The Temperature Interval of the Liquid–Glass Transition of Amorphous Polymers and Low Molecular Weight Amorphous Substances
Abstract
:1. Introduction
2. Materials and Methods
3. The Temperature Interval of the Liquid–Glass Transition
4. Calculation of the Structure Relaxation Time at the Glass Transition Temperature
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zarzycki, J. Glasses and the Vitreous State; Cambridge University Press: New York, NY, USA, 1982. [Google Scholar]
- Varshneya, A.K. Fundamentals of Inorganic Glasses; Society of Glass Technology: Sheffield, UK, 2006; p. 682. [Google Scholar]
- Sanditov, D.S.; Bartenev, G.M. Physical Properties of Disordered Structures; Nauka: Moscow, Russia, 1982; 259p. [Google Scholar]
- Angel, C.A.; Ngai, K.L.; McKenna, G.B.; McMillan, P.F.; Martin, S.W. Relaxation in glass forming liquids and amorphous solids. J. Appl. Phys. 2000, 88, 3113–3157. [Google Scholar] [CrossRef] [Green Version]
- Sanditov, D.S.; Ojovan, M.I. Relaxation aspects of the liquid—Glass transition. Phys. Uspekhi 2019, 62, 111–130. [Google Scholar] [CrossRef]
- Angell, C.A.; Rao, K.J. Configurational excitations in condensed, and the “bond lattice” model for the liquid-glass transition. J. Chem. Phys. 1972, 57, 470–481. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Tournier, R.F. On structural rearrangements near the glass transition temperature in amorphous silica. Materials 2021, 14, 5235. [Google Scholar] [CrossRef]
- Sanditov, D.S. Model of delocalized atoms in the physics of the vitreous state. J. Exp. Theor. Phys. 2012, 115, 112–124. [Google Scholar] [CrossRef] [Green Version]
- Richet, P.; Conradt, R.; Takada, A.; Dyon, J. (Eds.) Encyclopedia of Glass Science, Technology, History, and Culture; Wiley: Hoboken, NJ, USA, 2021; Volume 1, Chapter 3.1; pp. 249–259. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118801017 (accessed on 28 January 2023).
- Mazurin, O.V. Problems of compatibility of the values of glass transition temperatures published in the world literature. Glass Phys. Chem. 2007, 33, 22–36. [Google Scholar] [CrossRef]
- Sanditov, D.S.; Ojovan, M.I.; Darmaev, M.V. Glass transition criterion and plastic deformation of glass. Physica B 2020, 582, 411914. [Google Scholar] [CrossRef]
- Ojovan, M. Viscous flow and the viscosity of melts and glasses. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 2012, 53, 143–150. [Google Scholar]
- Frenkel, J. Kinetic Theory of Liquids; Oxford University Press: Oxford, UK, 1946. [Google Scholar]
- Mauro, J.C.; Yue, Y.; Ellison, A.J.; Gupta, P.K.; Allan, D.C. Viscosity of glass-forming liquids. Proc. Natl. Acad. Sci. USA 2009, 106, 19780–19784. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.L.; Landel, R.F.; Ferry, J.D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids. J. Am. Chem. Soc. 1955, 77, 3701–3707. [Google Scholar] [CrossRef]
- Ferry, J.D. Viscoelastic Properties of Polymers; Wiley: New York, NY, USA, 1970. [Google Scholar]
- Sanditov, D.S. On the nature of the liquid-to-glass transition equation. J. Exp. Theor. Phys. 2016, 123, 429–442. [Google Scholar] [CrossRef]
- MDL®SciGlass-7.8; Institute of Theoretical Chemistry: Shrewsbury, MA, USA, 2012.
- Deubener, J. Viscosity of glass-forming melts. In Encyclopedia of Glass Science, Technology, History, and Culture; Wiley: New York, NY, USA, 2021; Chapter 4.1. [Google Scholar] [CrossRef]
- Ojovan, M.I. On viscous flow in glass-forming organic liquids. Molecules 2020, 25, 4029. [Google Scholar] [CrossRef]
- Galimzyanov, B.; Doronina, M.; Mokshin, A. Arrhenius Crossover Temperature of Glass-Forming Liquids Predicted by an Artificial Neural Network. Materials 2023, 16, 1127. [Google Scholar] [CrossRef]
- Tournier, R.F.; Ojovan, M.I. Undercooled phase behind the glass phase with superheated medium-range order above glass transition temperature. Physica B 2021, 602, 412542. [Google Scholar] [CrossRef]
- Tournier, R.F.; Ojovan, M.I. Building and breaking bonds by homogenous nucleation in glass-forming melts leading to transitions in three liquid states. Materials 2021, 14, 2287. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Mauro, J.C. Viscosity of glass-forming systems. J. Am. Ceram. Soc. 2016, 100, 6–25. [Google Scholar] [CrossRef]
- Wen-Sheng Xu, W.-S.; Douglas, J.F.; Sun, Z.-Y. Polymer Glass Formation: Role of Activation Free Energy, Configurational Entropy, and Collective Motion. Macromolecules 2021, 54, 3001–3303. [Google Scholar]
- Sanditov, D.S.; Razumovskaya, I.V. New Approach to Justification of the Williams–Landel–Ferry Equation. Polym. Sci. Ser. A 2018, 60, 156–161. [Google Scholar] [CrossRef]
- Sanditov, D.S.; Darmaev, M.V.; Sanditov, B.D. Application of the model of delocalized atoms to metallic glasses. Tech. Phys. 2017, 62, 53–57. [Google Scholar] [CrossRef]
- Sanditov, D.S.; Badmaev, S.S. Delocalized-atom model and properties of sulfophosphate glasses. Inorg. Mater. 2019, 55, 90–95. [Google Scholar] [CrossRef]
- Bartenev, G.M. On the relationship between the glass transition temperature of silicate glass and the rate of cooling or heating. Rep. Acad. Sci. 1951, 76, 227–230. [Google Scholar]
- Volkenstein, M.V.; Ptitsyn, O.B. Relaxation theory of glass transition. I. Solution of the basic equation and its study. J. Tech. Phys. 1956, 26, 2204–2222. [Google Scholar]
- Nemilov, S.V. Maxwell equation and classical theories of glass transition as a basis for direct calculation of viscosity at glass transition temperature. Glass Phys. Chem. 2013, 39, 609–623. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P. Kinetic criteria of glass formation and the pressure dependence of the glass transition temperature. J. Chem. Phys. 2012, 136, 074512. [Google Scholar] [CrossRef]
- Bartenev, G.M.; Lukyanov, I.A. The dependence of the glass transition temperature of amorphous substances on the heating rate and the relationship between the glass transition temperature and the activation energy. J. Phys. Chem. 1955, 29, 1486–1498. [Google Scholar]
- Ojovan, M.I. Configurons: Thermodynamic parameters and symmetry changes at glass transition. Entropy 2008, 10, 334–364. [Google Scholar] [CrossRef] [Green Version]
- Sanditov, D.S. Elastic properties and anharmonicity of solids. Phys. Solid State 2022, 64, 235–247. [Google Scholar] [CrossRef]
- Hunt, A. A purely kinetic justification for application of Ehrenfest theorems to the glass transition. Solid State Commun. 1992, 84, 263–266. [Google Scholar] [CrossRef]
- Angell, C.A. Glass-formers and viscous liquid slowdown since David Turnbull: Enduring puzzles and new twists. MRS Bull. 2008, 33, 544–555. [Google Scholar] [CrossRef] [Green Version]
- Tournier, R.F. Thermodynamic and kinetic origins of the vitreous transition. Intermetallics 2012, 30, 104–110. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, Y.; Montazerian, M.; Gulbiten, O.; Mauro, J.C.; Zanotto, E.D.; Yue, Y. Understanding glass through differential scanning calorimetry. Chem. Rev. 2019, 119, 7848–7939. [Google Scholar] [CrossRef] [PubMed]
- Ojovan, M.I. Ordering and structural changes at the glass–liquid transition. J. Non-Cryst. Solids 2013, 382, 79–86. [Google Scholar] [CrossRef]
- Albert, S.; Bauer, T.; Michl, M.; Biroli, G.; Bouchaud, J.-P.; Loidl, A.; Luckenheimer, P.; Tourbot, R.; Wiertel-Gasquet, C.; Ladieu, F. Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers. Science 2016, 352, 1308–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tournier, R.F. First-order transitions in glasses and melts induced by solid siperclusters nucleated and melted by homogeneous nucleation instead of surface melting. Chem. Phys. 2019, 524, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Benigni, P. CALPHAD modeling of the glass transition for a pure substance, coupling thermodynamics and relaxation kinetics. Calphad 2021, 72, 102238. [Google Scholar] [CrossRef]
- Kantor, Y.; Webman, I. Elastic properties of random percolating systems. Phys. Rev. Lett. 1984, 52, 1891–1894. [Google Scholar] [CrossRef]
- Isichenko, M.B. Percolation, statistical topography, and transport in random media. Rev. Mod. Phys. 1992, 64, 961–1043. [Google Scholar] [CrossRef] [Green Version]
- Louzguine-Luzgin, D.V. Structural Changes in Metallic Glass-Forming Liquids on Cooling and Subsequent Vitrification in Relationship with Their Properties. Materials 2022, 15, 7285. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Louzguine-Luzgin, D.V. On Structural Rearrangements during the Vitrification of Molten Copper. Materials 2022, 15, 1313. [Google Scholar] [CrossRef]
- Bartenev, G.M.; Barteneva, A.G. Relaxation Properties of Polymers; Chemistry: Moscow, Russia, 1992; 384p. [Google Scholar]
- He, Q.; Wang, S.-F.; Hu, R.; Akgun, B.; Tormey, C.; Peri, S.; Wu, D.T.; Foster, M.D. Evidence and Limits of Universal Topological Surface Segregation of Cyclic Polymers. Phys. Rev. Lett. 2017, 118, 167801. [Google Scholar] [CrossRef] [Green Version]
- Angell, C.A. Perspective on the Glass Transition. J. Phys. Chem. Solids 1988, 49, 836–871. [Google Scholar] [CrossRef]
- Pellicane, G.; Megnidio-Tchoukouegno, M.; Mola, G.T.; Tsige, M. Surface enrichment driven by polymer topology. Phys. Rev. E 2016, 93, 050501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Waymouth, R.M. Zwitterionic Ring Opening Polymerization with Isothioureas. ACS Macro Lett. 2014, 3, 1024–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Material | C1 | C2, K | Tg, K | δTg, K | fg | τg, s | ||
---|---|---|---|---|---|---|---|---|
Polyisobutylene | 38 | 104 | 202 | 2.7 | 0.026 | 54 | ||
Polyvinyl acetate | 36 | 47 | 305 | 1.3 | 0.028 | 26 | ||
Polyvinyl chloroacetate | 40 | 40 | 296 | 1.0 | 0.025 | 20 | ||
Polymethyl acrylate | 42 | 45 | 276 | 1.1 | 0.024 | 22 | ||
Polyurethane | 36 | 33 | 238 | 0.9 | 0.028 | 18 | ||
natural rubber | 38 | 54 | 300 | 1.4 | 0.026 | 57 | ||
Methacrylate polymers: | ||||||||
ethyl | 40 | 65 | 335 | 1.6 | 0.025 | 32 | ||
n-butyl | 39 | 97 | 300 | 2.5 | 0.026 | 50 | ||
n-octyl | 37 | 107 | 253 | 2.9 | 0.027 | 58 | ||
No | As, mol% | S, mol% | Chalcogenide glasses | |||||
1 | 12.5 | 87.5 | 12.0 | 81.20 | 318.5 | 6.7 | 0.083 | 134.8 |
2 | 15.0 | 85.0 | 13.0 | 101.5 | 326.0 | 7.8 | 0.077 | 156.3 |
3 | 17.5 | 82.5 | 12.3 | 86.50 | 337.5 | 7.0 | 0.081 | 140.1 |
4 | 20.0 | 80.0 | 13.9 | 112.8 | 351.5 | 8.1 | 0.072 | 162.5 |
5 | 25.0 | 75.0 | 14.5 | 120.7 | 379.1 | 8.3 | 0.069 | 166.6 |
6 | 27.0 | 73.0 | 17.2 | 174.8 | 386.7 | 10.1 | 0.058 | 202.8 |
7 | 28.6 | 71.4 | 19.2 | 216.7 | 391.6 | 11.3 | 0.052 | 225.4 |
8 | 30.0 | 70.0 | 18.9 | 210.6 | 396.4 | 11.2 | 0.053 | 223.2 |
9 | 32.5 | 67.5 | 18.2 | 210.4 | 403.5 | 11.6 | 0.055 | 231.4 |
10 | 35.0 | 65.0 | 22.2 | 286.9 | 418.8 | 12.9 | 0.045 | 258.2 |
11 | 36.7 | 63.3 | 22.7 | 303.9 | 423.4 | 13.4 | 0.044 | 267.4 |
12 | 37.6 | 62.4 | 26.3 | 364.2 | 432.2 | 13.8 | 0.038 | 276.8 |
13 | 39.0 | 61.0 | 25.6 | 350.5 | 441.3 | 13.7 | 0.039 | 273.4 |
14 | 40.0 | 60.0 | 27.0 | 355.7 | 449.6 | 13.2 | 0.037 | 263.2 |
15 | 40.6 | 59.4 | 27.8 | 379.2 | 446.1 | 13.7 | 0.036 | 273.0 |
16 | 41.1 | 58.9 | 26.3 | 359.7 | 444.2 | 13.7 | 0.038 | 273.4 |
17 | 42.1 | 57.9 | 27.0 | 360.5 | 440.4 | 13.3 | 0.037 | 266.8 |
18 | 42.7 | 57.3 | 27.0 | 359.7 | 433.5 | 13.3 | 0.037 | 266.2 |
No | Se, mol% | Ge, mol% | Chalcogenide glasses | |||||
1 | 97 | 3 | 12.8 | 63.7 | 317 | 5.0 | 0.078 | 99.3 |
2 | 95 | 5 | 11.8 | 41.8 | 330 | 3.5 | 0.085 | 71.0 |
3 | 92 | 8 | 12.7 | 64.0 | 352 | 5.1 | 0.079 | 101.2 |
4 | 90 | 10 | 19.6 | 183.9 | 356 | 9.4 | 0.051 | 187.6 |
5 | 85 | 15 | 19.2 | 225.4 | 396 | 11.7 | 0.052 | 234.4 |
6 | 83 | 17 | 18.5 | 243.9 | 411 | 13.2 | 0.054 | 263.4 |
7 | 80 | 20 | 21.7 | 354.1 | 430 | 16.7 | 0.046 | 325.8 |
8 | 75 | 25 | 13.5 | 200.4 | 487 | 14.8 | 0.074 | 296.6 |
No | As, mol% | Se, mol% | Chalcogenide glasses | |||||
1 | 3 | 97 | 11.8 | 41.8 | 316 | 3.5 | 0.085 | 71.0 |
2 | 5 | 95 | 12.7 | 48.8 | 320 | 3.9 | 0.079 | 77.2 |
3 | 10 | 90 | 17.5 | 108.4 | 331 | 6.2 | 0.057 | 123.5 |
4 | 14.9 | 85.1 | 16.7 | 110.6 | 344 | 6.6 | 0.060 | 132.7 |
5 | 25 | 75 | 23.3 | 238.6 | 364 | 10.3 | 0.043 | 205.2 |
6 | 26.5 | 73.5 | 25.0 | 299.5 | 365 | 12.0 | 0.040 | 239.6 |
7 | 28.6 | 71.4 | 29.4 | 368.2 | 370.5 | 12.5 | 0.034 | 250.4 |
8 | 40 | 60 | 18.5 | 169.9 | 443 | 9.2 | 0.054 | 183.5 |
9 | 42.2 | 57.8 | 21.7 | 245.0 | 437 | 11.3 | 0.046 | 225.4 |
10 | 43.3 | 56.7 | 21.3 | 247.9 | 435 | 11.7 | 0.047 | 233.0 |
11 | 45 | 55 | 20.4 | 244.3 | 433 | 12.0 | 0.049 | 239.4 |
12 | 48.5 | 51.5 | 20.0 | 245.0 | 425.5 | 12.3 | 0.050 | 245.0 |
13 | 49 | 51 | 22.7 | 278.0 | 431 | 12.2 | 0.044 | 244.6 |
14 | 50 | 50 | 15.6 | 138.9 | 440 | 8.9 | 0.064 | 177.8 |
15 | 50.6 | 49.4 | 17.2 | 185.3 | 426 | 10.8 | 0.058 | 215.0 |
16 | 51 | 49 | 16.1 | 165.8 | 425 | 10.3 | 0.062 | 205.6 |
17 | 52.7 | 47.3 | 16.4 | 153.4 | 422 | 9.4 | 0.061 | 187.2 |
18 | 53.7 | 46.3 | 15.2 | 135.5 | 415 | 8.9 | 0.066 | 178.9 |
As | S | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 |
---|---|---|---|---|---|---|---|---|---|---|---|
12.5 | 87.5 | 318.5 | 324.7 | 333.0 | 345.3 | 362.0 | 384.0 | 410.5 | 440.5 | 476.5 | 531.0 |
15.0 | 85.0 | 326.0 | 333.3 | 344.0 | 357.6 | 373.9 | 392.5 | 418.0 | 450.0 | 489.5 | 539.0 |
17.5 | 82.5 | 337.5 | 344.0 | 353.0 | 365.3 | 381.3 | 403.5 | 429.4 | 458.7 | 496.0 | 546.0 |
20.0 | 80.0 | 351.5 | 360.8 | 370.6 | 380.9 | 395.5 | 415.2 | 439.0 | 467.5 | 504.5 | 561.5 |
25.0 | 75.0 | 379.1 | 389.1 | 399.4 | 410.2 | 421.6 | 438.0 | 461.0 | 491.0 | 532.5 | 586.0 |
27.0 | 73.0 | 386.7 | 398.3 | 410.7 | 424.0 | 438.5 | 454.5 | 473.0 | 500.0 | 537.5 | 593.0 |
28.6 | 71.4 | 391.6 | 404.3 | 417.8 | 432.2 | 447.6 | 464.3 | 484.0 | 511.5 | 547.5 | 599.0 |
30.0 | 70.0 | 396.4 | 409.0 | 422.4 | 436.6 | 451.9 | 468.3 | 489.0 | 516.5 | 552.0 | 603.0 |
32.5 | 67.5 | 403.5 | 416.2 | 429.7 | 444.1 | 461.0 | 483.0 | 508.0 | 537.5 | 570.5 | 610.5 |
35.0 | 65.0 | 418.8 | 432.7 | 447.6 | 463.6 | 480.8 | 500.6 | 524.9 | 552.0 | 583.0 | 620.0 |
36.7 | 63.3 | 423.4 | 437.7 | 453.1 | 469.6 | 487.4 | 507.0 | 531.0 | 557.8 | 588.8 | 626.5 |
37.6 | 62.4 | 432.2 | 446.8 | 462.6 | 479.4 | 497.6 | 516.9 | 538.4 | 562.7 | 591.0 | 630.0 |
39.0 | 61.0 | 441.3 | 455.8 | 471.3 | 487.9 | 506.0 | 525.6 | 546.2 | 569.7 | 598.0 | 639.0 |
40.0 | 60.0 | 449.6 | 463.7 | 478.7 | 494.1 | 510.6 | 528.5 | 548.7 | 571.0 | 599.3 | 636.5 |
40.6 | 59.4 | 446.1 | 460.5 | 475.8 | 492.3 | 510.6 | 528.5 | 548.7 | 571.0 | 599.3 | 636.5 |
41.1 | 58.9 | 444.2 | 458.7 | 474.3 | 490.9 | 508.7 | 527.5 | 549.0 | 573.0 | 601.5 | 641.0 |
42.1 | 57.9 | 440.4 | 454.5 | 469.6 | 485.7 | 503.0 | 521.4 | 542.0 | 565.2 | 592.0 | 629.0 |
42.7 | 57.3 | 433.5 | 477.7 | 462.7 | 478.8 | 496.0 | 514.5 | 533.7 | 555.5 | 583.0 | 624.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darmaev, M.V.; Ojovan, M.I.; Mashanov, A.A.; Chimytov, T.A. The Temperature Interval of the Liquid–Glass Transition of Amorphous Polymers and Low Molecular Weight Amorphous Substances. Appl. Sci. 2023, 13, 2742. https://doi.org/10.3390/app13042742
Darmaev MV, Ojovan MI, Mashanov AA, Chimytov TA. The Temperature Interval of the Liquid–Glass Transition of Amorphous Polymers and Low Molecular Weight Amorphous Substances. Applied Sciences. 2023; 13(4):2742. https://doi.org/10.3390/app13042742
Chicago/Turabian StyleDarmaev, Migmar V., Michael I. Ojovan, Alexey A. Mashanov, and Timur A. Chimytov. 2023. "The Temperature Interval of the Liquid–Glass Transition of Amorphous Polymers and Low Molecular Weight Amorphous Substances" Applied Sciences 13, no. 4: 2742. https://doi.org/10.3390/app13042742
APA StyleDarmaev, M. V., Ojovan, M. I., Mashanov, A. A., & Chimytov, T. A. (2023). The Temperature Interval of the Liquid–Glass Transition of Amorphous Polymers and Low Molecular Weight Amorphous Substances. Applied Sciences, 13(4), 2742. https://doi.org/10.3390/app13042742