Manual but Not Instrument-Assisted Cervical Manipulation Reduces Pain and Disability in Subjects with Nonspecific Neck Pain: Double-Blinded, Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Randomization, and Implementation
2.2. Participants
2.3. Outcome Measures
2.3.1. Neck Disability
2.3.2. Patient’s Impression of Change
2.3.3. Muscle Mechanical Properties—Tone, Elasticity, and Stiffness
2.3.4. Pain
2.4. Interventions
2.4.1. Manual Manipulation
2.4.2. Instrument-Assisted Manipulation
2.4.3. Sham Procedure and Control
2.5. Statistical Analysis
3. Results
3.1. Immediate Effects (Single Session)
3.2. Mid-Term Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Hoving, J.L.; Gross, A.R.; Gasner, D.; Kay, T.; Kennedy, C.; Hondras, M.A.; Haines, T.; Bouter, L. A Critical Appraisal of Review Articles on the Effectiveness of Conservative Treatment for Neck Pain. Spine 2001, 26, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Hoy, D.; March, L.; Woolf, A.; Blyth, F.; Brooks, P.; Smith, E.; Vos, T.; Barendregt, J.; Blore, J.; Murray, C.; et al. The global burden of neck pain: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 2014, 73, 1309–1315. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, E.L.; Randhawa, K.; Yu, H.; Côté, P.; Haldeman, S. The Global Spine Care Initiative: A summary of the global burden of low back and neck pain studies. Eur. Spine J. 2018, 27, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Leininger, B.; McDonough, C.; Evans, R.; Tosteson, T.; Tosteson, A.N.A.; Bronfort, G. Cost-effectiveness of spinal manipulative therapy, supervised exercise, and home exercise for older adults with chronic neck pain. Spine J. 2016, 16, 1292–1304. [Google Scholar] [CrossRef]
- Gross, A.; Langevin, P.; Burnie, S.J.; Bédard-Brochu, M.-S.; Empey, B.; Dugas, E.; Faber-Dobrescu, M.; Andres, C.; Graham, N.; Goldsmith, C.H.; et al. Manipulation and mobilisation for neck pain contrasted against an inactive control or another active treatment. Cochrane Database Syst. Rev. 2015, CD004249. [Google Scholar] [CrossRef] [PubMed]
- Blanpied, P.R.; Gross, A.R.; Elliott, J.M.; Teyhen, D.S.; Wainner, R.S.; Whitman, J.M.; Sopky, B.J.; Godges, J.J.; Flynn, T.W.; American Physical Therapy Association. Neck pain: Revision 2017: Clinical practice guidelines linked to the international classification of functioning, disability and health from the orthopaedic section of the American Physical Therapy Association. J. Orthop. Sport. Phys. Ther. 2017, 47, A1–A83. [Google Scholar] [CrossRef]
- Herzog, W. The Biomechanics of Spinal Manipulation. J. Bodyw. Mov. Ther. 2010, 14, 280–286. [Google Scholar] [CrossRef]
- Bronfort, G.; Evans, R.; Anderson, A.V.; Svendsen, K.H.; Bracha, Y.; Grimm, R.H. Spinal manipulation, medication, or home exercise with advice for acute and subacute neck pain: A randomized trial. Ann. Intern. Med. 2012, 156, 1–10. [Google Scholar] [CrossRef]
- Hurwitz, E.L. Epidemiology: Spinal manipulation utilization. J. Electromyogr. Kinesiol. 2012, 22, 648–654. [Google Scholar] [CrossRef]
- Leaver, A.M.; Refshauge, K.; Maher, C.; McAuley, J. Conservative interventions provide short-term relief for non-specific neck pain: A systematic review. J. Physiother. 2010, 56, 73–85. [Google Scholar] [CrossRef]
- Coronado, R.A.; Bialosky, J.E.; Cook, C.E. The temporal effects of a single session of high-velocity, low-amplitude thrust manipulation on subjects with spinal pain. Phys. Ther. Rev. 2010, 15, 29–35. [Google Scholar] [CrossRef]
- Coronado, R.A.; Gay, C.W.; Bialosky, J.E.; Carnaby, G.D.; Bishop, M.D.; George, S.Z. Changes in pain sensitivity following spinal manipulation: A systematic review and meta-analysis. J. Electromyogr. Kinesiol. 2012, 22, 752–767. [Google Scholar] [CrossRef]
- De Camargo, V.M.; Alburquerque-Sendín, F.; Bérzin, F.; Stefanelli, V.C.; de Souza, D.P.R.; Fernández-de-las-Peñas, C. Immediate effects on electromyographic activity and pressure pain thresholds after a cervical manipulation in mechanical neck pain: A randomized controlled trial. J. Manip. Physiol. Ther. 2011, 34, 211–220. [Google Scholar] [CrossRef]
- de Oliveira, R.F.; Liebano, R.E.; Costa, L.d.C.M.; Rissato, L.L.; Costa, L.O.P. Immediate Effects of Region-Specific and Non–Region-Specific Spinal Manipulative Therapy in Patients With Chronic Low Back Pain: A Randomized Controlled Trial. Phys. Ther. 2013, 93, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Haas, M.; Glick, R.; Stevans, J.; Landsittel, D. A comparison of spinal manipulation methods and usual medical care for acute and Sub-acute low back pain: A randomized clinical trial. Spine 2015, 40, 209. [Google Scholar] [CrossRef]
- Huggins, T.; Boras, A.L.; Gleberzon, B.J.; Popescu, M.; A Bahry, L. Clinical effectiveness of the activator adjusting instrument in the management of musculoskeletal disorders: A systematic review of the literature. J. Can. Chiropr. Assoc. 2012, 56, 49–57. [Google Scholar] [PubMed]
- Hutting, N.; Kerry, R.; Coppieters, M.W.; Scholten-Peeters, G.G. Considerations to improve the safety of cervical spine manual therapy. Musculoskelet. Sci. Pract. 2018, 33, 41–45. [Google Scholar] [CrossRef]
- McCarthy, M.J.H.; Grevitt, M.P.; Silcocks, P.; Hobbs, G. The reliability of the Vernon and Mior neck disability index, and its validity compared with the short form-36 health survey questionnaire. Eur. Spine J. 2007, 16, 2111–2117. [Google Scholar] [CrossRef]
- Vernon, H. The Neck Disability Index: State-of-the-art. J. Manip. Physiol. Ther. 2008, 31, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Wainner, R.S.; Fritz, J.M.; Irrgang, J.J.; Boninger, M.; Delitto, A.; Allison, S. Reliability and Diagnostic Accuracy of the Clinical Examination and Patient Self-Report Measures for Cervical Radiculopathy. Spine 2003, 28, 52–62. [Google Scholar] [CrossRef]
- Cleland, J.A.; Childs, J.D.; Whitman, J.M. Psychometric Properties of the Neck Disability Index and Numeric Pain Rating Scale in Patients With Mechanical Neck Pain. Arch. Phys. Med. Rehabil. 2008, 89, 69–74. [Google Scholar] [CrossRef]
- MacDermid, J.C.; Walton, D.M.; Avery, S.; Blanchard, A.; Etruw, E.; McAlpine, C.; Goldsmith, C.H. Measurement Properties of the Neck Disability Index: A Systematic Review. J. Orthop. Sports Phys. Ther. 2009, 39, 400–417. [Google Scholar] [CrossRef] [PubMed]
- Viir, R.; Laiho, K.; Kramarenko, J.; Mikkelsson, M. Repeatability of Trapezius Muscle Tone Assessment by a Myometric Method. J. Mech. Med. Biol. 2006, 6, 215–228. [Google Scholar] [CrossRef]
- Agyapong-Badu, S.; Aird, L.; Bailey, L.; Mooney, K.; Mullix, J.; Warner, M.; Samuel, D.; Stokes, M. Interrater reliability of muscle tone, stiffness and elasticity meas-urements of rectus femoris and bi-ceps brachii in healthy young and older males. Work. Pap. Health Sci. 2013, 1, 4. [Google Scholar]
- Liu, C.; Feng, Y.; Zhang, H.; Li, Y.; Zhu, Y.; Zhang, Z. Assessing the viscoelastic properties of upper trapezius muscle: Intra- and inter-tester reliability and the effect of shoulder elevation. J. Electromyogr. Kinesiol. 2018, 43, 226–229. [Google Scholar] [CrossRef]
- Bailey, L.; Samuel, D.; Warner, M.; Stokes, M. Parameters representing muscle tone, elasticity and stiffness of biceps brachii in healthy older males: Symmetry and within-session reliability using the MyotonPRO. J. Neurol. Disord. 2013, 1, 1–7. [Google Scholar] [CrossRef]
- Lauche, R.; Langhorst, J.; Dobos, G.J.; Cramer, H. Clinically meaningful differences in pain, disability and quality of life for chronic nonspecific neck pain–a reanalysis of 4 randomized controlled trials of cupping therapy. Complement. Ther. Med. 2013, 21, 342–347. [Google Scholar] [CrossRef]
- Chesterton, L.S.; Sim, J.; Wright, C.C.; Foster, N.E. Interrater Reliability of Algometry in Measuring Pressure Pain Thresholds in Healthy Humans, Using Multiple Raters. Clin. J. Pain 2007, 23, 760–766. [Google Scholar] [CrossRef]
- Thomson, O.; Haig, L.; Mansfield, H. The effects of high-velocity low-amplitude thrust manipulation and mobi-lisation techniques on pressure pain threshold in the lumbar spine. Int. J. Osteopath. Med. 2009, 12, 56–62. [Google Scholar] [CrossRef]
- Oliveira-Campelo, N.M.; de Melo, C.A.; Alburquerque-Sendin, F.; Machado, J.P. Short- and medium-term effects of manual therapy on cervical active range of motion and pressure pain sensitivity in latent myofascial pain of the upper trapezius muscle: A randomized controlled trial. J. Manip. Physiol. Ther. 2013, 36, 300–309. [Google Scholar] [CrossRef]
- Puentedura, E.J.; Landers, M.R.; Cleland, J.A.; Mintken, P.; Huijbregts, P.; Fernandez-De-Las-Peñas, C. Thoracic Spine Thrust Manipulation Versus Cervical Spine Thrust Manipulation in Patients With Acute Neck Pain: A Randomized Clinical Trial. J. Orthop. Sport. Phys. Ther. 2011, 41, 208–220. [Google Scholar] [CrossRef]
- Saayman, L.; Hay, C.; Abrahamse, H. Chiropractic Manipulative Therapy and Low-Level Laser Therapy in the Management of Cervical Facet Dysfunction: A Randomized Controlled Study. J. Manip. Physiol. Ther. 2011, 34, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Gadotti, I.; Magee, D. Validity of surface markers placement on the cervical spine for craniocervical posture assessment. Man. Ther. 2013, 18, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Carnero, J.; Cleland, J.A.; Arbizu, R.L.T. Examination of Motor and Hypoalgesic Effects of Cervical vs. Thoracic Spine Manipulation in Patients With Lateral Epicondylalgia: A Clinical Trial. J. Manip. Physiol. Ther. 2011, 34, 432–440. [Google Scholar] [CrossRef]
- Dunning, J.R.; Cleland, J.A.; Waldrop, M.A.; Arnot, C.F.; Young, I.A.; Turner, M.; Sigurdsson, G. Upper cervical and upper thoracic thrust manipulation versus nonthrust mobilization in patients with mechanical neck pain: A multicenter randomized clinical trial. J. Orthop. Sports Phys. Ther. 2012, 42, 5–18. [Google Scholar] [CrossRef]
- Gorrell, L.M.; Beath, K.; Engel, R.M. Manual and Instrument Applied Cervical Manipulation for Mechanical Neck Pain: A Randomized Controlled Trial. J. Manip. Physiol. Ther. 2016, 39, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Dunning, J.; Rushton, A. The effects of cervical high-velocity low-amplitude thrust manipulation on resting electromyographic activity of the biceps brachii muscle. Man. Ther. 2009, 14, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Savva, C.; Giakas, G.; Efstathiou, M. The role of the descending inhibitory pain mechanism in musculoskeletal pain following high-velocity, low amplitude thrust manipulation. A review of the literature. J. Back Musculoskelet. Rehabil. 2014, 27, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, M.; Petersen, S.; Cook, C.; Learman, K. A prescriptively selected nonthrust manipulation versus a thera-pist-selected nonthrust manipulation for treatment of individuals with low back pain: A randomized clinical trial. J. Orthop. Sport. Phys. Ther. 2016, 46, 243–250. [Google Scholar] [CrossRef]
- Mancini, F.; Nash, T.; Iannetti, G.D.; Haggard, P. Pain relief by touch: A quantitative approach. Pain 2014, 155, 635–642. [Google Scholar] [CrossRef]
- Diener, I.; Kargela, M.; Louw, A. Listening is therapy: Patient interviewing from a pain science perspective. Physiother. Theory Pract. 2016, 32, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Lehman, G. Kinesiological research: The use of surface electromyography for assessing the effects of spinal manipulation. J. Electromyogr. Kinesiol. 2012, 22, 692–696. [Google Scholar] [CrossRef] [PubMed]
Manual | Placebo | Instrument-Assisted | Control | p Value | |
---|---|---|---|---|---|
VAS (cm) | 3.38 ± 1.08 | 4.00 ± 1.19 | 4.15 ± 0.87 | 3.94 ± 1.04 | 0.789 |
NDI (score) | 10.50 ± 4.56 | 10.13 ± 3.56 | 12.25 ± 3.41 | 11.86 ± 3.44 | 0.643 |
PGIS (score) | 3.78 ± 1.30 | 2.00 ± 0.93 | 2.13 ± 0.99 | 1.71 ± 0.76 | 0.789 |
Pressure pain threshold (kg/cm2) | |||||
right upper trapezius | 3.30 ± 0.91 | 2.75 ± 0.72 | 3.20 ± 0.70 | 3.01 ± 0.65 | 0.485 |
left upper trapezius | 3.20 ± 0.75 | 2.60 ± 0.63 | 3.15 ± 0.77 | 3.06 ± 0.56 | 0.292 |
right biceps brachii | 2.47 ± 0.49 | 2.54 ± 0.59 | 2.27 ± 0.59 | 2.50 ± 0.52 | 0.397 |
left biceps brachii | 2.34 ± 0.34 | 2.19 ± 0.69 | 2.22 ± 0.62 | 2.43 ± 0.57 | 0.836 |
Pain pressure perception (cm) | |||||
right upper trapezius | 2.97 ± 2.19 | 4.03 ± 1.80 | 3.99 ± 1.22 | 3.00 ± 1.56 | 0.448 |
left upper trapezius | 3.20 ± 1.79 | 4.50 ± 2.37 | 3.96 ± 1.16 | 3.10 ± 1.75 | 0.386 |
right biceps brachii | 3.88 ± 2.37 | 4.68 ± 1.82 | 4.27 ± 1.23 | 3.34 ± 1.59 | 0.730 |
left biceps brachii | 4.04 ± 2.39 | 4.60 ± 2.38 | 4.25 ± 1.31 | 3.28 ± 1.64 | 0.642 |
Muscle properties | |||||
Tone (Hz) | |||||
right upper trapezius | 18.15 ± 0.72 | 17.35 ± 1.31 | 16.18 ± 1.47 | 16.30 ± 2.70 | 0.083 |
left upper trapezius | 17.60 ± 1.87 | 17.81 ± 0.96 | 16.71 ± 1.81 | 16.61 ± 2.67 | 0.496 |
right biceps brachii | 11.37 ± 0.57 | 11.34 ± 0.62 | 11.23 ± 0.67 | 10.71 ± 0.51 | 0.148 |
left biceps brachii | 11.64 ± 0.61 | 11.41 ± 1.06 | 11.49 ± 0.78 | 10.87 ± 1.21 | 0.411 |
Elasticity (D Log) | |||||
right upper trapezius | 1.11 ± 0.12 | 1.13 ± 0.15 | 1.09 ± 0.11 | 1.05 ± 0.11 | 0.614 |
left upper trapezius | 0.98 ± 0.07 | 1.08 ± 0.12 | 1.09 ± 0.13 | 1.08 ± 0.12 | 0.149 |
right biceps brachii | 1.28 ± 0.10 | 1.39 ± 0.25 | 1.28 ± 0.20 | 1.31 ± 0.26 | 0.699 |
left biceps brachii | 1.32 ± 0.17 | 1.31 ± 0.29 | 1.29 ± 0.17 | 1.30 ± 0.19 | 0.995 |
Stiffness (N/m) | |||||
right upper trapezius | 359.25 ± 32.78 | 334.75 ± 56.02 | 364.38 ± 32.18 | 338.29 ± 50.95 | 0.509 |
left upper trapezius | 337.25 ± 55.72 | 354.62 ± 47.42 | 364.00 ± 45.17 | 346.86 ± 45.97 | 0.674 |
right biceps brachii | 170.00 ± 18.38 | 173.50 ± 18.55 | 185.00 ± 11.01 | 180.14 ± 17.13 | 0.269 |
left biceps brachii | 181.75 ± 16.59 | 171.25 ± 17.13 | 187.75 ± 15.91 | 181.00 ± 18.49 | 0.284 |
Manual | Placebo | Instrument-Assisted | Control | p Value | |
---|---|---|---|---|---|
Muscle Properties | |||||
Tone (%) | |||||
right upper trapezius | 0.72 ± 6.17 | −0.25 ± 9.22 | −3.61 ± 2.44 | −0.22 ± 0.68 | 0.465 |
left upper trapezius | 5.12 ± 9.35 | −2.27 ± 10.45 | −3.64 ± 1.57 | −0.38 ± 1.00 | 0.088 |
right biceps brachii | 1.24 ± 5.99 | −3.90 ± 3.88 | −2.09 ± 1.70 | −0.43 ± 1.51 | 0.066 |
left biceps brachii | −3.81 ± 6.93 | −1.96 ± 4.50 | −2.17 ± 2.79 | −0.45 ± 1.46 | 0.554 |
Elasticity (%) | |||||
right upper trapezius | 0.71 ± 12.60 | −9.33 ± 8.96 | 5.54 ± 5.90 | 1.51 ± 5.77 | 0.059 |
left upper trapezius | 5.65 ± 11.19 | −6.92 ± 14.34 | 4.59 ± 4.45 | 2.34 ± 6.18 | 0.067 |
right biceps brachii | 0.22 ± 10.09 | −2.50 ± 11.30 | 1.41 ± 7.65 | −1.08 ± 2.96 | 0.830 |
left biceps brachii | −1.54 ± 10.46 | 5.03 ± 15.58 | 0.97 ± 7.40 | −0.27 ± 3.43 | 0.612 |
Stiffness (%) | |||||
right upper trapezius | 3.15 ± 9.53 | 2.51 ± 20.35 | −4.49 ± 6.61 | 1.22 ± 3.52 | 0.563 |
left upper trapezius | 7.38 ± 13.83 | −4.78 ± 17.78 | −5.40 ± 2.78 | −3.13 ± 3.91 | 0.106 |
right biceps brachii | 4.43 ± 9.43 | 1.28 ± 8.67 | −7.23 ± 8.98 | −0.28 ± 7.80 | 0.052 |
left biceps brachii | −2.17 ± 8.98 | 1.64 ± 4.92 | −8.94 ± 7.24 | −1.42 ± 3.64 | 0.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogueira, N.; Oliveira-Campelo, N.; Torres, R.; Sousa, A.S.P.; Ribeiro, F. Manual but Not Instrument-Assisted Cervical Manipulation Reduces Pain and Disability in Subjects with Nonspecific Neck Pain: Double-Blinded, Randomized Clinical Trial. Appl. Sci. 2023, 13, 2770. https://doi.org/10.3390/app13052770
Nogueira N, Oliveira-Campelo N, Torres R, Sousa ASP, Ribeiro F. Manual but Not Instrument-Assisted Cervical Manipulation Reduces Pain and Disability in Subjects with Nonspecific Neck Pain: Double-Blinded, Randomized Clinical Trial. Applied Sciences. 2023; 13(5):2770. https://doi.org/10.3390/app13052770
Chicago/Turabian StyleNogueira, Nuno, Natália Oliveira-Campelo, Rui Torres, Andreia S. P. Sousa, and Fernando Ribeiro. 2023. "Manual but Not Instrument-Assisted Cervical Manipulation Reduces Pain and Disability in Subjects with Nonspecific Neck Pain: Double-Blinded, Randomized Clinical Trial" Applied Sciences 13, no. 5: 2770. https://doi.org/10.3390/app13052770
APA StyleNogueira, N., Oliveira-Campelo, N., Torres, R., Sousa, A. S. P., & Ribeiro, F. (2023). Manual but Not Instrument-Assisted Cervical Manipulation Reduces Pain and Disability in Subjects with Nonspecific Neck Pain: Double-Blinded, Randomized Clinical Trial. Applied Sciences, 13(5), 2770. https://doi.org/10.3390/app13052770