbini, E.M.; Enaizan, O.; Farid, M.;

Alsaaidah, Y.A.; Ahmad, Z.;

Ghoniem, R.M. Replication-Based

Dynamic Energy-Aware Resource

Provisioning for Scientific Workflows.

Appl. Sci. 2023, 13, 2644. https://

doi.org/10.3390/app13042644

Academic Editors: Ce Li and

Bei Guan

Received: 31 January 2023

Revised: 10 February 2023

Accepted: 15 February 2023

Published: 18 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Replication-Based Dynamic Energy-Aware Resource
Provisioning for Scientific Workflows
Mohammed Alaa Ala’anzy 1,* , Mohamed Othman 1,2, Emad Mohammed Ibbini 3, Odai Enaizan 4, Mazen Farid 1,
Yousef A. Alsaaidah 1 , Zulfiqar Ahmad 5,* and Rania M. Ghoniem 6

1 Department of Communication Technology and Networks, Universiti Putra Malaysia (UPM),
Serdang 43400, Malaysia

2 Laboratory of Computational Science and Mathematical Physics, Institute for Mathematical
Research (INSPEM), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia

3 Department of Computer Science, Al Balqa Applied University, Al-Salt 19117, Jordan
4 Department of Management Information System, College of Haql, University of Tabuk,

Tabuk 71491, Saudi Arabia
5 Department of Computer Science and Information Technology, Hazara University, Mansehra 21300, Pakistan
6 Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint

Abdulrahman University, Riyadh 11671, Saudi Arabia
* Correspondence: m.alanzy.cs@gmail.com (M.A.A.); zulfiqarahmad@hu.edu.pk (Z.A.)

Abstract: Distributed computing services in cloud environments are easily accessible to end users.
These services are delivered to end users via a subscription-based model. The “infrastructure as
a service” (IaaS) cloud model is one of the best cloud environment models for running data- and
computing-intensive applications. Real-world scientific applications are the best examples of data
and computing intensiveness. For their implementation, scientific workflow applications need high-
performance computational resources and a large volume of storage. The workflow tasks are linked
based on computational and data interdependence. Considering the high volume and variety of
scientific workflows (SWs), the resources of the IaaS cloud model require managing energy efficiently
and without failure or loss. Therefore, in order to address the issues of power consumption and task
failure for real-world SWs, this research work proposes a replication-based dynamic energy-aware
resource provisioning (R-DEAR) strategy for SWs in an IaaS cloud environment. The proposed
strategy, R-DEAR, is a resource- and service-provisioning strategy that implements a replication-
based fault-tolerant and load-balancing mechanism. The proposed R-DEAR strategy schedules the
tasks of a scientific workflow with a replication-based fault-tolerant mechanism. The proposed
R-DEAR strategy also manages the power consumption of IaaS cloud resources dynamically through
a load-sharing process. Simulation results show that the proposed R-DEAR strategy reduces energy
consumption, execution cost, and execution time by 9%, 15%, and 18%, respectively, as compared
with the existing state-of-the-art strategy.

Keywords: cloud computing; scientific workflow; Montage; CyberShake; replication; resource
provisioning

1. Introduction

The cloud environment provides end users with distributed computing services [1].
The computing services are provided to the end users in a subscription-based atmo-
sphere [2]. The cloud environment provides computing services in the shape of appli-
cations, platforms, and computing resources, termed “software as a service” (SaaS) [3],
“platform as a service” (PaaS) [4] and “infrastructure as a service” (IaaS) [5], respectively.
IaaS is a flexible cloud environment model in which distributed computing resources
such as storage, memory, bandwidth, and processing power are provided to clients on a
pay-per-use basis [6,7].

Appl. Sci. 2023, 13, 2644. https://doi.org/10.3390/app13042644 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13042644
https://doi.org/10.3390/app13042644
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0005-7037
https://orcid.org/0000-0003-3101-8062
https://orcid.org/0000-0002-6278-9516
https://doi.org/10.3390/app13042644
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13042644?type=check_update&version=2

Appl. Sci. 2023, 13, 2644 2 of 14

The three main subcategories of cloud computing services are SaaS, PaaS, and IaaS.
SaaS is a method of distributing computer programs in which the vendor hosts the program
and makes it accessible to users online. Customers who use SaaS do not have to worry
about maintaining software or managing the underlying infrastructure. Instead, users
merely use a web browser or a thin client to access the software. Systems for managing
client relationships (CRM), corporate resource planning (ERP), and email services are ex-
amples of SaaS [3]. PaaS offers a platform for creating, deploying, and managing services
and applications. Customers who use PaaS do not have to worry about constructing and
maintaining the platform or managing the underlying infrastructure. They can instead con-
centrate on creating and implementing their applications. Google App Engine, Microsoft
Azure, and Heroku are some examples of PaaS [4]. Over the internet, IaaS offers virtualized
computer resources. Clients can rent computing resources including virtual machines,
storage, and networking through IaaS. They are in charge of managing the software and
applications that are used by the infrastructure. IaaS examples include “Google Cloud
Platform”, “Microsoft Azure”, and “Amazon Web Services” (AWS) [5].

The IaaS cloud service model is currently the most suitable cloud environment model
for the execution of highly data- and computing-intensive applications [8]. The best exam-
ples of this in the context of data- and computing-intensiveness are real-world scientific
workflows (SWs). Real-world SWs are those such as Montage in astronomy, CyberShake in
earthquake science, and Epigenomics in biology; they are scientific applications developed
by or for scientists for analyses in their scientific research [9–11]. For their implementation,
SW applications need high-performance computing resources and large volumes of storage,
which can be obtained from the IaaS cloud service model. Scientists in most scientific fields,
such as astronomy, bioinformatics and high-energy physics, conduct research that requires
and creates terabytes of data obtained from physical equipment. Their workflow activities
are connected based on computational and data interdependence [12,13]. SWs are highly
complex applications and are represented in terms of directed acyclic graphs (DAGs) [14].
Tasks are represented by nodes in a DAG, and computational or data dependencies among
nodes are represented by the edges [15–17].

The resource-provisioning process for the execution of SWs with minimum energy
consumption and without failure of tasks is a challenging process due to the variety of
workflow tasks and complex dependencies among them [10,18,19]. Since workflow tasks
need massive amounts of computation and storage with diverse resource requirements, the
best solution is to deploy the workflow tasks on an IaaS cloud service [20–22]. However,
keeping in mind the high volume and variety of SWs, the resources of an IaaS cloud
environment require managing energy efficiently and without failure [23–25]. Therefore, in
order to address the issues of energy consumption and task failure for real-world SWs, this
research work proposed a replication-based dynamic energy-aware resource-provisioning
(R-DEAR) strategy for SWs in an IaaS cloud environment.

The main contributions of the proposed work are as follows:

1. This research work presents a dynamic energy-aware resource-provisioning (DEAR)
strategy for SWs in an IaaS cloud service model.

2. This work also implements a replication-based fault-tolerant mechanism in the pro-
posed DEAR strategy to make it R-DEAR, a failure-free resource-provisioning tech-
nique for the IaaS cloud service model.

3. In the proposed R-DEAR strategy, one or more users will submit SWs to the work-
flow manager.

4. The workflow/resource information provider (WRIP) will obtain the details of re-
sources and scientific workflow requirements. It is presumed that the energy con-
sumption for each resource is predefined for the submitted workflow on the basis of
tasks contained within it.

5. The workflow scheduler obtains information regarding the workflow tasks from the
workflow manager. The tasks are sorted per their energy consumption in ascending
order T1 < T2 < T3 . . . Tn.

Appl. Sci. 2023, 13, 2644 3 of 14

6. The WRIP provides information about resources and workflows to the workflow
scheduler. The accessible resources are arranged in descending order by energy
consumption: R1 > R2 > R3 . . . Rn.

7. The workflow scheduler sends the information about tasks and resources to the
workflow engine.

8. The workflow engine assigns tasks to resources in each process based on sorted lists, and
then starts the workflow. The workflow engine distributes the workload across available
resources and reports task and resource status to the workflow replica manager.

9. During task execution, the workflow replica manager keeps a copy of each task and
checks the resource status. If a task fails, a duplicate of the task will be sent to the
resource to finish the execution.

10. The workflow engine will compile the result after successful execution and return it
to the end user.

The remaining parts of the paper are presented as follows: work related to the pro-
posed research is given in Section 2; the system design and model are provided in Section 3;
the details of the evaluation methods are highlighted in Section 4; the experimental setup,
results, and discussion are presented in Section 5; and the conclusion, limitations and future
work are given in Section 6.

2. Related Work

The related work is explored and analyzed regarding resource management in cloud
computing, SW scheduling, and fault-tolerant techniques for SWs in cloud computing.

As part of their cyber-infrastructure, many workflow applications and workflow
management systems (WMSs) are developed to allow scientists to run their applications in a
variety of distributed environments. Despite the fact that scientists have used both practical
and theoretical techniques, detection, failure prediction, and recovery remain research
issues. In [26], a strategy is presented for detecting and mitigating issues before they arise,
based on control theory and developed as part of autonomic computing. The suggested
technique is based on the “proportional-integral-derivative controller” (PID controller). It
is widely employed in industrial control systems, and it entails the controller altering its
output in response to difficulties. To show the practicality of the proposed technique, the
authors tackled two common execution challenges of large-scale data-intensive processes.
The authors constructed a simulator that implements and analyses basic standalone PID-
inspired controllers in a data-oriented bioinformatics process to manage data and memory
use autonomously. To execute all processes simultaneously, the simulator generated over
4.4 TB of data and required over 24 TB of RAM. According to simulation data, the controller-
inspired method looks to greatly improve workflow performance, particularly in online
and unpredictable contexts.

A multi-objective scheduling technique for cloud computing scientific processes is
presented in [27]. The method is based on a genetic algorithm that tries to strike a balance
between make-span, financial cost, and load. The recommended method firstly finds the
best answer for each parameter. Based on these answers, the algorithm chooses the best
solution for all parameters. The proposed method was evaluated on benchmark datasets.
The results demonstrate that the recommended strategy enhances the make-span and
decreases the cost when used with a well-balanced system.

Scientific operations are complicated, and they necessitate the efficient use of cloud
resources. SW scheduling is considered an NP-complete problem. Some criteria, such
as quality of service (QoS), interdependence between jobs, and user deadlines, comprise
challenges. There is a substantial body of knowledge about scheduling SWs in cloud
systems. Standard schedulers, evolutionary optimization approaches and other options
are available. A hybrid approach for scheduling scientific activities in cloud systems is
presented in [28]. The algorithm creates task lists for the particle swarm optimization
(PSO) algorithm in the first phase. To reduce execution time, bottleneck tasks are given top

Appl. Sci. 2023, 13, 2644 4 of 14

priority. The PSO algorithm is used to schedule tasks in the next phase, which reduces both
execution time and cost.

In [17], an approach for scheduling SWs called the dynamic scheduling of bag-of-tasks-
based workflows (DSB) is presented; itaims to reduce the financial cost of hired virtual
machines (VMs) while meeting user-defined time restrictions. The suggested technique
divides the workflow into bag-of-tasks (BoT) applications based on data dependencies
and priority restrictions, and then enhances the assignment and scheduling of BoTs. Using
benchmark scientific procedures that resemble real-world applications, a trace-based simu-
lation indicated a considerable decrease in workflow computing costs while still meeting
deadlines. When compared to modified state-of-the-art methodologies, the findings show
that the proposed model produces higher success rates in terms of meeting deadlines and
cost efficiencies.

As discussed in [29], the scheduling of SWs on a hybrid cloud architecture is modelled
as a bi-objective optimization problem with a make-span and monetary cost minimization
goal. This research suggested a “hybrid bi-objective optimization based on simulated
annealing and task duplication algorithm” (BOSA-TDA) would improve conventional
SA by utilizing two fundamental heuristics: duplication and “heterogeneous earliest
finish time” (HEFT) techniques. Simulation was performed and the results reflect that the
proposed BOSA-TDA outperforms the existing approaches.

Security is a significant issue in the cloud; therefore, the authors in [30] included
security limitations in an optimization model. Their main goal is to establish an optimum
plan in the shortest time and with the lowest cost, while also satisfying the necessary
security limitations. During the negotiation process, consumers can submit their security
demands to the cloud provider. The workflow is first scheduled using list-based heuristics,
and then particle swarm optimization is used to optimize. As a result, the authors devised
a secured scheduling algorithm based on “smart particle swarm optimization” (SPSO) to
determine the optimal schedule with the shortest time and lowest cost. The suggested
method is capable of allocating tasks in SWs to the most appropriate virtual cloud machine.
Thus, the suggested strategy addresses resource allocation. In addition, a variation of the
PSO algorithm known as variable neighborhood PSO is being tested to solve the local
optima problem.

By providing on-demand and low-cost computer resources to customers, cloud com-
puting is now a promising paradigm. As a result, scientific workflows (SWs), which are
big-data applications, are becoming increasingly reliant on cloud computing resources.
However, in such a huge distributed computing system, internal failure (or host fault)
is unavoidable. It has also been established that cloud data centers would be subjected
to hostile attacks on a regular basis. As a result, when conducting SWs in the cloud, ex-
ternal failure (failure due to a malicious assault) should be taken into account. In [31], a
“fault-tolerant scheduling” (FTS) solution for SW in a cloud computing environment is
presented to minimize workflow cost while achieving deadline constraints, even when
internal and external defects are present. The FTS method, which is based on the jobs
replication strategy, is one of the most widely used fault-tolerant algorithms. The outcomes
of the experiments have proven to be beneficial in real-world SW applications.

The authors in [32] describe a “dynamic fault-tolerant workflow scheduling” (DFTWS)
approach that includes hybrid spatial and temporal re-execution strategies. Initially,
DFTWS finds task time attributes and detects the workflow critical path. Then, the resource
allocation phase is started, in which a suitable virtual machine (VM) is assigned to each
job based on the task deadline and budget. Finally, during execution, DFTWS runs online
scheduling, where real-time fault-tolerant decisions are taken depending on failure type
and job criticality. Real-world workflows are used to test the suggested method. In addition,
the elements that influence DFTWS performance are examined. DFTWS acquires a trade-off
between high dependability and minimum cost objectives in cloud computing.

In [9], the authors present a quality-of-service aware “fault-tolerant workflow man-
agement system” (QFWMS) for scientific processes in cloud computing. For the purpose

Appl. Sci. 2023, 13, 2644 5 of 14

of evaluating the proposed QFWMS, the authors used two real-time SWs: Montage and
CyberShake. The proposed QFWMS scheduling was tested using the WorkflowSim [33]
simulation environment. A proactive intelligent fault-tolerant model is required to com-
plete a workflow without interruption. The research in [34] offers a cognitive fault-tolerant
(CFT) model with three key phases for proactively tolerating task and VM failure. Com-
bined ensemble prediction methods are used to anticipate task failures in the prediction
phase, and label-tuning techniques are employed to generate intermediate labels and rein-
force the prediction. The work is isolated during the segregation step based on its priority.
Recovery is the final phase in the CFT paradigm. Fitness checking is used to determine
whether the expected failure is caused by the task or by the virtual machine. When a
job fails, the post-prediction check-pointing (PPC) mechanism is utilized to recover. The
post- or pre-replication overlapped migration approach can be used to recover VM failure.
Experiments show that the suggested CFT model improves process execution reliability in
a cloud context.

The authors in [35] presented a replication-based partial critical path (R-PCP) workflow
scheduling strategy for upcoming data transmission and completing process activities while
staying within deadlines and financial restrictions. The first data placement step in the
proposed method clusters and distributes datasets depending on their relationships. R-PCP
schedules activities based on data proximity and dynamically maintains a dependency
matrix for locating created datasets. To reduce runtime–dataset migration, the authors use
inter-datacenter task replication and dataset replication to assure dataset availability. R-PCP
beats previous approaches by successfully reducing data transmission and performing
all chosen operations within the user-specified budget and timescale, as evidenced by
simulation results with four workflow applications [35]. Various energy saving protocols,
such as a budget-constrained energy consumption optimization approach and particle
swarm optimization, have been highlighted in [36–38]. The proposed R-DEAR strategy
saves energy through optimization of resource utilization as compared with the existing
energy-saving protocols.

An overview of the related work has been given in Table 1.

Table 1. An overview of related work.

References Strategy Contribution Evaluation Platform Limitations

[9] QFWMS Provides scheduling solution
based on data awareness WorkflowSim Not an energy efficient approach

[17] DSB Bag-of-tasks-based solution
to reduce financial cost WorkflowSim Not an energy efficient and fault

tolerant approach

[26] PID controller
Prevents and mitigates data

storage overload and
memory overflow

Activity-based
simulator Not an energy efficient approach

[27] GA-PSO
Provides a solution based on

genetic algorithm to
minimize time and cost

CloudSim No consideration of
fault tolerance

[35] R-PCP
Provides a replication-based

scheduling solution in
multi-cloud environment

WorkflowSim Not an energy efficient approach

3. System Design and Model

This research work proposes an R-DEAR strategy for SWs in IaaS cloud environments.
Figure 1 shows the workings of the proposed R-DEAR strategy. One or more users submit
SWs to the workflow manager. The workflow/resource information provider (WRIP) regis-
ters the details of resources and SW requirements. It is assumed that for each computing
resource, the energy consumption is predefined on the basis of tasks contained in the work-
flow. The workflow scheduler acquires information about the tasks of each workflow from
the workflow manager. The tasks are arranged in ascending order as T1 < t2 < t3< span
= ““> . . . Tn, according to energy consumption. The WRIP provides information about

Appl. Sci. 2023, 13, 2644 6 of 14

resources and workflows to the workflow scheduler. The available resources are listed in
descending order by energy usage R1 > R2 > R3 . . . Rn. The tasks and resource information
are sent to the workflow engine by the workflow scheduler. The workflow engine starts
the execution of each workflow by assigning tasks to resources based on sorted lists. The
workflow engine distributes workload among available resources and communicates task
and resource status to the workflow replica manager. During task execution, the workflow
replica manager keeps a copy of each task and checks the resource status. If a task fails,
a duplicate of the task will be sent to the resource to finish the execution. The workflow
engine will compile the result after successful execution and return it to the end user.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 18

[35] R-PCP

Provides a replication-
based scheduling solu-

tion in multi-cloud envi-
ronment

WorkflowSim
Not an energy effi-

cient approach

3. System Design and Model
This research work proposes an R-DEAR strategy for SWs in IaaS cloud environ-

ments. Figure 1 shows the workings of the proposed R-DEAR strategy. One or more users
submit SWs to the workflow manager. The workflow/resource information provider
(WRIP) registers the details of resources and SW requirements. It is assumed that for each
computing resource, the energy consumption is predefined on the basis of tasks contained
in the workflow. The workflow scheduler acquires information about the tasks of each
workflow from the workflow manager. The tasks are arranged in ascending order as T1 <
t2 < t3< span = ““> ... Tn, according to energy consumption. The WRIP provides infor-
mation about resources and workflows to the workflow scheduler. The available re-
sources are listed in descending order by energy usage R1 > R2 > R3 ... Rn. The tasks and
resource information are sent to the workflow engine by the workflow scheduler. The
workflow engine starts the execution of each workflow by assigning tasks to resources
based on sorted lists. The workflow engine distributes workload among available re-
sources and communicates task and resource status to the workflow replica manager.
During task execution, the workflow replica manager keeps a copy of each task and checks
the resource status. If a task fails, a duplicate of the task will be sent to the resource to
finish the execution. The workflow engine will compile the result after successful execu-
tion and return it to the end user.

Figure 1. R-DEAR Strategy.

3.1. Parts of R-DEAR Strategy
The R-DEAR strategy has the following parts:

1. User
2. Workflow manager
3. Workflow/resource information provider

Figure 1. R-DEAR Strategy.

3.1. Parts of R-DEAR Strategy

The R-DEAR strategy has the following parts:

1. User
2. Workflow manager
3. Workflow/resource information provider
4. Workflow scheduler
5. Workflow engine
6. Workflow replica manager

3.1.1. User

The user is an entity that submits an SW for execution and obtains the required results.
The users in the proposed strategy are assumed to be scientists in various fields, including
medical science, gravitational physics and earth science. The scientists perform experiments
by using the computational and storage resources of cloud infrastructures.

3.1.2. Workflow Manager

The workflow manager collects SWs from users. It identifies the validity and pre-
requisites of the SWs and transforms them into tasks as directed acyclic graphs. It then
submits the details of tasks to the workflow/resource information provider. The workflow
manager also preserves the energy consumption and computational cost information
about tasks.

Appl. Sci. 2023, 13, 2644 7 of 14

3.1.3. Workflow/Resource Information Provider (WRIP)

The WRIP lists the computational and storage resources from the IaaS cloud platform.
It also obtains workflow information from the workflow manager with resource require-
ments. The information also comprises the costs of computation and power consumption
of the accessible resources.

3.1.4. Workflow Scheduler

The workflow scheduler obtains information regarding the workflow tasks and re-
source information from the workflow/resource information provider. Then, the tasks
of a workflow are arranged in ascending order according to energy consumption as
T1 < T2 < T3 . . . Tn, by the resource scheduler. The workflow task with minimum en-
ergy consumption is placed as T1, the one with more energy consumption is placed as T2,
and so on. Similarly, it also arranges the available resources per their power consumption
in the descending form R1 > R2 > R3 . . . Rn for each task. The workflow scheduler maps
the list of available resources to each workflow task, and then finds the resource with
minimum energy consumption from a sorted list and assigns it to a workflow task. Then,
the workflow scheduler sends the workflow tasks and information about the resources to
the workflow engine.

3.1.5. Workflow Engine

The workflow engine obtains a mapped list of workflow tasks and resources from the
workflow scheduler and runs them. It also sends the current status of tasks and computing
resources to the resource power manager. When execution is successfully completed, the
workflow engine generates and sends the results to the user.

3.1.6. Resource Power Manager

The resource power manager component is responsible for examining the current
status of resources during the execution of tasks. After inspecting the status, it checks if
any resource is being underutilized and transfers the load of resources with minimum
utilization to other available resources and powers off the idle resource. If any of the tasks
fail during execution, it obtains a replica of the task from the workflow replica manager
and re-executes the task.

3.1.7. Workflow Replica Manager

The workflow replica manager maintains a replica of each task of a workflow and
provides it to the workflow engine whenever the execution of any task has failed.

3.2. Algorithm for the R-DEAR Strategy

The proposed R-DEAR strategy, in terms of pseudo code, is elaborated in Algorithm 1.
The algorithm takes input as SWs. Each workflow is stored in a queue referred to as WQ.
The workflow then transforms them into tasks for execution and stores them in a queue
referred to as TQ. Resource information is obtained from the WRIP and stored in a queue
referred to as RQ.

The power utilization of each task is obtained, and then all the tasks of a workflow are
sorted in ascending order per their power utilization. At this stage, the replica of each node
is also generated. Resources with minimum power consumption are found for each task
and assigned to the tasks. The tasks are executed through the workflow engine. If a task’s
execution fails during execution, a replica of the task is provided, and it is re-executed.
However, if the node on which the task is executed has failed, the replicas of tasks executed
on that node are provided to an alternative node for execution. The resources are monitored
during execution, and if power utilization of any resource is null, it is powered off. Finally,
the results are obtained and returned to the user.

Appl. Sci. 2023, 13, 2644 8 of 14

Algorithm 1 R-DEAR strategy

Input: δ (Scientific workflow)
Output: γ (Generated results)
Procedure: R-DEAR (δ)

1. WQ

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 15

3.2. Algorithm for the R-DEAR Strategy
The proposed R-DEAR strategy, in terms of pseudo code, is elaborated in Algorithm

1. The algorithm takes input as SWs. Each workflow is stored in a queue referred to as WQ.
The workflow then transforms them into tasks for execution and stores them in a queue
referred to as TQ. Resource information is obtained from the WRIP and stored in a queue
referred to as RQ.

Algorithm 1 R-DEAR strategy
Input: δ (Scientific workflow)
Output: γ (Generated results)
Procedure: R-DEAR (δ)
1. WQ GetWorkflows ()
2. TQ GenerateTasks () for each Workflow
3. RQ RegisterResources () from WRIP
4. for (each task T1 to Tn) do
5. GetPowerUtilization () Ti
6. end for
7. Sort tasks task T1 to Tn in ascending order as per PowerUtilization ()
8. Update T1 < T2 < T3 …, < Tn
9. for (each task T1 to Tn) do
10. GetResource () Ri with minimum PowerConsumption ()
11. GenerateReplica () TReplica (i)
12. Assign Ti Ri
13. end for
14. Start Execution: WorkflowEngine ()
15. while (WorkflowEngine ()) do
16. if (task execution failed)
17. Provide the task replica and re-execute
18. else if (node failed)
19. Provide the replica of task to alternative node and re-execute
20. end if else
21. end while
22. for (all available resources) do
23. Rp GetPower ()
24. if (RP == Null) then
25. ResourcePowerOff()
26. end if
27. end for
28. GenerateResult()

The power utilization of each task is obtained, and then all the tasks of a workflow
are sorted in ascending order per their power utilization. At this stage, the replica of each
node is also generated. Resources with minimum power consumption are found for each
task and assigned to the tasks. The tasks are executed through the workflow engine. If a
task’s execution fails during execution, a replica of the task is provided, and it is re-exe-
cuted. However, if the node on which the task is executed has failed, the replicas of tasks
executed on that node are provided to an alternative node for execution. The resources
are monitored during execution, and if power utilization of any resource is null, it is pow-
ered off. Finally, the results are obtained and returned to the user.

GetWorkflows ()
2. TQ

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 15

3.2. Algorithm for the R-DEAR Strategy
The proposed R-DEAR strategy, in terms of pseudo code, is elaborated in Algorithm

1. The algorithm takes input as SWs. Each workflow is stored in a queue referred to as WQ.
The workflow then transforms them into tasks for execution and stores them in a queue
referred to as TQ. Resource information is obtained from the WRIP and stored in a queue
referred to as RQ.

Algorithm 1 R-DEAR strategy
Input: δ (Scientific workflow)
Output: γ (Generated results)
Procedure: R-DEAR (δ)
1. WQ GetWorkflows ()
2. TQ GenerateTasks () for each Workflow
3. RQ RegisterResources () from WRIP
4. for (each task T1 to Tn) do
5. GetPowerUtilization () Ti
6. end for
7. Sort tasks task T1 to Tn in ascending order as per PowerUtilization ()
8. Update T1 < T2 < T3 …, < Tn
9. for (each task T1 to Tn) do
10. GetResource () Ri with minimum PowerConsumption ()
11. GenerateReplica () TReplica (i)
12. Assign Ti Ri
13. end for
14. Start Execution: WorkflowEngine ()
15. while (WorkflowEngine ()) do
16. if (task execution failed)
17. Provide the task replica and re-execute
18. else if (node failed)
19. Provide the replica of task to alternative node and re-execute
20. end if else
21. end while
22. for (all available resources) do
23. Rp GetPower ()
24. if (RP == Null) then
25. ResourcePowerOff()
26. end if
27. end for
28. GenerateResult()

The power utilization of each task is obtained, and then all the tasks of a workflow
are sorted in ascending order per their power utilization. At this stage, the replica of each
node is also generated. Resources with minimum power consumption are found for each
task and assigned to the tasks. The tasks are executed through the workflow engine. If a
task’s execution fails during execution, a replica of the task is provided, and it is re-exe-
cuted. However, if the node on which the task is executed has failed, the replicas of tasks
executed on that node are provided to an alternative node for execution. The resources
are monitored during execution, and if power utilization of any resource is null, it is pow-
ered off. Finally, the results are obtained and returned to the user.

GenerateTasks () for each Workflow
3. RQ

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 15

3.2. Algorithm for the R-DEAR Strategy
The proposed R-DEAR strategy, in terms of pseudo code, is elaborated in Algorithm

1. The algorithm takes input as SWs. Each workflow is stored in a queue referred to as WQ.
The workflow then transforms them into tasks for execution and stores them in a queue
referred to as TQ. Resource information is obtained from the WRIP and stored in a queue
referred to as RQ.

Algorithm 1 R-DEAR strategy
Input: δ (Scientific workflow)
Output: γ (Generated results)
Procedure: R-DEAR (δ)
1. WQ GetWorkflows ()
2. TQ GenerateTasks () for each Workflow
3. RQ RegisterResources () from WRIP
4. for (each task T1 to Tn) do
5. GetPowerUtilization () Ti
6. end for
7. Sort tasks task T1 to Tn in ascending order as per PowerUtilization ()
8. Update T1 < T2 < T3 …, < Tn
9. for (each task T1 to Tn) do
10. GetResource () Ri with minimum PowerConsumption ()
11. GenerateReplica () TReplica (i)
12. Assign Ti Ri
13. end for
14. Start Execution: WorkflowEngine ()
15. while (WorkflowEngine ()) do
16. if (task execution failed)
17. Provide the task replica and re-execute
18. else if (node failed)
19. Provide the replica of task to alternative node and re-execute
20. end if else
21. end while
22. for (all available resources) do
23. Rp GetPower ()
24. if (RP == Null) then
25. ResourcePowerOff()
26. end if
27. end for
28. GenerateResult()

The power utilization of each task is obtained, and then all the tasks of a workflow
are sorted in ascending order per their power utilization. At this stage, the replica of each
node is also generated. Resources with minimum power consumption are found for each
task and assigned to the tasks. The tasks are executed through the workflow engine. If a
task’s execution fails during execution, a replica of the task is provided, and it is re-exe-
cuted. However, if the node on which the task is executed has failed, the replicas of tasks
executed on that node are provided to an alternative node for execution. The resources
are monitored during execution, and if power utilization of any resource is null, it is pow-
ered off. Finally, the results are obtained and returned to the user.

RegisterResources () from WRIP
4. for (each task T1 to Tn) do
5. GetPowerUtilization ()

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 15

3.2. Algorithm for the R-DEAR Strategy
The proposed R-DEAR strategy, in terms of pseudo code, is elaborated in Algorithm

1. The algorithm takes input as SWs. Each workflow is stored in a queue referred to as WQ.
The workflow then transforms them into tasks for execution and stores them in a queue
referred to as TQ. Resource information is obtained from the WRIP and stored in a queue
referred to as RQ.

Algorithm 1 R-DEAR strategy
Input: δ (Scientific workflow)
Output: γ (Generated results)
Procedure: R-DEAR (δ)
1. WQ GetWorkflows ()
2. TQ GenerateTasks () for each Workflow
3. RQ RegisterResources () from WRIP
4. for (each task T1 to Tn) do
5. GetPowerUtilization () Ti
6. end for
7. Sort tasks task T1 to Tn in ascending order as per PowerUtilization ()
8. Update T1 < T2 < T3 …, < Tn
9. for (each task T1 to Tn) do
10. GetResource () Ri with minimum PowerConsumption ()
11. GenerateReplica () TReplica (i)
12. Assign Ti Ri
13. end for
14. Start Execution: WorkflowEngine ()
15. while (WorkflowEngine ()) do
16. if (task execution failed)
17. Provide the task replica and re-execute
18. else if (node failed)
19. Provide the replica of task to alternative node and re-execute
20. end if else
21. end while
22. for (all available resources) do
23. Rp GetPower ()
24. if (RP == Null) then
25. ResourcePowerOff()
26. end if
27. end for
28. GenerateResult()

The power utilization of each task is obtained, and then all the tasks of a workflow
are sorted in ascending order per their power utilization. At this stage, the replica of each
node is also generated. Resources with minimum power consumption are found for each
task and assigned to the tasks. The tasks are executed through the workflow engine. If a
task’s execution fails during execution, a replica of the task is provided, and it is re-exe-
cuted. However, if the node on which the task is executed has failed, the replicas of tasks
executed on that node are provided to an alternative node for execution. The resources
are monitored during execution, and if power utilization of any resource is null, it is pow-
ered off. Finally, the results are obtained and returned to the user.

Ti
6. end for
7. Sort tasks task T1 to Tn in ascending order as per PowerUtilization ()
8. Update T1 < T2 < T3 . . . , < Tn
9. for (each task T1 to Tn) do
10. GetResource ()

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 15

3.2. Algorithm for the R-DEAR Strategy
The proposed R-DEAR strategy, in terms of pseudo code, is elaborated in Algorithm

1. The algorithm takes input as SWs. Each workflow is stored in a queue referred to as WQ.
The workflow then transforms them into tasks for execution and stores them in a queue
referred to as TQ. Resource information is obtained from the WRIP and stored in a queue
referred to as RQ.

Algorithm 1 R-DEAR strategy
Input: δ (Scientific workflow)
Output: γ (Generated results)
Procedure: R-DEAR (δ)
1. WQ GetWorkflows ()
2. TQ GenerateTasks () for each Workflow
3. RQ RegisterResources () from WRIP
4. for (each task T1 to Tn) do
5. GetPowerUtilization () Ti
6. end for
7. Sort tasks task T1 to Tn in ascending order as per PowerUtilization ()
8. Update T1 < T2 < T3 …, < Tn
9. for (each task T1 to Tn) do
10. GetResource () Ri with minimum PowerConsumption ()
11. GenerateReplica () TReplica (i)
12. Assign Ti Ri
13. end for
14. Start Execution: WorkflowEngine ()
15. while (WorkflowEngine ()) do
16. if (task execution failed)
17. Provide the task replica and re-execute
18. else if (node failed)
19. Provide the replica of task to alternative node and re-execute
20. end if else
21. end while
22. for (all available resources) do
23. Rp GetPower ()
24. if (RP == Null) then
25. ResourcePowerOff()
26. end if
27. end for
28. GenerateResult()

The power utilization of each task is obtained, and then all the tasks of a workflow
are sorted in ascending order per their power utilization. At this stage, the replica of each
node is also generated. Resources with minimum power consumption are found for each
task and assigned to the tasks. The tasks are executed through the workflow engine. If a
task’s execution fails during execution, a replica of the task is provided, and it is re-exe-
cuted. However, if the node on which the task is executed has failed, the replicas of tasks
executed on that node are provided to an alternative node for execution. The resources
are monitored during execution, and if power utilization of any resource is null, it is pow-
ered off. Finally, the results are obtained and returned to the user.

Ri with minimum PowerConsumption ()
11. GenerateReplica ()

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 15

3.2. Algorithm for the R-DEAR Strategy
The proposed R-DEAR strategy, in terms of pseudo code, is elaborated in Algorithm

1. The algorithm takes input as SWs. Each workflow is stored in a queue referred to as WQ.
The workflow then transforms them into tasks for execution and stores them in a queue
referred to as TQ. Resource information is obtained from the WRIP and stored in a queue
referred to as RQ.

Algorithm 1 R-DEAR strategy
Input: δ (Scientific workflow)
Output: γ (Generated results)
Procedure: R-DEAR (δ)
1. WQ GetWorkflows ()
2. TQ GenerateTasks () for each Workflow
3. RQ RegisterResources () from WRIP
4. for (each task T1 to Tn) do
5. GetPowerUtilization () Ti
6. end for
7. Sort tasks task T1 to Tn in ascending order as per PowerUtilization ()
8. Update T1 < T2 < T3 …, < Tn
9. for (each task T1 to Tn) do
10. GetResource () Ri with minimum PowerConsumption ()
11. GenerateReplica () TReplica (i)
12. Assign Ti Ri
13. end for
14. Start Execution: WorkflowEngine ()
15. while (WorkflowEngine ()) do
16. if (task execution failed)
17. Provide the task replica and re-execute
18. else if (node failed)
19. Provide the replica of task to alternative node and re-execute
20. end if else
21. end while
22. for (all available resources) do
23. Rp GetPower ()
24. if (RP == Null) then
25. ResourcePowerOff()
26. end if
27. end for
28. GenerateResult()

The power utilization of each task is obtained, and then all the tasks of a workflow
are sorted in ascending order per their power utilization. At this stage, the replica of each
node is also generated. Resources with minimum power consumption are found for each
task and assigned to the tasks. The tasks are executed through the workflow engine. If a
task’s execution fails during execution, a replica of the task is provided, and it is re-exe-
cuted. However, if the node on which the task is executed has failed, the replicas of tasks
executed on that node are provided to an alternative node for execution. The resources
are monitored during execution, and if power utilization of any resource is null, it is pow-
ered off. Finally, the results are obtained and returned to the user.

TReplica (i)

12. Assign Ti

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 15

3.2. Algorithm for the R-DEAR Strategy
The proposed R-DEAR strategy, in terms of pseudo code, is elaborated in Algorithm

1. The algorithm takes input as SWs. Each workflow is stored in a queue referred to as WQ.
The workflow then transforms them into tasks for execution and stores them in a queue
referred to as TQ. Resource information is obtained from the WRIP and stored in a queue
referred to as RQ.

Algorithm 1 R-DEAR strategy
Input: δ (Scientific workflow)
Output: γ (Generated results)
Procedure: R-DEAR (δ)
1. WQ GetWorkflows ()
2. TQ GenerateTasks () for each Workflow
3. RQ RegisterResources () from WRIP
4. for (each task T1 to Tn) do
5. GetPowerUtilization () Ti
6. end for
7. Sort tasks task T1 to Tn in ascending order as per PowerUtilization ()
8. Update T1 < T2 < T3 …, < Tn
9. for (each task T1 to Tn) do
10. GetResource () Ri with minimum PowerConsumption ()
11. GenerateReplica () TReplica (i)
12. Assign Ti Ri
13. end for
14. Start Execution: WorkflowEngine ()
15. while (WorkflowEngine ()) do
16. if (task execution failed)
17. Provide the task replica and re-execute
18. else if (node failed)
19. Provide the replica of task to alternative node and re-execute
20. end if else
21. end while
22. for (all available resources) do
23. Rp GetPower ()
24. if (RP == Null) then
25. ResourcePowerOff()
26. end if
27. end for
28. GenerateResult()

The power utilization of each task is obtained, and then all the tasks of a workflow
are sorted in ascending order per their power utilization. At this stage, the replica of each
node is also generated. Resources with minimum power consumption are found for each
task and assigned to the tasks. The tasks are executed through the workflow engine. If a
task’s execution fails during execution, a replica of the task is provided, and it is re-exe-
cuted. However, if the node on which the task is executed has failed, the replicas of tasks
executed on that node are provided to an alternative node for execution. The resources
are monitored during execution, and if power utilization of any resource is null, it is pow-
ered off. Finally, the results are obtained and returned to the user.

Ri
13. end for
14. Start Execution: WorkflowEngine ()
15. while (WorkflowEngine ()) do
16. if (task execution failed)
17. Provide the task replica and re-execute
18. else if (node failed)
19. Provide the replica of task to alternative node and re-execute
20. end if else
21. end while
22. for (all available resources) do
23. Rp

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 15

3.2. Algorithm for the R-DEAR Strategy
The proposed R-DEAR strategy, in terms of pseudo code, is elaborated in Algorithm

1. The algorithm takes input as SWs. Each workflow is stored in a queue referred to as WQ.
The workflow then transforms them into tasks for execution and stores them in a queue
referred to as TQ. Resource information is obtained from the WRIP and stored in a queue
referred to as RQ.

Algorithm 1 R-DEAR strategy
Input: δ (Scientific workflow)
Output: γ (Generated results)
Procedure: R-DEAR (δ)
1. WQ GetWorkflows ()
2. TQ GenerateTasks () for each Workflow
3. RQ RegisterResources () from WRIP
4. for (each task T1 to Tn) do
5. GetPowerUtilization () Ti
6. end for
7. Sort tasks task T1 to Tn in ascending order as per PowerUtilization ()
8. Update T1 < T2 < T3 …, < Tn
9. for (each task T1 to Tn) do
10. GetResource () Ri with minimum PowerConsumption ()
11. GenerateReplica () TReplica (i)
12. Assign Ti Ri
13. end for
14. Start Execution: WorkflowEngine ()
15. while (WorkflowEngine ()) do
16. if (task execution failed)
17. Provide the task replica and re-execute
18. else if (node failed)
19. Provide the replica of task to alternative node and re-execute
20. end if else
21. end while
22. for (all available resources) do
23. Rp GetPower ()
24. if (RP == Null) then
25. ResourcePowerOff()
26. end if
27. end for
28. GenerateResult()

The power utilization of each task is obtained, and then all the tasks of a workflow
are sorted in ascending order per their power utilization. At this stage, the replica of each
node is also generated. Resources with minimum power consumption are found for each
task and assigned to the tasks. The tasks are executed through the workflow engine. If a
task’s execution fails during execution, a replica of the task is provided, and it is re-exe-
cuted. However, if the node on which the task is executed has failed, the replicas of tasks
executed on that node are provided to an alternative node for execution. The resources
are monitored during execution, and if power utilization of any resource is null, it is pow-
ered off. Finally, the results are obtained and returned to the user.

GetPower ()
24. if (RP == Null) then
25. ResourcePowerOff()
26. end if
27. end for
28. GenerateResult()

The proposed R-DEAR strategy is a resource- and service-provisioning strategy that
incorporates a replication-based fault-tolerant and load-balancing mechanism. The pro-
posed R-DEAR strategy is a way to schedule the tasks of a scientific workflow using a
replication-based fault-tolerant mechanism. The proposed R-DEAR strategy manages the
power consumption of IaaS cloud resources dynamically through a load-sharing process.

4. Evaluation Methods

Comprehensive details on the simulation environment and application modeling are
provided in this section.

4.1. Simulation Tool

In order to establish the cloud computing environment, WorkflowSim [33], “a toolkit
for simulating SWs,” was amended to support the replication-based fault-tolerant mecha-
nism and dynamic energy-aware resource scheduling. Shared-space resources were used.
The rest of the specifications are shown in Table 2.

Table 2. Specification of resources.

No. VMs Memory BW VM Arch
1000 VMs 10,240 MB 10,000 Mbps Xen X86
OS Cost per VM $/Hr Memory cost $/s Storage cost $/S Data transfer cost $/s
Linux 3.00 $/Hr 0.05 $/s 0.10 $/S 0.10 $/s

Appl. Sci. 2023, 13, 2644 9 of 14

4.2. Application Modelling

The proposed strategy was simulated for real time SWs with three dataset sizes (i.e.,
small, medium and large) using two well-known SWs: Montage [39] and CyberShake [40].
The sizes of small, medium, and large workflows have been distinguished based on the
number of jobs contained within them. Small workflows have 50 jobs, medium contain
100 jobs and large contain 1000 jobs. The results were compared with the state-of-the-art
R-PCP strategy [35].

4.3. Performance Evaluation Parameters

The proposed strategy is a replication-based, dynamic energy-aware resource-provisioning
strategy. In the context of the proposed strategy, the energy consumption, execution time
and execution cost are significant parameters and were evaluated through the simula-
tion environment.

5. Experiment Setup

The WorkflowSim [33] workflow simulator was modified and used and to support the
replication-based fault-tolerant mechanism and dynamic energy-aware resource scheduling.

5.1. Results and Discussion

The proposed R-DEAR strategy was simulated with three datasets of two well-known
SWs. The average values of results were considered and compared with the state-of-the-art
R-PCP strategy.

5.1.1. Energy Consumption

The energy consumed by the proposed R-DEAR strategy for the Montage SW is
shown in Figure 2. The R-DEAR strategy’s energy consumption was minimal as compared
with the existing R-PCP strategy. The reason for this was the provision of proper power
management in the proposed R-DEAR strategy through its load-sharing approach.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 18

Figure 2. Energy consumption for Montage scientific workflow.

The energy consumed by the proposed R-DEAR strategy for the CyberShake SW is
shown in Figure 3. The R-DEAR strategy consumed a minimum amount of energy as com-
pared with the existing R-PCP strategy. The reason for this was the provision of proper
power management in the proposed R-DEAR strategy through its load-sharing approach.

Small Medium Large
R-DEAR 51 101 405
R-PCP 79 134 494

EN
ER

GY
 C

ON
SU

M
PT

IO
N

(K
W

H)

MONTAGE SCIENTIFIC WORKFLOW

R-DEAR R-PCP

Figure 2. Energy consumption for Montage scientific workflow.

The energy consumed by the proposed R-DEAR strategy for the CyberShake SW is
shown in Figure 3. The R-DEAR strategy consumed a minimum amount of energy as
compared with the existing R-PCP strategy. The reason for this was the provision of proper
power management in the proposed R-DEAR strategy through its load-sharing approach.

Appl. Sci. 2023, 13, 2644 10 of 14

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 18

Figure 3. Energy consumption for CyberShake scientific workflow.

5.1.2. Execution Cost
The cost of execution for the proposed R-DEAR strategy for the Montage SW is

shown in Figure 4. The proposed R-DEAR strategy reduced the execution cost as com-
pared with the existing R-PCP strategy. The reason for this was the provision of the replica
manager for dealing with the failure of tasks and power management in the R-DEAR
strategy through its load-sharing approach.

Small Medium Large
R-DEAR 65 165 550
R-PCP 76 192 647

EN
ER

GY
 C

ON
SU

M
PT

IO
N

(K
W

H)

CYBERSHAKE SCIENTIFIC WORKFLOW

R-DEAR R-PCP

Figure 3. Energy consumption for CyberShake scientific workflow.

5.1.2. Execution Cost

The cost of execution for the proposed R-DEAR strategy for the Montage SW is shown
in Figure 4. The proposed R-DEAR strategy reduced the execution cost as compared with
the existing R-PCP strategy. The reason for this was the provision of the replica manager for
dealing with the failure of tasks and power management in the R-DEAR strategy through
its load-sharing approach.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 18

Figure 4. Execution cost for Montage scientific workflow.

The cost of execution for the proposed R-DEAR strategy for the CyberShake SW is
shown in Figure 5. The proposed R-DEAR strategy reduced the cost as compared with the
existing R-PCP strategy. The reason for this was the provision of the replica manager for
dealing with the failure of tasks and power management in the proposed R-DEAR strat-
egy through its load-sharing approach.

0

5000

10000

15000

20000

25000

30000

Small Medium Large

EX
EC

UT
IO

N
CO

ST
 ($

)

MONTAGE SCIENTIFIC WORKFLOW

R-DEAR R-PCP

Figure 4. Execution cost for Montage scientific workflow.

The cost of execution for the proposed R-DEAR strategy for the CyberShake SW is
shown in Figure 5. The proposed R-DEAR strategy reduced the cost as compared with the
existing R-PCP strategy. The reason for this was the provision of the replica manager for
dealing with the failure of tasks and power management in the proposed R-DEAR strategy
through its load-sharing approach.

Appl. Sci. 2023, 13, 2644 11 of 14

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 18

Figure 5. Execution cost for CyberShake scientific workflow.

The differences between the execution costs of R-DEAR and R-PCP are normal for
small and medium workflows due to a lower failure rate in terms of the number of tasks.
However, the differences between the execution costs of R-DEAR and R-PCP get larger
for large workflows. Large workflows contain a comparatively large number of tasks, each
with a higher probability of failure. The proposed R-DEAR strategy in such a situation
addresses it through a replication-based load-sharing approach.

5.1.3. Execution Time
The execution time for the proposed R-DEAR strategy for the Montage SW is shown

in Figure 6. The proposed R-DEAR strategy decreased the execution time as compared
with the existing R-PCP strategy. The reason for this was the provision of the replica man-
ager for dealing with the failure of tasks and power management in the proposed R-DEAR
strategy through its load-sharing approach.

0

200000

400000

600000

800000

1000000

1200000

Small Medium Large

EX
EC

UT
IO

N
CO

ST
 ($

)

CYBERSHAKE SCIENTIFIC WORKFLOW

R-DEAR R-PCP

Figure 5. Execution cost for CyberShake scientific workflow.

The differences between the execution costs of R-DEAR and R-PCP are normal for
small and medium workflows due to a lower failure rate in terms of the number of tasks.
However, the differences between the execution costs of R-DEAR and R-PCP get larger for
large workflows. Large workflows contain a comparatively large number of tasks, each
with a higher probability of failure. The proposed R-DEAR strategy in such a situation
addresses it through a replication-based load-sharing approach.

5.1.3. Execution Time

The execution time for the proposed R-DEAR strategy for the Montage SW is shown in
Figure 6. The proposed R-DEAR strategy decreased the execution time as compared with
the existing R-PCP strategy. The reason for this was the provision of the replica manager for
dealing with the failure of tasks and power management in the proposed R-DEAR strategy
through its load-sharing approach.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 18

Figure 6. Execution time for Montage scientific workflow.

The execution time for the proposed R-DEAR strategy for the CyberShake SW is
shown in Figure 7. The proposed R-DEAR strategy decreased the execution time as com-
pared with the existing R-PCP strategy. The reason for this was the provision of the replica
manager for dealing with the failure of tasks and power management in the proposed R-
DEAR strategy through its load-sharing approach.

0

1000

2000

3000

4000

5000

6000

7000

S M A L L M E D I U M L A R G E

EX
EC

UT
IO

N
TI

M
E

(M
S)

MONTAGE SCIENTIFIC WORKFLOW

R-DEAR R-PCP

Figure 6. Execution time for Montage scientific workflow.

The execution time for the proposed R-DEAR strategy for the CyberShake SW is shown
in Figure 7. The proposed R-DEAR strategy decreased the execution time as compared with
the existing R-PCP strategy. The reason for this was the provision of the replica manager for
dealing with the failure of tasks and power management in the proposed R-DEAR strategy
through its load-sharing approach.

Appl. Sci. 2023, 13, 2644 12 of 14

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 18

Figure 7. Execution time for CyberShake scientific workflow.

Scientific workflows have some special characteristics, such as tasks that are inte-
grated, disintegrated, and executed sometimes in parallel and sometimes in sequence.
Workflows such as Montage and CyberShake differ from each other based on these special
characteristics. Per the structure of CyberShake, it has a higher number of parallel task
executions with minimum inclusion of other workflow characteristics, which explains
why there is a strong correlation between R-DEAR and R-PCP through small, medium,
and large workflows.

The results conclusively show that on average, the proposed R-DEAR strategy re-
duces energy consumption, execution cost and execution time by 9%, 15% and 18%, re-
spectively, as compared with the existing state-of-the-art strategy. The reason is that the
proposed R-DEAR strategy assigns resources by finding the best resource for each task.
The R-DEAR strategy manages the power by finding and powering off idle resources. The
R-DEAR strategy also ensures the successful execution of tasks by providing a replication-
based fault-tolerant mechanism.

6. Conclusions
This research work presents an R-DEAR strategy for SWs in an IaaS cloud environ-

ment. The motive for presenting the R-DEAR strategy is to address the issues of energy
consumption and task failure for real SWs. Real-world SWs, including Montage and Cy-
berShake, are examples of data- and computing-intensiveness. For their implementation,
SW applications need high-performance computational resources and a huge amount of
storage. Scientists in most scientific fields, such as astronomy, high-energy physics, and
bioinformatics, conduct research that requires and produces terabytes of data obtained
from physical devices. The workflow tasks are linked based on computational and data
interdependence. Considering the high volume and variety of SWs, the resources of the
IaaS cloud model require efficient energy management without failure or loss.

The proposed strategy, R-DEAR, is a resource-provisioning strategy that works with
replication-based fault-tolerant mechanisms. The proposed R-DEAR strategy also man-
ages the power consumption of IaaS cloud resources dynamically through a load-sharing
process. Simulation was performed on a WorkflowSim simulator. The results reveal that
the proposed R-DEAR strategy minimizes energy consumption, execution cost, and exe-
cution time by 9%, 15%, and 18%, respectively, against the existing state-of-the-art strat-
egy.

The proposed study is limited to scientific workflows. Therefore, for business work-
flows, we need to develop another strategy based on the nature of business workflows.

0

50000

100000

150000

200000

S M A L L M E D I U M L A R G E

EX
EC

UT
IO

N
TI

M
E

(M
S)

CYBERSHAKE SCIENTIFIC WORKFLOW

R-DEAR R-PCP

Figure 7. Execution time for CyberShake scientific workflow.

Scientific workflows have some special characteristics, such as tasks that are integrated,
disintegrated, and executed sometimes in parallel and sometimes in sequence. Workflows
such as Montage and CyberShake differ from each other based on these special characteris-
tics. Per the structure of CyberShake, it has a higher number of parallel task executions with
minimum inclusion of other workflow characteristics, which explains why there is a strong
correlation between R-DEAR and R-PCP through small, medium, and large workflows.

The results conclusively show that on average, the proposed R-DEAR strategy reduces
energy consumption, execution cost and execution time by 9%, 15% and 18%, respectively,
as compared with the existing state-of-the-art strategy. The reason is that the proposed
R-DEAR strategy assigns resources by finding the best resource for each task. The R-DEAR
strategy manages the power by finding and powering off idle resources. The R-DEAR
strategy also ensures the successful execution of tasks by providing a replication-based
fault-tolerant mechanism.

6. Conclusions

This research work presents an R-DEAR strategy for SWs in an IaaS cloud environ-
ment. The motive for presenting the R-DEAR strategy is to address the issues of energy
consumption and task failure for real SWs. Real-world SWs, including Montage and Cy-
berShake, are examples of data- and computing-intensiveness. For their implementation,
SW applications need high-performance computational resources and a huge amount of
storage. Scientists in most scientific fields, such as astronomy, high-energy physics, and
bioinformatics, conduct research that requires and produces terabytes of data obtained
from physical devices. The workflow tasks are linked based on computational and data
interdependence. Considering the high volume and variety of SWs, the resources of the
IaaS cloud model require efficient energy management without failure or loss.

The proposed strategy, R-DEAR, is a resource-provisioning strategy that works with
replication-based fault-tolerant mechanisms. The proposed R-DEAR strategy also manages
the power consumption of IaaS cloud resources dynamically through a load-sharing pro-
cess. Simulation was performed on a WorkflowSim simulator. The results reveal that the
proposed R-DEAR strategy minimizes energy consumption, execution cost, and execution
time by 9%, 15%, and 18%, respectively, against the existing state-of-the-art strategy.

The proposed study is limited to scientific workflows. Therefore, for business work-
flows, we need to develop another strategy based on the nature of business workflows. The
proposed study implements a cloud platform for evaluation; however, a fog environment
can be used in some aspects. In the future, this work will be strengthened to imple-
ment workflow scheduling and fault tolerance in fog environments. Similarly, business
workflow-based implementation of a similar study will also be achieved.

Appl. Sci. 2023, 13, 2644 13 of 14

Author Contributions: M.A.A., M.O., E.M.I., O.E. and Z.A. conceived and designed the experiments;
M.F., Y.A.A., Z.A. and R.M.G. wrote the paper; M.A.A., Z.A. and R.M.G. performed the simulations
and analyzed the results; R.M.G. and M.O. technically reviewed the paper. All authors have read and
agreed to the published version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2023R138), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Data Availability Statement: No data were used to support this study. However, any query about
the research conducted in this paper is highly appreciated and can be answered by the corresponding
authors upon request.

Acknowledgments: The authors appreciate the support from Princess Nourah bint Abdulrahman
University Researchers Supporting Project number (PNURSP2023R138), Princess Nourah bint Abdul-
rahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sookhak, M.; Yu, F.R.; Khan, M.K.; Xiang, Y.; Buyya, R. Attribute-based data access control in mobile cloud computing: Taxonomy

and open issues. Futur. Gener. Comput. Syst. 2017, 72, 273–287. [CrossRef]
2. Ullah, A.; Li, J.; Shen, Y.; Hussain, A. A control theoretical view of cloud elasticity: Taxonomy, survey and challenges. Clust.

Comput. 2018, 21, 1735–1764. [CrossRef]
3. Mustafa, S.; Nazir, B.; Hayat, A.; Khan, A.U.R.; Madani, S.A. Resource management in cloud computing: Taxonomy, prospects,

and challenges. Comput. Electr. Eng. 2015, 47, 186–203. [CrossRef]
4. Masdari, M.; ValiKardan, S.; Shahi, Z.; Azar, S.I. Towards workflow scheduling in cloud computing: A comprehensive analysis. J.

Netw. Comput. Appl. 2016, 66, 64–82. [CrossRef]
5. Serrano, D.; Bouchenak, S.; Kouki, Y.; de Oliveira, F.A., Jr.; Ledoux, T.; Lejeune, J.; Sopena, J.; Arantes, L.; Sens, P. SLA guarantees

for cloud services. Futur. Gener. Comput. Syst. 2016, 54, 233–246. [CrossRef]
6. Dimitri, N. Pricing cloud IaaS computing services. J. Cloud Comput. 2020, 9, 14. [CrossRef]
7. Alanzy, M.; Latip, R.; Muhammed, A. Range wise busy checking 2-way imbalanced algorithm for cloudlet allocation in cloud

environment. J. Physics: Conf. Ser. 2018, 1018, 012018. [CrossRef]
8. Rodriguez, M.A.; Buyya, R. Budget-Driven Scheduling of Scientific Workflows in IaaS Clouds with Fine-Grained Billing Periods.

ACM Trans. Auton. Adapt. Syst. 2017, 12, 1–22. [CrossRef]
9. Ahmad, Z.; Nazir, B.; Umer, A. A fault-tolerant workflow management system with Quality-of-Service-aware scheduling for

scientific workflows in cloud computing. Int. J. Commun. Syst. 2021, 34, e4649. [CrossRef]
10. Casas, I.; Taheri, J.; Ranjan, R.; Wang, L.; Zomaya, A.Y. A balanced scheduler with data reuse and replication for scientific

workflows in cloud computing systems. Futur. Gener. Comput. Syst. 2016, 74, 168–178. [CrossRef]
11. da Silva, R.F.; Casanova, H.; Orgerie, A.-C.; Tanaka, R.; Deelman, E.; Suter, F. Characterizing, Modeling, and Accurately Simulating

Power and Energy Consumption of I/O-intensive Scientific Workflows. J. Comput. Sci. 2020, 44, 101157. [CrossRef]
12. Choi, J.; Adufu, T.; Kim, Y. Data-Locality Aware Scientific Workflow Scheduling Methods in HPC Cloud Environments. Int. J.

Parallel Program. 2016, 45, 1128–1141. [CrossRef]
13. Ala’Anzy, M.A.; Othman, M.; Hasan, S.; Ghaleb, S.M.; Latip, R. Optimising Cloud Servers Utilisation Based on Locust-Inspired

Algorithm. In Proceedings of the 7th International Conference on Soft Computing & Machine Intelligence, Stockholm, Sweden,
14–15 November 2020; pp. 23–27. [CrossRef]

14. Ahmad, Z.; Jehangiri, A.I.; Ala’Anzy, M.A.; Othman, M.; Umar, A.I. Fault-Tolerant and Data-Intensive Resource Scheduling and
Management for Scientific Applications in Cloud Computing. Sensors 2021, 21, 7238. [CrossRef] [PubMed]

15. Acevedo, C.; Hernández, P.; Espinosa, A.; Mendez, V. A Data-aware MultiWorkflow Scheduler for Clusters on WorkflowSim. In
Proceedings of the COMPLEXIS 2017: 2nd International Conference on Complexity, Future Information Systems and Risk, Online
Streaming, 23–24 April 2022; pp. 79–86. [CrossRef]

16. Gottin, V.M.; Pacheco, E.; Dias, J.; Ciarlini, A.E.M.; Costa, B.; Vieira, W.; Souto, Y.M.; Pires, P.; Porto, F.; Rittmeyer, J.G. Automatic
Caching Decision for Scientific Dataflow Execution in Apache Spark. In Proceedings of the 5th ACM SIGMOD Workshop on
Algorithms and Systems for MapReduce and Beyond, Houston, TX, USA, 15 June 2018. [CrossRef]

17. Anwar, N.; Deng, H. Elastic Scheduling of Scientific Workflows under Deadline Constraints in Cloud Computing Environments.
Futur. Internet 2018, 10, 5. [CrossRef]

18. Rehman, A.U.; Ahmad, Z.; Jehangiri, A.I.; Ala’Anzy, M.A.; Othman, M.; Umar, A.I.; Ahmad, J. Dynamic Energy Efficient Resource
Allocation Strategy for Load Balancing in Fog Environment. IEEE Access 2020, 8, 199829–199839. [CrossRef]

19. Stavrinides, G.L.; Karatza, H.D. An energy-efficient, QoS-aware and cost-effective scheduling approach for real-time workflow
applications in cloud computing systems utilizing DVFS and approximate computations. Futur. Gener. Comput. Syst. 2019,
96, 216–226. [CrossRef]

http://doi.org/10.1016/j.future.2016.08.018
http://doi.org/10.1007/s10586-018-2807-6
http://doi.org/10.1016/j.compeleceng.2015.07.021
http://doi.org/10.1016/j.jnca.2016.01.018
http://doi.org/10.1016/j.future.2015.03.018
http://doi.org/10.1186/s13677-020-00161-2
http://doi.org/10.1088/1742-6596/1018/1/012018
http://doi.org/10.1145/3041036
http://doi.org/10.1002/dac.4649
http://doi.org/10.1016/j.future.2015.12.005
http://doi.org/10.1016/j.jocs.2020.101157
http://doi.org/10.1007/s10766-016-0463-0
http://doi.org/10.1109/iscmi51676.2020.9311584
http://doi.org/10.3390/s21217238
http://www.ncbi.nlm.nih.gov/pubmed/34770545
http://doi.org/10.5220/0006303500790086
http://doi.org/10.1145/3206333.3206339
http://doi.org/10.3390/fi10010005
http://doi.org/10.1109/ACCESS.2020.3035181
http://doi.org/10.1016/j.future.2019.02.019

Appl. Sci. 2023, 13, 2644 14 of 14

20. Rodriguez, M.A.; Buyya, R. A taxonomy and survey on scheduling algorithms for scientific workflows in IaaS cloud computing
environments. Concurr. Comput. Pract. Exp. 2016, 29, e4041. [CrossRef]

21. Marozzo, F.; Talia, D.; Trunfio, P. A Workflow Management System for Scalable Data Mining on Clouds. IEEE Trans. Serv. Comput.
2016, 11, 480–492. [CrossRef]

22. Ahmad, Z.; Jehangiri, A.I.; Iftikhar, M.; Umer, A.I.; Afzal, I. Data-Oriented Scheduling with Dynamic-Clustering Fault-Tolerant
Technique for Scientific Workflows in Clouds. Program. Comput. Softw. 2019, 45, 506–516. [CrossRef]

23. Verma, R.K.; Pattanaik, K.; Bharti, S.; Saxena, D. In-network context inference in IoT sensory environment for efficient network
resource utilization. J. Netw. Comput. Appl. 2019, 130, 89–103. [CrossRef]

24. Chen, W.; da Silva, R.F.; Deelman, E.; Fahringer, T. Dynamic and Fault-Tolerant Clustering for Scientific Workflows. IEEE Trans.
Cloud Comput. 2015, 4, 49–62. [CrossRef]

25. Zhu, X.; Wang, J.; Guo, H.; Zhu, D.; Yang, L.T.; Liu, L. Fault-Tolerant Scheduling for Real-Time Scientific Workflows with Elastic
Resource Provisioning in Virtualized Clouds. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 3501–3517. [CrossRef]

26. da Silva, R.F.; Filgueira, R.; Deelman, E.; Pairo-Castineira, E.; Overton, I.M.; Atkinson, M.P. Using simple PID-inspired controllers
for online resilient resource management of distributed scientific workflows. Futur. Gener. Comput. Syst. 2019, 95, 615–628.
[CrossRef]

27. Sardaraz, M.; Tahir, M. A parallel multi-objective genetic algorithm for scheduling scientific workflows in cloud computing. Int. J.
Distrib. Sens. Networks 2020, 16, 1550147720949142. [CrossRef]

28. Sardaraz, M.; Tahir, M. A Hybrid Algorithm for Scheduling Scientific Workflows in Cloud Computing. IEEE Access 2019,
7, 186137–186146. [CrossRef]

29. Shirvani, M.H.; Talouki, R.N. Bi-objective scheduling algorithm for scientific workflows on cloud computing platform with
makespan and monetary cost minimization approach. Complex Intell. Syst. 2021, 8, 1085–1114. [CrossRef]

30. Sujana, J.A.J.; Revathi, T.; Priya, T.S.S.; Muneeswaran, K. Smart PSO-based secured scheduling approaches for scientific workflows
in cloud computing. Soft Comput. 2017, 23, 1745–1765. [CrossRef]

31. Li, Z.; Yu, J.; Hu, H.; Chen, J.; Hu, H.; Ge, J.; Chang, V. Fault-Tolerant Scheduling for Scientific Workflow with Task Replication
Method in Cloud. In Proceedings of the 3rd International Conference on Internet of Things, Big Data and Security, IoTBDS 2018,
Funchal, Portugal, 19–21 March 2018; pp. 95–104. [CrossRef]

32. Wu, N.; Zuo, D.; Zhang, Z. Dynamic Fault-Tolerant Workflow Scheduling with Hybrid Spatial-Temporal Re-Execution in Clouds.
Information 2019, 10, 169. [CrossRef]

33. Chen, W.; Deelman, E. WorkflowSim: A toolkit for simulating scientific workflows in distributed environments. In Proceedings
of the 2012 IEEE 8th International Conference on E-Science, Chicago, IL, USA, 8–12 October 2012. [CrossRef]

34. Padmakumari, P.; Umamakeswari, A. Development of cognitive fault tolerant model for scientific workflows by integrating
overlapped migration and check-pointing approach. J. Ambient. Intell. Humaniz. Comput. 2019, 1–11. [CrossRef]

35. Ulabedin, Z.; Nazir, B. Replication and data management-based workflow scheduling algorithm for multi-cloud data centre
platform. J. Supercomput. 2021, 77, 10743–10772. [CrossRef]

36. Zhang, L.; Wang, L.; Xiao, M.; Wen, Z.; Peng, C. EM_WOA: A budget-constrained energy consumption optimization approach for
workflow scheduling in clouds. Peer-to-Peer Netw. Appl. 2022, 15, 973–987. [CrossRef]

37. Choudhary, R.; Perinpanayagam, S. Applications of Virtual Machine Using Multi-Objective Optimization Scheduling Algorithm
for Improving CPU Utilization and Energy Efficiency in Cloud Computing. Energies 2022, 15, 9164. [CrossRef]

38. Bharany, S.; Sharma, S.; Khalaf, O.I.; Abdulsahib, G.M.; Al Humaimeedy, A.S.; Aldhyani, T.H.H.; Maashi, M.; Alkahtani, H. A
Systematic Survey on Energy-Efficient Techniques in Sustainable Cloud Computing. Sustainability 2022, 14, 6256. [CrossRef]

39. Deelman, E.; Singh, G.; Livny, M.; Berriman, B.; Good, J. The cost of doing science on the cloud: The Montage example. In
Proceedings of the SC ‘08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, Austin, TX, USA, 15–21 November
2008. [CrossRef]

40. Callaghan, S.; Maechling, P.J.; Small, P.; Milner, K.; Juve, G.; Jordan, T.H.; Deelman, E.; Mehta, G.; Vahi, K.; Gunter, D.; et al.
Metrics for heterogeneous scientific workflows: A case study of an earthquake science application. Int. J. High Perform. Comput.
Appl. 2011, 25, 274–285. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1002/cpe.4041
http://doi.org/10.1109/TSC.2016.2589243
http://doi.org/10.1134/S0361768819080097
http://doi.org/10.1016/j.jnca.2019.01.013
http://doi.org/10.1109/TCC.2015.2427200
http://doi.org/10.1109/TPDS.2016.2543731
http://doi.org/10.1016/j.future.2019.01.015
http://doi.org/10.1177/1550147720949142
http://doi.org/10.1109/ACCESS.2019.2961106
http://doi.org/10.1007/s40747-021-00528-1
http://doi.org/10.1007/s00500-017-2897-8
http://doi.org/10.5220/0006687300950104
http://doi.org/10.3390/info10050169
http://doi.org/10.1109/escience.2012.6404430
http://doi.org/10.1007/s12652-019-01174-9
http://doi.org/10.1007/s11227-020-03541-2
http://doi.org/10.1007/s12083-021-01267-3
http://doi.org/10.3390/en15239164
http://doi.org/10.3390/su14106256
http://doi.org/10.1109/sc.2008.5217932
http://doi.org/10.1177/1094342011414743

	Introduction
	Related Work
	System Design and Model
	Parts of R-DEAR Strategy
	User
	Workflow Manager
	Workflow/Resource Information Provider (WRIP)
	Workflow Scheduler
	Workflow Engine
	Resource Power Manager
	Workflow Replica Manager

	Algorithm for the R-DEAR Strategy

	Evaluation Methods
	Simulation Tool
	Application Modelling
	Performance Evaluation Parameters

	Experiment Setup
	Results and Discussion
	Energy Consumption
	Execution Cost
	Execution Time

	Conclusions
	References

