

  applsci-13-02652




applsci-13-02652







Appl. Sci. 2023, 13(4), 2652; doi:10.3390/app13042652




Review



Review: A Survey on Objective Evaluation of Image Sharpness



Mengqiu Zhu 1, Lingjie Yu 1,*[image: Orcid], Zongbiao Wang 2, Zhenxia Ke 1 and Chao Zhi 1,3,*





1



School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China






2



Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia






3



Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, Ministry of Education, Xi’an 710048, China









*



Correspondence: lingjie.yu@xpu.edu.cn (L.Y.); zhichao@xpu.edu.cn (C.Z.)







Academic Editor: Byung-Gyu Kim



Received: 1 February 2023 / Revised: 12 February 2023 / Accepted: 15 February 2023 / Published: 18 February 2023



Abstract

:

Establishing an accurate objective evaluation metric of image sharpness is crucial for image analysis, recognition and quality measurement. In this review, we highlight recent advances in no-reference image quality assessment research, divide the reported algorithms into four groups (spatial domain-based methods, spectral domain-based methods, learning-based methods and combination methods) and outline the advantages and disadvantages of each method group. Furthermore, we conduct a brief bibliometric study with which to provide an overview of the current trends from 2013 to 2021 and compare the performance of representative algorithms on public datasets. Finally, we describe the shortcomings and future challenges in the current studies.
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1. Introduction


In the overview of image quality evaluation, the common evaluation indicators [1] include image noise, image color, artifacts, sharpness, etc. Image noise evaluation methods [2] mainly rely on image spatial and temporal noise, signal-to-noise ratio and grayscale noise to obtain evaluation results. The image color evaluation methods [3] usually evaluate the color degree and uniformity of the image. The image artifact evaluation methods [4] pay more attention to chromatic aberration, distortion and vignetting factors, while the image sharpness evaluation method [5] is based on the comprehensive evaluation of the edges and details of the image, which is currently one of the most popular image quality evaluation methods; it is closely related to research fields such as bionics [6], nonwoven materials [7], medicine [8], etc.



According to the dependence on the reference image, the evaluation methods are divided into three types: Full-Reference (FR), Reduced-Reference (RR) and No-Reference (NR) [9]. The FR method uses the distorted image and the corresponding undistorted reference image to generate the image quality score. In the RR method, the image quality is evaluated on partial information extracted using feature extraction methods. Unlike the FR and RR methods, the NR method can use the distorted image alone to complete the quality assessment. Since it is usually impossible to obtain an undistorted image for reference in practical applications, the research on NR methods has become the current mainstream research direction [10,11].



The image sharpness refers to the clarity of the texture and borders of various detailed parts of an image, which affects the perception of information, image acquisition, and subsequent processing, especially in some applications based on high-quality images [12,13,14]. The ideal image sharpness evaluation function should have the characteristics of high sensitivity, good robustness and low computational cost [15,16,17]. Most traditional image sharpness evaluation methods [18] are based on spatial or spectral domains. The methods in the spatial domain mainly evaluate the image by extracting the image gradient and edge information [19,20], which have the advantages of simple calculation and high real-time performance but are easily disturbed by noise. The methods in the spectral domain mainly use transformation methods, such as Fourier transform and wavelet transform, to extract image frequency features for sharpness evaluation [21]. This type of method has excellent sensitivity but high computational complexity. In recent years, learning-based methods have emerged from the machine learning methods to the deep learning methods [22]. At the same time, an increasing number of evaluation methods of a combination of methods are studied and developed by scholars. A combination method is usually a new method formed by combining two or more single evaluation methods in a certain relationship. Such methods incorporate the advantages of the single method being combined and effectively improve the accuracy of quality evaluation.



Although the above-reported research has obtained fruitful results, the objective evaluation standards for image sharpness are still not mature enough; few evaluation methods are suitable for most scenarios. It is unrealistic to ask one sharpness evaluation algorithm to handle all potential images due to the sophisticated and various image textures and features [23]. Therefore, this paper reviews and clusters the existing sharpness evaluation methods and conducted systematic comparative analyses on several representative methods aimed at offering directions for researchers to choose or develop a sharpness evaluation algorithm on different types of images.



The paper reviews, classifies and summarizes the past decade’s sharpness evaluation methods for no-reference images. The reviewed evaluation methods are grouped into four categories with their evaluation results compared and the advantages and disadvantages discussed. An outlook on the application of image sharpness in image processing is given, and a direction for further research on sharpness evaluation methods for no-reference images is discussed. Section 1 presents the background of the evaluation method. Section 2 summarizes the current sharpness evaluation methods by characterizing them into four groups. Section 3 offers a bibliometric study to evaluate and compare the performance of state-of-the-art algorithms on public datasets. Section 4 highlights the shortcomings of current research and provides an outlook on future challenges.




2. Evaluation Methods and Analysis


The sharpness evaluation methods for no-reference images can be divided into four categories: spatial domain methods, spectral domain methods, learning methods and combination methods. The specific classification is shown in Figure 1.



2.1. Spatial Domain-Based Methods


Early work [24,25,26] on the sharpness evaluation of no-reference images was mainly performed in the spatial domain. The spatial domain evaluation functions use the characteristics of the image in the spatial domain to distinguish between blurred and clear images [27]. This type of evaluation function generally evaluates images directly by calculating the relationship between image pixels and their neighbors. We mainly divide spatial domain methods into gradient grayscale and edge detection evaluation methods.



2.1.1. Grayscale Gradient-Based Methods


Grayscale gradient function is one of the commonly used image sharpness evaluation functions, which mainly evaluates by calculating the difference between adjacent pixels on the image to establish the evaluation function [28,29]. Classical methods include the Brenner function [30], the energy gradient function [31], Laplacian function [32], Tenengrad function [33] and so on. In addition to the classical evaluation methods based on gray gradient mentioned above, other novel methods have also been studied. Zhan et al. [34] used the maximum gradient and the variability of gradients to predict the quality of blurry images in a highly consistent way with subjective scoring. Li et al. [35] proposed a blur evaluation algorithm for no-reference images based on discrete orthogonal moments, where gradient images are divided into equal-sized blocks and orthogonal moments are calculated to characterize the image shape and obtain sharpness metrics. Zhang et al. [36] evaluated the edge sharpness by calculating the grayscale values of the eight directions of the pixels.



Most of the grayscale gradient-based methods are less computationally intensive and have high real-time performance but are susceptible to noise interference, which affects the accuracy of the evaluation.




2.1.2. Edge Detection-Based Methods


The image edge is the most basic feature of an image, which refers to the discontinuity of the local characteristics of the image [37,38]. Among the edge detection-based methods, the most widely used algorithms are Canny operator [39], Sobel operator [40], Prewitt operator [41] et al.



The Canny operator is a multi-level edge detection algorithm. The Sobel operator combines Gaussian smoothing and differential derivatives to detect the horizontal and vertical edges. The Prewitt operator uses the difference generated by the grayscale values of pixels in a specific region to achieve edge detection. The process of image sharpness evaluation based on the Prewitt operator is shown in Figure 2.



As shown in Figure 3, an image is plotted with the results of the Canny operator, the Sobel operator and the Prewitt operator, respectively.



Marziliano et al. [42] proposed a method to detect the edges of an image using the Sobel operator and utilized the image edge width as the sharpness evaluation score. Zhang et al. [43] proposed an image-filtering evaluation method based on the Sobel operator and image entropy. Liu et al. [44] used the Canny edge detection algorithm based on the activation mechanism to obtain the image edge position and direction, established the histogram of edge width and obtained the sharpness evaluation metric by weighting the average edge width. The method was proven to have good accuracy and predictive monotonicity. Chen et al. [45] used the Prewitt operator and the Gabor filter to calculate the average gradient of the image to predict the local sharpness value of a fabric surface image.



Among the edge detection-based methods, the Canny operator, the Sobel operator and the Prewitt operator are widely used, and each of these operators has its own advantages. The Canny operator is sensitive to weak edges but computationally intensive; the Sobel operator is fast but susceptible to noise interference; the Prewitt operator is better at extracting the edges of images disturbed by neighboring pixels.




2.1.3. Other Methods Based on Spatial Domain


Bahrami et al. [46] obtained the quality score by calculating the maximum local variation (MLV) of image pixels. The standard deviation of the weighted MLV distribution was used as a metric to measure sharpness. The study shows that this method is characterized by high real-time performance. Gu et al. [47] developed a sharpness model by analyzing the autoregressive (AR) model parameters point-by-point to calculate the energy and contrast differences in the locally estimated AR coefficients and then quantified the image sharpness using a percentile pool to predict the overall score. This evaluation method that calculates local contrast and energy based on a mathematical model is also a spatial domain method. Chang et al. [48] proposed a new independent feature similarity index to evaluate the sharpness by calculating the structure and texture differences between two images. Niranjan et al. [49] presented a no-reference image blur metric based on the study of human blur perception for varying contrast values. The method gathered information by estimating the probability of detecting blurring at each edge in the image and then calculated the cumulative probability of blur detection to obtain the evaluation result. Lin et al. [50] proposed an adaptive definition evaluation algorithm, which achieved a better evaluation effect than the standard adaptive definition algorithm. Zhang et al. [51] presented a no-reference image quality evaluation metric based on Cartoon Texture Decomposition (CTD). Using the characteristics of CTD, the image was separated into cartoon parts with prominent edges and texture parts with noise. Then the ambiguity and noise levels were estimated respectively to predict the results.



The spatial domain-based methods require less computation, but the above methods rely much on the details of the image and are easily affected by noise.





2.2. Spectral Domain-Based Methods


Frequency is an indicator that characterizes the intensity of grayscale changes in the image [52]. In spectral domain evaluation functions, the high-frequency and low-frequency components of the image correspond to sharp and blurred parts, respectively. The sharper the image, the more detail and edge information it contains. Therefore, image sharpness can be assessed by a high–low transformation in spectral domain [53]. This type of evaluation methods are usually based on Fourier transform (FT) [54], wavelet transform (WT) [55] methods, etc. The general framework of spectral domain-based methods is shown in Figure 4, where H and L represent the high-pass filter and the low-pass filter, respectively, and LL, HL, LH and HH are the corresponding components after filtering again.



2.2.1. Fourier Transform-Based Methods


The physical meaning of the Fourier transform is to convert the gray distribution function of an image into a frequency distribution function, while the inverse transform is to convert the frequency distribution function of an image into a gray distribution function [56]. Fast Fourier transform (FFT), discrete Fourier transform (DFT) and discrete cosine transform (DCT) [57] are common forms based on Fourier transform.



Kanjar et al. [58] utilized the Fourier transform spectrum to simulate the uniform blurring of Gaussian blurred images and fixed the threshold of high-frequency components for image sharpness assessment. In a related study, Kanjar et al. [59] presented a new image sharpness measure that used Discrete Cosine Transform (DCT) coefficient-based features for generating the model of image sharpness assessment. Bae et al. [60] presented a novel DCT-based Quality Degradation Metric, called DCT-QM, which was based on the probability summation theory. Bae et al. [61] also proposed a visual quality assessment method that characterized local image features and various distortion types. The visual quality perception characteristics of HVS for local image features and various distortion types are characterized by adopting Structural Contrast Index (SCI) and DCT blocks. Baig et al. [62] proposed a no-reference image quality assessment method based on the Discrete Fourier transform (DFT), calculated the image block-based DFT and averaged it at the block level and then combined them to obtain a clear metric for estimating the overall image perception quality.



The Fourier transform, as one of the most basic time-frequency transforms, can convert the image from the spatial domain to the spectral domain, synthesizing the multi-scale features but also increasing the computational effort.




2.2.2. Wavelet Transform-Based Methods


The wavelet transform method can obtain the evaluation results by using the localization characteristics of the image, and its process is shown in Figure 5, which is more suitable for the global or local evaluation of the image. In Figure 5, H and L represent the high-pass filter and the low-pass filter, respectively. The high-pass filter and the low-pass filter are used to extract edge features and image approximation, respectively.



Kerouh et al. [63] proposed a no-reference blur image evaluation method based on the wavelet transform, which extracts the high-frequency components of the image and obtains edge-defined evaluation results by analyzing multi-resolution decomposition. Vu et al. [64] presented a global and local sharpness evaluation algorithm based on fast wavelet, which decomposes the image through a three-level separable discrete wavelet transform and calculates the logarithmic energy of wavelet sub-bands for obtaining the sharpness of the image. Hassen et al. [65] proposed a method to evaluate the image sharpness of strong local phase coherence near different image features based on complex wavelet transform. Gvozden et al. [66] proposed a fast blind image sharpness/ambiguity evaluation model (BISHARP). The local contrast information of the image was obtained by calculating the root mean square of the image. At the same time, the diagonal wavelet coefficients in the wavelet transform were used for ranking and weighting to obtain the final evaluation result. Wang et al. [55] proposed a no-reference stereo image quality assessment model based on quaternion wavelet transform (QWT), which extracted a series of quality-aware features in QWT and MSCN coefficients of high-frequency sub-bands and finally predicted the sharpness score.



The spectral domain-based methods decompose the image into high-frequency and low-frequency components or sub-images of different resolution layers. They then use different functions to process these sub-images so that complex edge information can be extracted more clearly. However, the spectral domain-based methods require converting image information from the spatial domain to the spectral domain, which greatly increases the computational complexity.



The advantages and disadvantages of the different methods based on the spatial domain/spectral domain are shown in Table 1.





2.3. Learning-Based Methods


Unlike traditional methods, learning-based methods [67] can improve the accuracy of the evaluation results by learning the training image features and achieving the mapping of quality scores. The general framework of learning-based methods is shown in Figure 6. The methods can be divided into SVM-based, deep learning-based and dictionary-based methods.



2.3.1. Machine Learning-Based Methods


Early learning-based sharpness evaluation methods [68,69] for no-reference images are mainly supported vector machine (SVM) models based on machine learning, including support vector regression (SVR)/support vector clustering (SVC) methods.



Pei et al. [70] presented a sharpness evaluation method of no-reference images based on large-scale structures. The statistical scale of edges with different widths and the average value of the maximum gradient were taken as the image features, and the SVR is used to obtain the features to obtain the evaluation results. This method can avoid the interference of small textures and contrast around the edge to the evaluation results. Liu et al. [71] used the anisotropy of the orientation selectivity mechanism and the influence of gradient orientation effect on vision to extract structural information and then used Toggle operator to extract edge information as the weight of local patterns. Finally, support vector regression (SVR) was used to train prediction models with optimization characteristics and subjective scores. Moorthy et al. [72] proposed a new two-step framework for no-reference image quality assessment based on natural scene statistics (NSS). SVM is used to classify the distortion types of the fitted parameter features, and then SVR is used to calculate the image quality evaluation results under different distortion types.



Machine learning-based evaluation methods can achieve better results than other algorithms on small-sample training sets, but the extracted features determine the quality of the evaluation results.




2.3.2. Deep Learning-Based Methods


An increasing number of related deep learning methods are applied to image sharpness evaluation with the continuous improvement of deep learning methods [73]. The deep learning-based methods do not need to extract features manually but directly build a deep learning model and obtain the evaluation score of the image after training. These types of methods include a variety of network models, and nowadays, there are convolutional neural network (CNN), deep convolutional neural network (DCNN), generative adversarial network (GAN), etc. Such methods enable the learning of image quality prediction networks.



Zhu et al. [74] evaluated image quality by a method based on an optimized convolutional neural network structure, aiming to automatically extract distinctive image quality features, to improve the network learning ability and to predict the evaluation score through normalization and packet loss. Li et al. [75] divided the entire image into blocks and then used a deep convolutional neural network (DCNN) to extract their advanced features. They then aggregated information from different blocks and fed these aggregated features into a least-squares regression model to obtain sharpness evaluation values. Lin et al. [76] proposed the generation of a pseudo-reference image from the distorted image first, then paired the information of the pseudo-reference image with the distorted images and input them into the quality regression network to obtain the quality prediction result. Zhang et al. [77] proposed a deep bilinear model for blind image quality assessment (BIQA) that works for both synthetically and authentically distorted images and is able to predict image quality values. Bianco et al. [78] used the features extracted by the pre-trained convolutional neural network (CNN) as the general image description and estimated the overall image score by averaging the predicted scores in multiple sub-regions of the original image. Gao et al. [79] extracted multi-level representations of images from VGGNet (Visual Geometry Group Net), calculated a feature on each layer, then estimated the quality score of each feature vector and finally obtained the final evaluation result by averaging.



Deep learning-based methods can automatically learn multi-layer representations of image features from large amounts of data to obtain image feature information for image quality assessment, but their network models are only applicable to large data sets.




2.3.3. Dictionary Learning-Based Methods


Dictionary learning-based methods are used in image definition evaluation to a certain extent, which are often combined with sparse learning/clustering algorithms.



Li et al. [80] presented a no-reference SPArse Representation based image sharpness (SPARISH) index. The blurred image is represented as a block using a dictionary; the blocked energy is calculated using sparse coefficients; and the sharpness evaluation score is obtained by normalizing the energy value using a pooling layer. The method is insensitive to the training image and can be used to improve the evaluation of the sharpness of the image using a dictionary. Lu et al. [81] proposed a no-reference image sharpness measurement method based on a sparse representation of structural information. In this method, a learning dictionary is used to encode the patch of the blurred image, and a multi-scale spatial maximum pool scheme is introduced to obtain the final sharpness score. Xu et al. [82] proposed a blind image quality evaluation method based on high-order statistical aggregation (HOSA). This method extracts local normalized image blocks as local features through regular grid and constructs a codebook containing 100 codewords through K-means clustering. Each local feature is assigned to several nearest clusters, and the higher-order statistical differences between local features and corresponding clusters are aggregated as the global evaluation results. Jiang et al. [83] proposed a no-reference image evaluation method based on an optimized multilevel discriminant dictionary (MSDD). MSDDs are learned by implementing a label consistent K-SVD (LC-KSVD) algorithm in a phased mode.



The dictionary learning method is to establish the transfer relationship between the image features and the dictionary and then matches them with the dictionary to obtain the image evaluation results.




2.3.4. Other Methods Based on Learning


Wu et al. [84] proposed a new local learning method for blind image evaluation, which uses the perceptually similar neighbors of the searched test image as its training set and evaluates the image through a sparse Gaussian process. Deng et al. [85] presented a content insensitive blind image ambiguity evaluation index by using Weibull statistics. This method models the gradient amplitude of blur image by adjusting the scale parameter, shape parameter and skewness in Weibull distribution and uses sparse extreme value learning machine to predict the final image evaluation. Zhang et al. [86] proposed a no-reference image sharpness evaluation method based on sorting learning and block extraction. Performance evaluation shows that the method is highly relevant to human perception and robust to image content. He et al. [87] proposed a depth model combining the spatial and visual features of images for image quality assessment. The algorithm takes multiple image features as input and learns feature weights through end-to-end training to obtain evaluation results.



Through the analysis of learning-based methods, it is found that most of the above methods combine the structural features, local or perceptual features of images. The parameters of the corresponding indicators are estimated by the regression analysis, and the evaluation results are obtained.



The advantages and disadvantages of different learning-based methods are shown in Table 2.





2.4. Combination Methods


Concluded from the above works of literature, different evaluation methods have different characteristics. The combination evaluation methods combine two or more methods to give full play to their respective advantages. For example, combining spatial domain methods with deep learning methods can improve the accuracy of evaluation results based on the integrity of the extracted features. The combined framework of combination methods is shown in Figure 7.



Vu et al. [88] utilized both spectral and spatial properties of the image to quantify the overall perceived sharpness of the entire image by combining the slope of the magnitude spectrum and the total spatial variation with a weighted geometric average. Liu et al. [89] combined the spatial domain characteristics and the clarity of ResNet of the images to evaluate the clarity of the components to maintain the reliability, security of power transmission by observing the images. Yue et al. [90] proposed a sharpness assessment method that combines geometric distortion and scale invariance by analyzing the local similarity of images and the similarity between their neighboring regions. The effectiveness of this method is better than other competing methods, but the disadvantage is that it is time-consuming. Zhang et al. [91] obtained spatial and shape information by calculating grayscale and gradient maps, obtained salient maps by using scale invariant feature transform (SIFT) and then generated fuzzy evaluation scores by discrete cosine transform (DCT). The results demonstrated that the fuzzy scores generated by the proposed method were highly correlated with subjective ratings. Zhan et al. [92] presented a new image structure change model for image quality assessment, which uses fuzzy logic to classify and score each pixel’s structure change in the distorted image. Li et al. [93] proposed a semantic feature aggregation (SFA)-based evaluation method to mitigate the effect of complex image content on the evaluation results. This method extracts features using a trained DCNN model and maps global features to image quality scores. Li et al. [94] proposed a general no-reference quality assessment framework based on shearlet transform and deep neural networks. The coefficient amplitude is extracted from the sum of multi-scale directional transform (shearlet transform) and sub-band as the main feature to describe the behavior of natural images; then the softmax classifier is used to identify the differences of evolutionary features; finally, the evaluation results are obtained. The experimental results show the excellent performance of the method.



The combination method combines the advantages of the single methods included, and the evaluation result has a high accuracy rate, which is consistent with the subjective evaluation result. However, it will increase the computational complexity. Currently, scholars are also studying more advanced methods in various aspects.





3. Bibliometrics Analysis


3.1. Research Distribution Trend Analysis


This paper evaluates the research distribution across the time period (2013 to 2015, 2016 to 2018 and 2019 to 2021) on no-reference image quality evaluation in recent years. In the above three periods, 74, 92 and 105 related papers were published, respectively. The distribution of methods used in related papers is shown in Figure 8. We also found that from 2013 to 2015, the frequency rankings of search keywords from more to less were spatial domain methods, spectral domain methods and deep learning methods; from 2016 to 2018, the search frequency ranking changed to spatial domain methods, deep learning methods, spectral domain methods and other methods; from 2019 to 2021, the ranking was updated to deep learning methods, combination methods, spatial domain methods, spectral domain methods and other methods.



By analyzing Figure 8, during 2013–2015, the spatial domain-based methods were the most with a percentage of 36, followed by the spectral domain-based methods, while the learning-based methods are only 19% of the total articles. In the following years, the learning-based methods grew rapidly, most possibly owing to the explosion of deep learning techniques. During 2016–2018, the number of methods based on spatial domain and learning was similar, 27% and 28%, respectively. From 2019 to 2021, the majority of the research in image quality evaluation is based on learning, and combination methods also show great potential with a percentage of 24. The learning-based methods are currently the most widely used methods due to their excellent behavior for extracting features automatically. The statistical data related information in our paper comes from Web of Science.




3.2. The Performance of the Representative Methods on Public Datasets


In this section, we selected several representative methods from the above four main groups and analyzed their evaluation performance on the public datasets. MLV [46], BIBLE [35], MGV [46], ARISM [47] and CPBD [49] are selected for the spatial domain-based methods; DCT-QM [60], SC-QI [61], FISH [62], LPC-SI [65] and BISHARP [66] are selected for the spectral domain-based method; BIQI [72], DB-CNN [77], DeepBIQ [78], SPARISH [79], SR [81] and MSFF [87] are selected to represent the learning-based methods; S3 [88], RFSV [91], SVC [92] and SFA [93] are selected as the combination methods. The specific information of the comparison method is described in Table 3. We also introduce six commonly used public datasets and four commonly used indicators in different literature to measure the sharpness methods and to select two indicators to evaluate the image quality evaluation results.



3.2.1. Public Datasets and Evaluation Indicators


The most commonly used datasets in the field include Laboratory for Image and Video Engineer (LIVE) [95], Categorical Subjective Image Quality (CSIQ) [96], Tampere Image Database 2008 (TID2008) [97], Tampere Image Database 2013 (TID2013) [98], Blurred Image Dataset (BID) [99], image dataset from the University of Helsinki CID2013 [100], etc. Among them, LIVE, CSIQ, TID2008 and TID2013 datasets are analog distortion datasets; BID and CID2013 datasets are natural distortion datasets. The specific information of these public datasets is shown in Table 4.



The sharpness performance evaluation indicators are used to determine whether and to what extent the evaluation result of an image sharpness evaluation algorithm is accurate and consistent with the subjective human judgment, which requires certain standards. The most commonly used sharpness performance evaluation indicators are Pearson Linear Correlation Coefficient (PLCC), Spearman’s rank ordered correlation coefficient (SROCC), Kendall Rank Order Correlation Coefficient (KROCC) and Root Mean Square Error (RMSE).



Pearson Linear Correlation Coefficient (PLCC) describes the correlation between the algorithm evaluation value and the human subjective score. It is mainly used to calculate the accuracy, as shown in Equation (1).


  PLCC =  1  n − 1     ∑   i = 1  n   (     x i  −  x ¯     σ x     )   (     y i  −  y ¯     σ y     )   



(1)




where   x ¯   and   y ¯   are the mean values of xi and yi, respectively, and    σ i    is the corresponding standard deviation.



Spearman’s rank ordered correlation coefficient (SROCC) is mainly used to measure the monotonicity of algorithm prediction, as shown in Equation (2).


  SROCC = 1 −  1  n  (   n 2  − 1  )      ∑   i = 1  n    (  r  x i   −  r  y i   )  2   



(2)




where rxi and ryi are the sorting positions of xi and yi in their respective data sequences.



Kendall Rank Order Correlation Coefficient (KROCC) can also effectively measure the monotonicity of the algorithm, as shown in Equation (3).


  KROCC =   2  n c  −  n d    n  (  n − 1  )     



(3)




where nc is the number of consistent element pairs in the dataset and nd is the number of inconsistent element pairs in the dataset.



Root Mean Square Error (RMSE) is used to directly measure the absolute error between the algorithm evaluation score and the human subjective score, as shown in Equation (4).


  RMSE =    [   1 n    ∑   i − 1  n     (   x i  −  y i   )   2   ]     1 2     



(4)




where xi is the subjective MOS value and yi is the predicted score of the algorithm.




3.2.2. Performance Analysis of Representative Methods


To observe the performance of various no-reference image quality evaluation methods, this paper compares several representative methods on several public datasets. PLCC and SROCC are adopted to assess the image quality evaluation results. The experimental results in the table are taken from the reported references, and each comparison method group was tested on the same dataset. The comparison of different evaluation methods on the LIVE dataset and CSIQ dataset, TID2008 dataset and TID2013 dataset, BID dataset and CID2013 dataset are shown in Table 5, Table 6 and Table 7, respectively.



As can be seen from Table 5, RFSV and DeepBIQ have the highest score and best performance on the LIVE and CSIQ analog distortion databases, respectively. Table 6 shows that DeepBIQ and SFA have the highest PLCC and SROCC values and the best performance on TID2008 and TID2013 analog distortion databases, respectively. From Table 7, the best performers on BID and CID2013 natural distortion datasets are SFA and BIQI, respectively. The spatial domain-based methods are generally based on basic image processing, with the obtained results intuitive. However, although the low-level features extracted with spatial domain-based methods are rich in local details, global semantic information is missing, causing the evaluation accuracy to be unsatisfactory. The performance of the spectral domain-based methods tends to fluctuate significantly depending on different datasets, to be specific, well-performed on analog distortion datasets while less effect on natural distortion datasets. It is because the spectral domain-based methods are excellent on high-frequency detail information analysis. The learning-based methods outperform other methods on the analog distortion datasets, but the performance on the four natural distortion datasets varies greatly. Combination methods can flexibly combine the above methods in a variety of ways to meet the characteristics of different images, thus could achieve good scores on their target dataset. However, currently, no one method can guarantee the optimal effect on all datasets.



Figure 9 and Figure 10 are the PLCC and SROCC values of different groups of methods on the analog distortion datasets, respectively, and Figure 11 shows the PLCC and SROCC values of different groups of methods on the natural distortion datasets. The data in Figure 9, Figure 10 and Figure 11 are all taken from the average of the comparison results in Table 5, Table 6 and Table 7. It can be concluded that most of the methods based on spatial-domain and combination methods perform well in the analog distortion datasets. Meanwhile, the learning-based methods show great potential in the comprehensive performance of both analog and natural distortion datasets.






4. Conclusions and Outlook


Through the evolution of no-reference image sharpness assessment research, from traditional methods (spatial or spectral domain-based) to learning-based methods to methods combination, this technique has witnessed rapid development in itself. The following conclusions can be raised by analyzing a large number of works of literature.



(1) Each group of evaluation methods is inseparable from the feature extraction process. The spatial domain-based feature extraction is simple and efficient, which is beneficial for real-time applications, but easily interfered by image noise. The spectral domain feature extraction can effectively remove noise but at the cost of increased time complexity. Reported research reveals that the reasonable selection of the combination in spatial and spectral domains helps improve the accuracy in image quality evaluation [101,102]. In the learning-based method, the machine learning-based method mainly extracts features manually. With the wide application of deep learning methods, CNN-based feature extraction has become a popular trend for scholars.



(2) In recent years, methods based on deep learning have achieved good results in evaluating no-reference image clarity. However, due to the complexity of the deep learning network model, a large amount of training data is often required. Actually, it is quite difficult to collect enough real-world images for network training, making it urgent to design a deep learning evaluation method suitable for small-scale datasets.



In the future research, the sharpness evaluation method combining multiple methods will gradually become a popular trend. We believe that the overall evaluation performance can be further improved by using the deep learning network model to extract features, combined with the high real-time performance in the image space domain and interference elimination in the spectral domain. To summarize, image quality evaluation research has the potential for further development of new research ideas on the ways in practical application in real-world image datasets and taking full advantage of combined methods.
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Figure 1. Image sharpness evaluation classification. 
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Figure 2. The process of the image sharpness evaluation based on the Prewitt operator. 
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Figure 3. Edge detection results: (a) Original image; (b) Canny operator; (c) Sobel operator; (d) Prewitt operator. 
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Figure 4. The general framework of spectral domain-based methods. 
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Figure 5. The process of wavelet decomposition and reconstruction. 
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Figure 6. The general framework of learning-based methods. 
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Figure 7. The combined framework of combination methods. 
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Figure 8. Distribution of evaluation methods. 






Figure 8. Distribution of evaluation methods.



[image: Applsci 13 02652 g008]







[image: Applsci 13 02652 g009 550] 





Figure 9. PLCC value of different groups of methods on analog distortion datasets. 
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Figure 10. SROCC value of different groups of methods on analog distortion datasets. 
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Figure 11. PLCC and SROCC values of different groups of methods on natural distortion datasets. 






Figure 11. PLCC and SROCC values of different groups of methods on natural distortion datasets.



[image: Applsci 13 02652 g011]







[image: Table] 





Table 1. Advantages and disadvantages of different methods based on spatial/spectral domain.
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	Methods
	Advantages
	Disadvantages





	Grayscale gradient-based methods
	Simple and fast calculation
	Rely on image edge information



	Edge detection-based methods
	High sensitivity
	Susceptible to noise



	Fourier transform-based methods
	Extract edge features clearly
	High computational complexity



	Wavelet transform-based methods
	High accuracy and robustness
	High computational complexity and poor real-time performance
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Table 2. Advantages and disadvantages of different learning-based methods.
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	Methods
	Advantages
	Disadvantages





	Machine-based methods
	Good performance on small sample training set
	Evaluation results depend on feature extraction.



	Deep learning-based methods
	Automatically train learning features from a large number of samples
	A large amount of data



	Dictionary learning-based methods
	Advanced features of samples can be extracted.
	The evaluation effect depends on dictionary size.
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Table 3. Specific information of different methods for comparison.
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Group

	
Method Category

	
Method

	
Published Time

	
Characteristic






	
Spatial domain-based

	
Grayscale gradient-based

	
MLV [46]

	
2014

	
Calculate the maximum local change in the image




	
Grayscale gradient-based

	
BIBLE [35]

	
2015

	
Calculate gradients and Tchebichef moments of images




	
Edge detection-based

	
MGV [46]

	
2018

	
Calculate the maximum gradient and gradient change in the image




	
Other spatial domain-based

	
ARISM [47]

	
2014

	
Calculate the energy difference and contrast difference of the AR model coefficients for each pixel




	
Other spatial domain-based

	
CPBD [49]

	
2011

	
Calculate the cumulative probability of blur detection




	
Spectral domain-based

	
Fourier transform-based

	
DCT-QM [60]

	
2016

	
Compute the weighted average L2 norm in the DCT domain.




	
Fourier transform-based

	
SC-QI [61]

	
2016

	
Structural contrast indices and DCT blocks are employed to characterize local image features and visual quality perception properties of various distortion types.




	
Fourier transform-based

	
FISH [62]

	
2022

	
Compute image derivatives and block-based DFT




	
Wavelet transform-based

	
LPC-SI [65]

	
2013

	
Calculate LPC intensity change




	
Wavelet transform-based

	
BISHARP [66]

	
2018

	
Calculate the root mean square of the image to obtain local contrast information




	
Learning-based

	
Machine-based

	
BIQI [72]

	
2010

	
The NSS model was used to parameterize the sub-band coefficients and to predict the sharpness values.




	
Deep learning-based

	
DB-CNN [77]

	
2020

	
Distorted images use two convolutional neural networks for feature extraction and bilinear pooling for quality prediction.




	
Deep learning-based

	
DeepBIQ [78]

	
2018

	
Use features extracted from pretrained CNN as generic image descriptions.




	
Dictionary learning-based

	
SPARISH [79]

	
2016

	
The image is represented as a block using a dictionary, and the energy of the block is calculated using the sparse coefficient, then normalized by the pooling layer to obtain a sharpness evaluation score.




	
Dictionary learning-based

	
SR [81]

	
2016

	
Sparse representation (SR) is used to extract structural information, and a multi-scale spatial max-pooling scheme is introduced to represent image locality.




	
Other learning-based

	
MSFF [87]

	
2019

	
Taking multiple features of the image as input and learn feature weights through end-to-end training to obtain evaluations




	
Combination

	
Graycale + DCT

	
S3 [88]

	
2012

	
Calculate the slope of the magnitude spectrum in the spectral domain and the spatial variation in the spatial domain of the image patch




	
DCT + SIFT

	
RFSV [91]

	
2016

	
The blocks that compute the gradient maps are converted to DCT coefficients to obtain shape information, and scale-invariant feature transform (SIFT) is used to obtain saliency maps.




	
SVC + Gradient

	
SVC [92]

	
2017

	
Image quality is characterized using the distribution of different structural changes and the extent of structural differences.




	
DCNN + SFA

	
SFA [93]

	
2019

	
The pre-trained DCNN model is used to extract features, and after feature aggregation, the least squares regression is partially used for quality prediction.
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Table 4. Specific information of the public datasets.






Table 4. Specific information of the public datasets.





	Dataset
	Distortion Type
	Number of Reference Images
	Number of Distorted Images
	Image Size

(Pixel)
	Subjective Scoring
	Score Range





	LIVE
	Analog distortion
	29
	779
	428 × 634–512 × 768
	DMOS
	[1, 100]



	CSIQ
	Analog distortion
	30
	866
	512 × 512
	DMOS
	[0, 9]



	TID2008
	Analog distortion
	25
	1700
	512 × 384
	MOS
	[0, 9]



	TID2013
	Analog distortion
	25
	3000
	512 × 384
	MOS
	[0, 9]



	BID
	Natural distortion
	-
	585
	1280 × 960–2272 × 1704
	MOS
	[0, 5]



	CID2013
	Natural distortion
	-
	480
	1600 × 1200
	MOS
	[0, 100]
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Table 5. Comparison of different evaluation methods on LIVE dataset and CSIQ dataset.
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Group

	
Method

	
LIVE

	
CSIQ




	
PLCC

	
SROCC

	
PLCC

	
SROCC






	
Spatial domain-based

	
MLV [46]

	
0.938

	
0.937

	
0.894

	
0.851




	
BIBLE [35]

	
0.962

	
0.961

	
0.940

	
0.913




	
MGV [46]

	
0.960

	
0.963

	
0.907

	
0.950




	
ARISM [47]

	
0.959

	
0.956

	
0.948

	
0.931




	
CPBD [49]

	
0.895

	
0.918

	
0.882

	
0.885




	
Spectral domain-based

	
DCT-QM [60]

	
0.925

	
0.938

	
0.872

	
0.926




	
SC-QI [61]

	
0.937

	
0.948

	
0.927

	
0.943




	
FISH [62]

	
0.904

	
0.841

	
0.923

	
0.894




	
LPC-SI [65]

	
0.922

	
0.950

	
0.906

	
0.893




	
BISHARP [66]

	
0.952

	
0.960

	
0.942

	
0.927




	
Learning-based

	
BIQI [72]

	
0.920

	
0.914

	
0.846

	
0.773




	
DB-CNN [77]

	
0.970

	
0.968

	
0.959

	
0.946




	
DeepBIQ [78]

	
0.912

	
0.893

	
0.975

	
0.967




	
SPARISH [79]

	
0.956

	
0.959

	
0.938

	
0.914




	
SR [81]

	
0.961

	
0.955

	
0.950

	
0.921




	
MSFF [87]

	
0.949

	
0.950

	
-

	
-




	
Combination

	
S3 [88]

	
0.943

	
0.944

	
0.893

	
0.911




	
RFSV [91]

	
0.974

	
0.971

	
0.942

	
0.920




	
SVC [92]

	
0.949

	
0.941

	
0.952

	
0.954




	
SFA [93]

	
0.942

	
0..953

	
-

	
-
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Table 6. Comparison of different evaluation methods on TID2008 dataset and TID2013 dataset.
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Group

	
Method

	
TID2008

	
TID2013




	
PLCC

	
SROCC

	
PLCC

	
SROCC






	
Spatial domain-based

	
MLV [46]

	
0.811

	
0.812

	
0.883

	
0.879




	
BIBLE [35]

	
0.893

	
0.892

	
0.905

	
0.898




	
MGV [46]

	
0.937

	
0.942

	
0.914

	
0.921




	
ARISM [47]

	
0.854

	
0.868

	
0.898

	
0.902




	
CPBD [49]

	
0.824

	
0.841

	
0.855

	
0.852




	
Spectral domain-based

	
DCT-QM [60]

	
0.819

	
0.837

	
0.852

	
0.854




	
SC-QI [61]

	
0.890

	
0.905

	
0.907

	
0.905




	
FISH [62]

	
0.816

	
0.786

	
0.911

	
0.912




	
LPC-SI [65]

	
0.846

	
0.843

	
0.892

	
0.889




	
BISHARP [66]

	
0.877

	
0.880

	
0.892

	
0.896




	
Learning-based

	
BIQI [72]

	
0.794

	
0.799

	
0.825

	
0.815




	
DB-CNN [77]

	
0.873

	
0.859

	
0.865

	
0.816




	
DeepBIQ [78]

	
0.951

	
0.952

	
0.920

	
0.922




	
SPARISH [79]

	
0.889

	
0.887

	
0.900

	
0.893




	
SR [81]

	
0.895

	
0.911

	
0.899

	
0.892




	
MSFF [87]

	
0.926

	
0.917

	
0.917

	
0.922




	
Combination

	
S3 [88]

	
0.851

	
0.842

	
0.879

	
0.861




	
RFSV [91]

	
0.915

	
0.924

	
0.924

	
0.932




	
SVC [92]

	
0.889

	
0.874

	
0.857

	
0.787




	
SFA [93]

	
0.916

	
0.907

	
0.954

	
0.948
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Table 7. Comparison of different evaluation methods on BID dataset and CID2013 dataset.
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Group

	
Method

	
BID

	
CID2013




	
PLCC

	
SROCC

	
PLCC

	
SROCC






	
Spatial domain-based

	
MLV [46]

	
0.375

	
0.317

	
0.689

	
0.621




	
BIBLE [35]

	
0.392

	
0.361

	
-

	
-




	
MGV [46]

	
0.307

	
0.201

	
0.511

	
0.499




	
ARISM [47]

	
0.193

	
0.151

	
-

	
-




	
CPBD [49]

	
-

	
-

	
0.418

	
0.293




	
Spectral domain-based

	
DCT-QM [60]

	
0.383

	
0.376

	
0.662

	
0.653




	
SC-QI [61]

	
-

	
-

	
-

	
-




	
FISH [62]

	
0.485

	
0.474

	
0.638

	
0.587




	
LPC-SI [65]

	
0.315

	
0.216

	
0.634

	
0.609




	
BISHARP [66]

	
0.356

	
0.307

	
0.678

	
0.681




	
Learning-based

	
BIQI [72]

	
0.513

	
0.472

	
0.742

	
0.723




	
DB-CNN [77]

	
0.471

	
0.464

	
0.686

	
0.672




	
DeepBIQ [78]

	
-

	
-

	
-

	
-




	
SPARISH [79]

	
0.482

	
0.402

	
0.661

	
0.652




	
SR [81]

	
0.415

	
0.467

	
0.621

	
0.634




	
MSFF [87]

	
-

	
-

	
-

	
-




	
Combination

	
S3 [88]

	
0.427

	
0.425

	
0.687

	
0.646




	
RFSV [91]

	
0.391

	
0.335

	
0.701

	
0.694




	
SVC [92]

	
-

	
-

	
0.425

	
0.433




	
SFA [93]

	
0.546

	
0.526

	
-

	
-
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