
Citation: Yang, H.; Zhao, S.; Shi, X.;

Zhang, S.; Guo, Y. DAG Hierarchical

Schedulability Analysis for Avionics

Hypervisor in Multicore Processors.

Appl. Sci. 2023, 13, 2779. https://

doi.org/10.3390/app13052779

Academic Editor: Teh-Lu Liao

Received: 6 January 2023

Revised: 15 February 2023

Accepted: 20 February 2023

Published: 21 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

DAG Hierarchical Schedulability Analysis for Avionics
Hypervisor in Multicore Processors
Huan Yang 1,*, Shuai Zhao 2 , Xiangnan Shi 1, Shuang Zhang 3 and Yangming Guo 1,*

1 School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
2 Department of Computer Science, University of York, York YO10 5GH, UK
3 Xi’an Aeronautical Computing Technique Research Institute, Xi’an 710068, China
* Correspondence: yhneu2009@163.com (H.Y.); yangming_g@nwpu.edu.cn (Y.G.)

Abstract: Parallel hierarchical scheduling of multicore processors in avionics hypervisor is being
studied. Parallel hierarchical scheduling utilizes modular reasoning about the temporal behavior of
the upper Virtual Machine (VM) by partitioning CPU time. Directed Acyclic Graphs (DAGs) are used
for modeling functional dependencies. However, the existing DAG scheduling algorithm wastes
resources and is inaccurate. Decreasing the completion time (CT) of DAG and offering a tight and
secure boundary makes use of joint-level parallelism and inter-joint dependency, which are two
key factors of DAG topology. Firstly, Concurrent Parent and Child Model (CPCM) is researched,
which accurately captures the above two factors and can be applied recursively when parsing DAG.
Based on CPCM, the paper puts forward a hierarchical scheduling algorithm, which focuses on
decreasing the maximum CT of joints. Secondly, the new Response Time Analysis (RTA) algorithm is
proposed, which offers a general limit for other execution sequences of Noncritical joints (NC-joints)
and a specific limit for a fixed execution sequence. Finally, research results show that the parallel
hierarchical scheduling algorithm has higher performance than other algorithms.

Keywords: multicore; avionics hypervisor; DAG; hierarchical; parallel scheduling

1. Introduction

Multicore processors in avionics systems are being used to meet the increasing de-
mands for performance and energy efficiency [1–3]. In the design of a real-time multi-core
system, to avoid the interference of system resources, physical isolation technology is often
used to isolate system resources. Virtualization technology can deploy subsystems with
different functions on virtual machines running on the same hardware platform, which
provides a more flexible method for system isolation and resource management. For virtual
machines, the hypervisor is responsible for managing virtual machines and shielding the
implementation details of the underlying hardware. Flexible strategies are adopted to effec-
tively allocate the underlying hardware resources to virtual machines, to meet the resource
requirements of every virtual machine. For real-time multi-core systems, virtualization
technology can well meet some urgent requirements in the design of real-time multi-core
systems. However, virtualization technology is still a new application direction in the
field of real-time embedded systems, and the related research work is still very limited.
The main problem is that when virtualization technology is introduced into real-time
embedded systems, the response performance of real-time operating systems running on
virtual machines is easily affected by the virtualization software layer. The semantic gap
caused by the introduction of the virtualization layer makes it difficult for virtual machine
monitors to perceive the application types of upper-level virtual machines. It hinders
the virtual machine monitor from effectively allocating hardware resources according to
the requirements of the upper application, thus it cannot provide a good guarantee for
applications with high real-time requirements. Important research to ensure the quality

Appl. Sci. 2023, 13, 2779. https://doi.org/10.3390/app13052779 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13052779
https://doi.org/10.3390/app13052779
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0721-8021
https://doi.org/10.3390/app13052779
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13052779?type=check_update&version=2

Appl. Sci. 2023, 13, 2779 2 of 19

of service is to dynamically allocate enough resources to the real-time VM and make it
real-time.

When deploying a virtualization environment in avionics systems, the virtualization
system needs to adopt a hierarchical scheduling framework. (i) Scheduling of VCPUs on
PCPUs; (ii) Scheduling of real-time tasks in VCPUs (Figure 1) [4–6]. The scheduling levels at
these two layers must meet the real-time guarantee, thus fulfilling the real-time guarantee
of the whole system. However, classical real-time scheduling is no longer applicable to this
hierarchical scheduling structure. A hierarchical scheduling framework needs to provide
hierarchical resource sharing and allocation strategies for different scheduling services
under different scheduling algorithms. The hierarchical scheduling framework can be
expressed as a tree with a joint (hierarchical) structure. Every joint can be expressed as a
scheduling model and the resources are to be allocated from the parent joint to the child’s
joint. The resource allocation from the parent joints to the child’s joints can be regarded as a
scheduling interface from the parent joint to the child. Therefore, the hierarchical real-time
scheduling problem can be transformed into the schedulability analysis of the scheduling
interfaces of the child and parent joints [7–9].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 21

good guarantee for applications with high real-time requirements. Important research to

ensure the quality of service is to dynamically allocate enough resources to the real-time

VM and make it real-time.

When deploying a virtualization environment in avionics systems, the virtualization

system needs to adopt a hierarchical scheduling framework. (i) Scheduling of VCPUs on

PCPUs; (ii) Scheduling of real-time tasks in VCPUs (Figure 1) [4–6]. The scheduling levels

at these two layers must meet the real-time guarantee, thus fulfilling the real-time guar-

antee of the whole system. However, classical real-time scheduling is no longer applicable

to this hierarchical scheduling structure. A hierarchical scheduling framework needs to

provide hierarchical resource sharing and allocation strategies for different scheduling

services under different scheduling algorithms. The hierarchical scheduling framework

can be expressed as a tree with a joint (hierarchical) structure. Every joint can be expressed

as a scheduling model and the resources are to be allocated from the parent joint to the

child’s joint. The resource allocation from the parent joints to the child’s joints can be re-

garded as a scheduling interface from the parent joint to the child. Therefore, the hierar-

chical real-time scheduling problem can be transformed into the schedulability analysis

of the scheduling interfaces of the child and parent joints [7–9].

Guest OS Guest OS Guest OS

Hypervisor

Multicore on hardware platform

...

Tasks VCPU PCPU

VM VM VM

Figure 1. Virtualization hierarchical scheduling framework.

To solve this problem, in recent years, some researchers have begun to pay attention

to the parallel hierarchical scheduling of multicore processors. At present, most of the re-
search on program parallelization in multi-verification focuses on the DAG task model

[10]. DAG task model can describe the execution dependencies of task threads, such as

parallel execution and serial execution. The sequential synchronous parallel task model is

a stricter model for task behavior in the parallel DAG model. In this model, tasks can be

divided into segments executed in series, every part can contain any number of parallel
threads, and whole threads have to synchronize at the end of the segment. The existing

DAG real-time task scheduling algorithms have two types: global scheduling and feder-

ated scheduling [11,12]. In global scheduling, multiple DAG tasks enjoy together whole

multicores, so the overall resource utilization of the system may be high [5–10]. Due to

complex interference between tasks, global scheduling has great inaccuracy. In federated
scheduling, every task is assigned to some dedicated processors, where it can be executed

without interference from other tasks. The scheduling analysis is relatively simple, but it

wastes resources [12].

The main contribution: a single-cycle non-preemptive DAG task runs on an isomor-

phic multicore processor. By making full use of joint-level parallelism and inter-joint de-
pendency, which are the essence of topology, they decrease the maximum CT and offer a

Figure 1. Virtualization hierarchical scheduling framework.

To solve this problem, in recent years, some researchers have begun to pay atten-
tion to the parallel hierarchical scheduling of multicore processors. At present, most of
the research on program parallelization in multi-verification focuses on the DAG task
model [10]. DAG task model can describe the execution dependencies of task threads,
such as parallel execution and serial execution. The sequential synchronous parallel task
model is a stricter model for task behavior in the parallel DAG model. In this model, tasks
can be divided into segments executed in series, every part can contain any number of
parallel threads, and whole threads have to synchronize at the end of the segment. The
existing DAG real-time task scheduling algorithms have two types: global scheduling and
federated scheduling [11,12]. In global scheduling, multiple DAG tasks enjoy together
whole multicores, so the overall resource utilization of the system may be high [5–10]. Due
to complex interference between tasks, global scheduling has great inaccuracy. In federated
scheduling, every task is assigned to some dedicated processors, where it can be executed
without interference from other tasks. The scheduling analysis is relatively simple, but it
wastes resources [12].

The main contribution: a single-cycle non-preemptive DAG task runs on an isomorphic
multicore processor. By making full use of joint-level parallelism and inter-joint dependency,
which are the essence of topology, they decrease the maximum CT and offer a tight and
safe boundary for the maximum CT. This paper presents a new algorithm of the parallel

Appl. Sci. 2023, 13, 2779 3 of 19

hierarchical scheduling method that has two sections: (i) DAG parallel schedulability
analysis, and (ii) hierarchical scheduling in the hypervisor.

The rest of this article is organized as follows. In Section 2, the system and task model
are introduced. Section 3 describes the state-of-the-art approaches in DAG scheduling
and analysis with a motivational example. The proposed scheduling method, CPCM, and
the new response time analysis are explained in Section 4. The hierarchical scheduling in
the hypervisor is provided in Section 5. Results are given in Section 6. Finally, Section 7
concludes this article.

2. Preliminaries
2.1. System Model

The system defines parallel task sets which are scheduled on a multi-core processor, the
task set is defined as τ consisting of tasks τ = {τ1, τ2, . . . , τn}, and the hardware platform
includes M homogeneous processors. Each task is represented by a DAG with p joints and
edges connecting these joints.

2.2. Task Model

Any DAG task is τi= {Di, Ti, Gi}, where Di is the constrained relative deadline, Ti is
the minimum inter-arrival time, within Di ≤ Ti, and Gi is the graph defining a series of
activities forming the task. The graph is characterized by Gi = (Vi, Ei) where Vi is a series

of joints and Ei ⊆ (
→

ViVj) is a series of directed edges connecting any two joints. Every joint
vi ∈ Vi is the computation unit that must be executed unceasingly and is defined by WCET
(Worst Case Execution Time), namely Ci.

Either vj, vk form a directional edge, only if vj has finished and vk begins to be executed,
vj is a predecessor of vk, and vk is a successor of vj. Each joint vj has a predecessor(vj) and

a successor(vj), predecessor(vj) = {vk ∈ V
∣∣∣(vj, vk) ∈ E} and successor(vj) = {vk ∈ V

∣∣∣(vj, vk) ∈ E} .
Joints that are either directly or transitively predecessors and successors of a joint vj are termed
as its ancestors ancestors(vj) and descendants descendants(vj) respectively. The joint vj with
predecessor(vj) = ∅ or successor(vj) = ∅ is referred to as the sink vsink or source vsource. In
order not to lose generality, suppose DAG has one sink and source joint. Joints that can execute
concurrently with vj are given by C(vj) = {vk

∣∣∣vk /∈ (ancestors(vj)∪ descendants(vj)),∀vk ∈ V} [13].
DAG tasks have basic characteristics. Firstly, an arbitrary path δa = {vs, · · · , ve} is a

joint sequence in V and follows (vk, vk+1) ∈ E, ∀vk ∈ δa/ve. The path in V is defined as
ΛV . A local path is a sub-path within the task and as such does not feature both the source
vsource and the sink vsink, length(δa) = ∑∀vk∈δa Ck provides the length of δa. Secondly, the
longest complete path is referred to as the critical path (CP) δ∗, and its length is denoted by
L, where L = max{length(δa), ∀δa ∈ ΛV}. Joints in δ∗ are referred to as the critical joints.
Other joints are referred to as NC-joints (NC-joints), denoted as V¬ = V/δ∗. Finally, the
workload W is the sum of a task’s WCETs, C = ∑∀vk∈V Ck. The workload of all NC-joints is
called the non-critical workload.

Figure 2a depicts a DAG task with V = {v1, v2, · · · , v9}. The number in the upper
left corner of every joint provides WCET, for example C6 = 4. For v6 have predecessor
(v6) = {v2, v3}, ancestors(v6) = {v1, v2, v3}, successor(v6) = descendants(v6) = {v9} and
C(vj) = {v2, v3}. L = 14, C = 30, δ∗ = {v1, v2, v6, v9}, vsource = v1, vsink = v9.

2.3. Work-Conserving Schedulability Analysis

When there is a pending workload, the scheduling algorithm never idles the processor,
and it is called a work-conserving algorithm [14]. A general bound is provided, which
catches the worst-case (WC) response time of globally scheduling tasks using any work-
saving algorithm [15]. This analysis is then formalized in the DAG task in Formula (1) [16].

Appl. Sci. 2023, 13, 2779 4 of 19

Ri is the response time of τi, m is the number of processors, Ii,j is the interference from a
high priority DAG task τj, and hp(i) is whole high priority tasks of τi.

Ri = [∑τj∈hp(i) Ii,j] + d(Ci − Li)/me+ Li (1)

Figure 2b shows some execution scene of DAG in a quad-core processor. For casually
scheduled joints, there may be a series of 420 execution scene, the maximum CT is less than 14,
and gives R = (C− L)/m + L = (30− 14)/4 + 14 = 18. They take less than 18. Based on
the above, the paper puts forward a new algorithm to decrease the makespan of the runtime.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 21

v1

v2

v3

v6

v9v4 v5

v8

C=1

C=8

C=2

C=4

C=1C=2 C=3

C=3

v7

C=6

v1

0 t15

Core

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19

v1

0 t15

Core

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19

v2 v6 v9

v2 v6 v9

v3

v4 v5

v7

v3

v4 v5 v7

v8

v8

(a) (b)

Figure 2. Example of a DAG task; (a) A DAG task (b) Execution scene.

2.3. Work-Conserving Schedulability Analysis

When there is a pending workload, the scheduling algorithm never idles the proces-

sor, and it is called a work-conserving algorithm [14]. A general bound is provided, which
catches the worst-case (WC) response time of globally scheduling tasks using any work-

saving algorithm [15]. This analysis is then formalized in the DAG task in Formula (1)

[16]. iR is the response time of iτ , m is the number of processors, ,i j
I is the interfer-

ence from a high priority DAG task
j

τ , and ()hp i is whole high priority tasks of iτ .

,()
[] () /

j
i i j i i ihp i

R I C L m L
τ ∈

= + − + (1)

Figure 2b shows some execution scene of DAG in a quad-core processor. For casually

scheduled joints, there may be a series of 420 execution scene, the maximum CT is less

than 14, and gives () / (30 14) / 4 14 18R C L m L= − + = − + = . They take less than 18. Based

on the above, the paper puts forward a new algorithm to decrease the makespan of the

runtime.

3. Related Work

For multicore processors with global solutions, the existing scheduling methods aim

to decrease the maximum CT and tighten analysis limit of the worst case. They can be

divided into joint-based [17] or slice-based [18,19] methods. Chip-based scheduling im-
plements joint-level preemption and divides every joint into many small computing units.

The slice-based method can promote the joint-level parallelism, but to achieve an im-

provement, it is necessary to control the numeral of preemption and migration. The joint-

based method provides a better general solution by generating a clear joint execution se-

quence based on heuristics derived from the spatial or temporal characteristics of DAG
[20].

Two of the latest joint-based approaches are described below. An exception-free non-

preemptive scheduling method for single-cycle DAG is proposed, which always executes

the longest ready joint of WCET to improve the parallelism. This prevents an exception

when a joint executes less than its WCETs, which will cause the execution order to be
different from the plan. This is achieved by ensuring that the joints are executed in the

same order as the offline simulation. However, if the dependency between joints is not

considered, this scheduling cannot minimize the delay of DAG completion. This algo-

rithm leads to a scene with a maximum CT of 14, in which the NC-joint 3v prolongs DAG

completion due to a delayed start in Figure 2.

A new Response Time Analysis (RTA) method is proposed, which is superior to the

traditional method when the execution sequence of joints is known [16–18]. That is, joint

Figure 2. Example of a DAG task; (a) A DAG task (b) Execution scene.

3. Related Work

For multicore processors with global solutions, the existing scheduling methods aim to
decrease the maximum CT and tighten analysis limit of the worst case. They can be divided
into joint-based [17] or slice-based [18,19] methods. Chip-based scheduling implements
joint-level preemption and divides every joint into many small computing units. The
slice-based method can promote the joint-level parallelism, but to achieve an improvement,
it is necessary to control the numeral of preemption and migration. The joint-based method
provides a better general solution by generating a clear joint execution sequence based on
heuristics derived from the spatial or temporal characteristics of DAG [20].

Two of the latest joint-based approaches are described below. An exception-free non-
preemptive scheduling method for single-cycle DAG is proposed, which always executes
the longest ready joint of WCET to improve the parallelism. This prevents an exception
when a joint executes less than its WCETs, which will cause the execution order to be
different from the plan. This is achieved by ensuring that the joints are executed in the
same order as the offline simulation. However, if the dependency between joints is not
considered, this scheduling cannot minimize the delay of DAG completion. This algorithm
leads to a scene with a maximum CT of 14, in which the NC-joint v3 prolongs DAG
completion due to a delayed start in Figure 2.

A new Response Time Analysis (RTA) method is proposed, which is superior to
the traditional method when the execution sequence of joints is known [16–18]. That is,
joint vj can only lead to delays from concurrent joints scheduled before vj. A scheduling
algorithm is given, in which (i) the CP is always executed first, and (ii) the first is always the
intermediate interfering joint. The novelty lies in considering the topology and path length
in DAG, and providing the analysis compared with our method [19,20]. However, the
parallel joints are scheduled according to the length of the longest full path, and the joints
in the longest full path are scheduled first. Heuristic algorithms do not rely on perception,
which will decrease parallelism and thus prolong the final CP.

Appl. Sci. 2023, 13, 2779 5 of 19

4. Schedulability Analysis
4.1. Scheduling

Formula (1) shows that minimizing the latency from NC-joints to CPs effectively
decreases the maximum CT of DAG. To support this point, a CPCM is recommended
to take full advantage of joint dependency and parallelism. A scheduling algorithm to
maximize the parallelism of joints is proposed. This is achieved through rule-based priority
allocation, in which rules are designed to statically assign priority to every joint: (i) Always
give priority to the CP priority, (ii) Rule 2 and 3 to maximize parallelism, (iii) minimize
the latency of the CP. The algorithm is universally applicable to DAG of any topology. It
adopts homogeneous processors, but there is no limit to the number of processors [21–23].

4.1.1. Concurrent Parent and Child Model

The CPCM includes two key parts. (i) The CP is divided into a set of consecutive
sub-paths based on the potential delay that can happen (in Figure 3a). (ii) With every
sub-path, CPCM distinguishes NC-joints, which can run in parallel with the sub-path and
prolong the start of the next sub-path on the basis of priority constraints (in Figure 3b,c).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 21

j
v can only lead to delays from concurrent joints scheduled before j

v . A scheduling al-

gorithm is given, in which (i) the CP is always executed first, and (ii) the first is always

the intermediate interfering joint. The novelty lies in considering the topology and path
length in DAG, and providing the analysis compared with our method [19,20]. However,

the parallel joints are scheduled according to the length of the longest full path, and the

joints in the longest full path are scheduled first. Heuristic algorithms do not rely on per-

ception, which will decrease parallelism and thus prolong the final CP.

4. Schedulability Analysis

4.1. Scheduling

Formula (1) shows that minimizing the latency from NC-joints to CPs effectively de-

creases the maximum CT of DAG. To support this point, a CPCM is recommended to take

full advantage of joint dependency and parallelism. A scheduling algorithm to maximize

the parallelism of joints is proposed. This is achieved through rule-based priority alloca-

tion, in which rules are designed to statically assign priority to every joint: (i) Always give

priority to the CP priority, (ii) Rule 2 and 3 to maximize parallelism, (iii) minimize the

latency of the CP. The algorithm is universally applicable to DAG of any topology. It

adopts homogeneous processors, but there is no limit to the number of processors [21–23].

4.1.1. Concurrent Parent and Child Model

The CPCM includes two key parts. (i) The CP is divided into a set of consecutive sub-

paths based on the potential delay that can happen (in Figure 3a). (ii) With every sub-path,

CPCM distinguishes NC-joints, which can run in parallel with the sub-path and prolong

the start of the next sub-path on the basis of priority constraints (in Figure 3b,c).

v1 v2 v4 v9

sub-path 1 sub-path 2 sub-path 3
(a)

v1 v2 v4 v9

H(ɸ)

ɸ ɸ ɸ

H(ɸ)

(b)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 21

v1 v2 v4 v9

ɸ ɸ ɸ

G(ɸ)

(c)

Figure 3. The CPCM of a DAG. (a) the CP is divided into a set of consecutive sub-paths based on

the potential delay it can incur. (b) execute in parallel with the sub-path. (c) delay the start of the

next sub-path, based on precedence constraints.

The intuition of the CPCM is: when the critical path is executing, it utilizes just one

core so that the non-critical ones can execute in parallel on the remaining (1)m − cores.

The time allowed for executing non-critical joints in parallel is termed as the capacity,

which is the length of the critical path. Note that non-critical joints that utilize this capacity

to execute cannot cause any delay to the critical path. The sub-paths in the critical path are

termed capacity parents *Φ and all non-critical joints are capacity children Φ . For each

parent
i

φ ∗ ∗∈ Φ , it has a set of children ()
i

H φ∗ that can execute using
i

φ ∗ ’s capacity as

well as delay the next parent *

1i
φ + in the critical path.

Algorithm 1 shows the process for constructing the CPCM. Starting from the scratch

in *δ , capacity parents are formed by analyzing joint dependency between the CP and

NC-joints. A parent
i

φ ∗ , its joints should run consecutively without prolong from NC-

joints according to dependency. Every joint in
i

φ ∗ , other than the scratch, only owns a

predecessor which is the previous joint in
i

φ ∗ . Three capacity parents are identified in Fig-

ure 3b.

Algorithm 1: Concurrent Parent and Child Model algorithm
*

(,)CPCM G δ

Input: (,)G V E= *δ

Output: * * * * *, (), (),
i i j

H Gφ φ φΦ ∀ ∈ Φ

Specifications: *, /V Vδ δ∗ ¬ =

if *Φ = ∅
/* distinguishing capacity parents */

for every *

j
v δ∈

 * * *
{ }; /i j jv vφ δ δ= =

 while
1

() { }
j j

predecessor v v+ = do

 * * *

1{ }; /
i i j j

v vφ φ δ δ+= =∪

 end

 * * *

i
φΦ = Φ ∪

end
/* distinguishing capacity children */

 for every * *

i
φ ∈Φ

 * *

1
() ()

i i
H ancestors Vφ φ ¬

+= ∩

 *

*

()
() { () }

j i
i jv H

G C v V
φ

φ ¬

∈
= ∪ ∩

 *
/ ()

i
V V H φ¬ ¬=

end

Figure 3. The CPCM of a DAG. (a) the CP is divided into a set of consecutive sub-paths based on the
potential delay it can incur. (b) execute in parallel with the sub-path. (c) delay the start of the next
sub-path, based on precedence constraints.

Appl. Sci. 2023, 13, 2779 6 of 19

The intuition of the CPCM is: when the critical path is executing, it utilizes just one
core so that the non-critical ones can execute in parallel on the remaining (m− 1) cores. The
time allowed for executing non-critical joints in parallel is termed as the capacity, which
is the length of the critical path. Note that non-critical joints that utilize this capacity to
execute cannot cause any delay to the critical path. The sub-paths in the critical path are
termed capacity parents Φ∗ and all non-critical joints are capacity children Φ. For each
parent φ∗i ∈ Φ∗, it has a set of children H(φ∗i) that can execute using φ∗i ’s capacity as well
as delay the next parent φ∗i+1 in the critical path.

Algorithm 1 shows the process for constructing the CPCM. Starting from the scratch
in δ∗, capacity parents are formed by analyzing joint dependency between the CP and
NC-joints. A parent φ∗i , its joints should run consecutively without prolong from NC-joints
according to dependency. Every joint in φ∗i , other than the scratch, only owns a predecessor
which is the previous joint in φ∗i . Three capacity parents are identified in Figure 3b.

Algorithm 1: Concurrent Parent and Child Model algorithm CPCM(G, δ∗)

Input: G = (V, E) δ∗

Output: Φ∗, H(φ∗i), G(φ∗i), ∀φ∗j ∈ Φ∗

Specifications: δ∗, V¬ = V/δ∗

if Φ∗ = ∅
/* distinguishing capacity parents */
for every vj ∈ δ∗

φ∗i = {vj}; δ∗ = δ∗/vj
while predecessor(vj+1) = {vj} do

φ∗i = φ∗i ∪ {vj+1}; δ∗ = δ/vj
end
Φ∗ = Φ∗ ∪ φ∗i

end
/* distinguishing capacity children */
for every φ∗i ∈ Φ∗

H(φ∗i) = ancestors(φ∗i+1) ∩V¬

G(φ∗i) = ∪vj∈H(φ∗i)
{C(vj) ∩V¬}

V¬ = V¬/H(φ∗i)
end
return Φ∗, H(φ∗i), G(φ∗i), ∀φ∗i ∈ Φ∗

Every φ∗i ∈ Φ∗, its children H(φ∗i) are determined to the joints that can run syn-
chronously to φ∗i , and prolong the start of φ∗i+1. Joints in H(φ∗i) that finish after φ∗i will
prolong the start of φ∗i+1. Joints in H(φ∗1) can prolong φ∗2 if they are finished later than φ∗1 in
Figure 3b. The CPCM shows details of the possible latency attributed to NC-joints on the
CP.

In addition, a child vj ∈ H(φ∗i) can start before, synchronized with, or after the start
of φ∗i . With the latter two, they will just use the capacity of φ∗i . Children of earlier releases
can run at the same time as some previous parents, thus interfering with their children and
causing indirect delays to parents. With a parent φ∗i , G(φ∗i) is the joints that fall within the
child groups of later parents, but which can run with φ∗i in parallel. Joints in G(φ∗1), G(φ∗2)
fall within H(φ∗1), H(φ∗2) in Figure 3c. However, on the basis of the precedence constraints,
it can be executed in parallel with φ∗1 and φ∗2 respectively.

Using the CPCM, the DAG is converted to a series of capacity parents and children,
O(|V|+|E|) is time complexity. The CPCM supplies complete information about possible
delays of NC-joints on the CP. Every parent φ∗i , joints in H(φ∗i) can use a capacity of
length(φ∗i) on every of (m− 1) processors to run in parallel as lead, storing possible latency.

Reanalyze in Figure 2a, the CP has three parents φ∗1 = {v1, v2}, φ∗2 = {v6} and
φ∗3 = {v9}, as the delay from the NC-joint just appears at the header of the parents. For
every parent, H(φ∗1) = {v3}, H(φ∗2) = {v5, v7, v8} and H(φ∗3) = ∅. In short, whole joints

Appl. Sci. 2023, 13, 2779 7 of 19

in H(φ∗2) = {v5, v7, v8} can start before φ∗2 prolonging the execution of H(φ∗1) and the start
of φ∗2 . G(φ∗1) = {v5, v7, v8}, G(φ∗2) = G(φ∗3) = ∅.

Parallel and disruptive workloads of the capacity parent are now formalized. h(·)
is the completion time of a parent φ∗i or a child joint vj, Li = length(φ∗i), φ∗i is the length
and the total workload of φ∗i is Ci = ∑vk∈H(φ∗i)

{Ck} + ∑vk∈G(φ∗i)
{Ck} + Li, H(φ∗i) and

G(φ∗i). The terms parallel and disruptive workload of a parent φ∗i is formally defined.
∑φ∗i ∈Φ Ci ≥ C as a child can be accounted for more than once if it can run concurrently
with multiple parents.

Definition 1. The parallel workload αi of φ∗i is the workload in Ci − Li that can run starting at
the time instant h(φ∗i).

Definition 2. The interfering workload of φ∗i is the workload in Ci − Li that runs after the time
instant h(φ∗i). With a parent φ∗i , its interfering workload is Ci − Li − αi.

Theorem 1. For parents φ∗i and φ∗i+1, the workload in Ci that can prolong the start of φ∗i+1 is
Ci − Li − αi at best.

Proof. Based on the CPCM, the start of φ∗i+1 depends on the finish of both φ∗i and H(φ∗i),
which is max{ f (φ∗i), maxvj∈H(φ∗i)

h(vj)}. By Definition 1, αi will not cause any delay as it
always finishes before h(φ∗i), and hence, the Theorem follows. Note that, although G(φ∗i)
cannot delay directly, it can delay on nodes in H(φ∗i), and in turn, causes an indirect delay
to φ∗i+1. �

4.1.2. The CP Priority Execution (CPPE)

The CP is regarded as a series of capability parents. It can be safely said that every full
path could be regarded as the parents, which provides the time interval of its path length
for other joints to run in parallel. However, since the CP offers the maximum capacity, the
maximum total parallel workload can be achieved. It offers the basis for minimizing the
disturbing workload on the whole CP.

Theorem 2. For a schedule S with CPPE and a schedule S′ that prioritizes a random complete path
over the CP, the total parallel workload of parents in S is always equivalent to or higher than that of
S′, α ≥ α′.

Proof. First, suppose the length of parent δ∗i is shortened by ∆ after the change from S to S′.
The same reduction applies on its finish time, i.e., h′(δ∗i) = h(δ∗i)− ∆. Because nodes in δ∗i
are shortened, the finish time h(vj) of a child node vj ∈ H(δ∗i) ∪ G(δ∗i) can also be reduced
by a value from ∆/m (i.e., a reduction on vj’s interference, if all the shortened nodes in
δ∗i belong to C(vj)) to ∆ (if all such nodes belong to predecessor(vj)). By Definition 1, a
child vj ∈ H(δ∗i) ∪ G(δ∗i) can contribute to the αi if h(vj) ≤ h(δ∗i) or h(vj)− Cj ≤ h(δ∗i).
Therefore, αi cannot increase in S′, as the reduction on h(δ∗i) (i.e., ∆) is always equal or
higher than that of h(vj) (i.e., ∆/m or ∆).

Second, let L and L′ denote the length of the parent path under S and S′ (with L ≥ L′),
respectively. The time for non-critical nodes to execute in parallel with the parent path is
L′ on each of m − 1 cores under S′. Thus, a child path with its length increased from L′ to
L directly leads to an increase of (L− L′) in the interfering workload, as at most L′ in the
child can execute in parallel with the parent.

Therefore, both effects cannot increase the parallel workload after the change from S
to S′, and hence, α ≥ α′. �

Rule 1. ∀vj ∈ Φ∗, ∀vk ∈ Φ→ qj < qk .

Appl. Sci. 2023, 13, 2779 8 of 19

4.1.3. Exploiting Parallelism and Joint Dependency

Using CPPE, the next goal is to maximize the parallelism of NC-joints and decrease
latency of CP completion. On the basis of the CPCM, every parent φ∗i correlates with H(φ∗i),
G(φ∗i). With vj ∈ G(φ∗i), it could run before H(φ∗i) and use the capacity of φ∗i to run, if a
high priority is assigned. In this instance, vj prolongs the finish of H(φ∗i) and the start of
φ∗i+1, squanders the capacity of its parent. Similar results are also acquired, which avoid
this latency by first probing the front interfering joints.

Rule 2. ∀φ∗i , φ∗l ∈ Φ′ : i < l → min
vj∈H(φ∗i)

qj > max
vk∈H(φ∗i)

qk .

Consequently, a second allocation Rule is derived to rule the priority of every parent
in the child groups. With any two neighboring parents φ∗i and φ∗i+1, the priority of any
child in H(φ∗i) is higher than the children in H(φ∗i+1). The latency from G(φ∗i) on H(φ∗i)
can be minimized, because whole joints in G(φ∗i) fall within children of following parents
and are always assigned with a lower priority than joints in H(φ∗i) in Rule 2.

Scheduling the child joints in every H(φ∗i), concurrent joints with the same lead time
are sorted by the length of their longest full path. Nevertheless, on the basis of CPCM, a
full path can be divided into some partial paths, and all of these partial paths fall within a
subgroup of different parents. With partial paths in H(φ∗i), the order of their lengths can
be completely reversed from to the order of their full paths. Therefore, this method can
prolong the end time of H(φ∗i).

In the constructed scheduling, it is guaranteed to assign higher priority to the longer
local paths in a dependency-aware way. It will result in the final allocation rule. Symbol
lj(H(φ∗i)) is the length of the longest local path in H(φ∗i) that contains vj. This length can
be calculated by traversing ancestors(vj) ∪ descendants(vj) in H(φ∗i), such as in Figure 2,
l7(H(φ∗7)) = 6, l8(H(φ∗8)) = 3, so v7 is assigned a higher priority than v8. Rules 1–3 are
applied to the sample, and the better-case schedule with a maximum full-time of 14 is
finally obtained.

Rule 3. vj, vk ∈ H(φ∗i) : lj(H(φ∗i)) > lk(H(φ∗k))→ qj > qk .

Nevertheless, applying Rule 3 to every H(φ∗i) is not enough. Given the DAG structure,
every H(φ∗i) can form a smaller DAG G′, and an inner nested CPCM with the longest
path in H(φ∗i) is the parent. In addition, this process can be applied recursively to build
an internal CPCM for every subgroup in the nested CPCM until whole local paths in the
subgroup are completely absolute. With every internally CPCM, Rules 1 and 2 should be
applied to maximize the capacity and minimize the latency of every subgroup, while Rule
3 is applied only to the independent paths in subgroups to maximize parallelism. This
makes complete dependencies between joints and ensures that the longest path in every
nested CPCM takes precedence.

Algorithm 2 shows the method of priority allocation based on Rule. The approach
starts from the outer-most CPCM CPCM(G, δ∗), assign the highest priority to whole parent
joints according to Rule 1. In accordance with Rule 2, it starts from before H(φ∗i) and
searches for the longest local path δve in H(φ∗i). If there exists a dependency between nodes
in δve and H(φ∗i)/δve , H(φ∗i) is further constructed as an inner CPCM with the assignment
algorithm applied recursively. This resolves the detected dependency by dividing δve into a
set of providers. Otherwise, δve is an independent local path so that priority is assigned to
its nodes based on Rule 3. The algorithm then continues with H(φ∗i)/δve . The process goes
on until whole joints in V are assigned priority.

Using CPCM, the whole process contains three stages: (i) passing the DAG to CPCM,
(ii) statically assigning priority to every point through rule-based priority assignments,
and (iii) running DAG through a fixed priority scheduler. By using a priori input DAG,
stages (i) and (ii) could be executed off-line, so as to the scheduling cost of runtime can be
effectively decreased to it of the traditional fixed priority systems.

Appl. Sci. 2023, 13, 2779 9 of 19

Algorithm 2: Priority assignment algorithm EA(Φ∗, Φ)

Input: Φ, Φ∗

Output: H(φ∗i) = H(φ∗i)/δve

Parameter: q, qmax

Intialise: q = qmax, ∀vj ∈ Φ∗ ∪Φ, pj = −1
/* Rule 1. */
∀vj ∈ Φ∗, qj = q, q = q− 1
/* Rule 2. */
for every φ∗i ∈ Φ∗, do

while H(φ∗i) 6= ∅ do
/* Seek for the longest partial path in H(φ∗i). */
ve, vj ∈ H(φ∗i):

ve = argmax{le(H(φ∗i))
∣∣successor(ve) = ∅}

δve = ve ∪ δvj , argmax{lj(H(φ∗i))
∣∣∣∀vj ∈ predecessor(ve)}

if
∣∣∣predecessor(vj)

∣∣∣> 1, ∃vj ∈ δve then

{Φ∗′ , Φ′} = CPCM(H(φ∗i), δve)

EA(Φ∗
′
, Φ′)

break
else

/* Rule 3. */
∀vj ∈ δve , qj = q, q = q− 1
H(φ∗i) = H(φ∗i)/δve

end
end

end

4.2. Analysis of Response Time

According to the above, we will put forward another new Analysis of Response
Time, which clearly illustrates the parallel workload α and uses α is a safely decrease
for potentially delayed disruptive workloads. In short, it emphasizes that, although the
proposed scheduling assigns a clear joint priority, CPPE is a basic attribute to maximize
parallelism and has been adopted in many existing algorithms. In general, the CPPE
permits any scheduling order of NC-joints. This RTA offers an improved boundary for
whole CPPE-based scheduling compared to traditional analysis. The analysis does not
assume that a clear run sequence is known in advance. In Section 4.2.3, the proposed
analysis of scheduling algorithms was extended with minor modifications by using an
explicit order known a priori.

4.2.1. The (α, β)-pair Analysis Formulation

In CPCM, the CP of the DAG task is converted to a series of uninterrupted parents
Φ∗. A parent φ∗i ∈ Φ∗ can start, only if the previous parent φ∗i−1 and its children H(φ∗i−1)
have finished the run (in Figure 3b). In any case, H(φ∗i−1) can lead to a latency from G(φ∗i−1)
(early-released children that can run concurrently with H(φ∗i−1)), which in turn, delays the
start of φ∗i−1 (in Figure 3c). Based on Definitions 1 and 2, the parallel workload αi of φ∗i finishes
no later than h(φ∗i) on m − 1 processors. After φ∗i completes, the interfering workload then
executes on whole processors, in which the latest-finished joint in H(φ∗i) gives the earliest
starting time to the next parent (if exist). Therefore, bounding this delay requires:

(1) Bounds of parallel workload (αi);
(2) Bounds of the longest run sequence in H(φ∗i) that runs later than h(φ∗i), expressed as βi.

With a random execution order, the WC completion time of βi imposesd an effective
upper bound for the WC completion of workload in H(φ∗i) that runs later than h(φ∗i). With
αi and βi expressed, Theorem 2 offers the bounds on the latency φ∗i due to the child joints
in H(φ∗i−1).

Appl. Sci. 2023, 13, 2779 10 of 19

Theorem 3. Two uninterrupted offers φ∗i , φ∗i−1, the children joints in H(φ∗i−1), can prolong φ∗i no
more than d(Ci − αi − Li − βi)/m + βie.

Proof. By Definition 2, the interfering workload in H(δ∗i) ∪ G(δ∗i) that can (directly or transi-
tively) delay δ∗i is at most Ci − Li − αi. Given the longest execution sequence in H(δ∗i) in the
interfering workload (i.e., βi), the worst-case finish time of H(δ∗i) (and also βi) is bounded as
d(Ci − αi − Li − βi)/m + βie, for a system with m cores. Note, as βi is accounted for explicitly,
it is removed from the interfering workload to avoid repetition. �

On the basis of Theorem 3, the RTA of DAG task can be expressed by Formula (2). As
Ci − Li − αi starts strictly after h(φ∗i), the completion time of both φ∗i and H(φ∗i) is bounded
by the length of φ∗i and the WCET of βi. In short, φ∗i+1 can only start after the finish of φ∗i
and whole joints in H(φ∗i). Therefore, the final response time of DAG is limited by the sum
of the CTs of every parent and its children.

R = ∑φ∗i ∈Φ∗{d(Ci − αi − Li − βi)/me+ βi + Li} (2)

Compared with traditional analysis, it can promote the WC response time approx-
imation by tightening the interference on the CP, and the correctness is not damaged.
∑φ∗i ∈Φd(Ci − Li − αi − βi)/me+ βi < d(C− L)/me, tighter boundaries could be acquired.
Namely, analysis is not always carried out beyond the traditional limits. Hence,
min{L + d(C− L)/me, R} is the final analytical boundary.

4.2.2. Bounding αi and βi

For vj, it can subject to interference (Ij) from the concurrent joints upon arrival. Until
constraint h(vj), first distinguish two particular senses in which the interference of a joint
vj is 0 in Theorem 4, C(vj) provides vj’s concurrent joints, ∧V is paths in a given joint set V
and |·| returns the size of a given set.

Theorem 4. According to a schedule with CPPE, joint vj does not lead to any interference from its

concurrent joints C(vj), if vj ∈ δ∗∨
∣∣∣ΛC(vj)/δ∗

∣∣∣< m− 1 .

Proof. First, the interference of vj is zero if vj ∈ δ∗. This is enforced by CPFE, where a
critical node always starts immediately after all nodes in predecessor(vj) have finished their
executions. �

Second, a node vj ∈ V¬ does not incur any interference if
∣∣∣ΛC(vj)\δ∗

∣∣∣< m− 1 . The
concurrent nodes that can interfere vj on (m − 1) cores are C(vj)\δ∗. Given that the number
of paths in C(vj)\δ∗ is less than m − 1, at least one core is idle when vj is ready so that it
can start directly with no interference.

Theorem 5. With respect to the end joint ve in the longest path of H(φ∗i), h(ve) = h(H(φ∗i)).

Proof. Given two paths δa and δb with length La > Lb and a total workload of C, it follows
that h(δa) = La + (C− La)/m ≥ h(δb) = Lb + (C− Lb)/m, as
h(δa)− h(δb) = La − Lb + (Lb − La)/m ≥ 0. Therefore, node ve with h(ve) = h(H(φ∗i))
gives the end node of the longest path in the interfering workload. �

Theorem 6. The leading joint of the end joint ve in the longest path of H(φ∗i) is given by

argmax
vj

{h(vj)

∣∣∣∣∣∀vj ∈ predecessor(ve) ∩ H(φ∗i)} .

Appl. Sci. 2023, 13, 2779 11 of 19

Proof. Given va, vb ∈ predecessor(vc) with h(va) ≥ h(vb), we have length(δva ∪ vc) >
length(δvb ∪ vc). Therefore, the predecessor node of ve with the latest finish is in the longest
path ending with ve in H(φ∗i). �

4.2.3. Explicit Execution Order (ESO)

Tighter boundaries can be achieved by using ESO for NC-joints, because every joint
could just be interfered with by concurrent joints with higher priority. Taking the proposed
scheduling, a novel analysis method is illustrated, which can sustain CPPE and explicit run
sequence of NC-joints.

With joint priority, the interfering joints of vj on m − 1 processors could be effectively
decreased to joints in N(vj) that have a higher priority than pj, m − 1 joints in N(vj) that
have a lower priority and the highest WCET because of the non-preemptive schedule [10].
Ne(vj) are the joints that can interfere with a NC-joint vj with an explicit order, in Formula
(3), in which argmaxm−1

vk
returns the first m − 1 joints with the highest value of the given

metric. For the sake of simplicity, it takes (m − 1) low-priority joints as the upper limit. The
better ILP-based method can be used to calculate this congestion accurately. In short, if
joint-level preemption is allowed, Ne(vj) will further decrease to {vk

∣∣qk > qj, vk ∈ N(vj)} .

Ne(vj) = {vk|qk > qj, vk ∈ N(vj)} ∪
m−1

argmax
vk

{Ck|qk < qj, vk ∈ N(vj)} (3)

h(vj), ∀vj ∈ V could be calculated by Formula (3), Ne(vj) applied to NC-joints running
on other m − 1 processors. Therefore, αi, βi can be bounded with the updated h(φ∗i),
h(vj), ∀vj ∈ H(φ∗i) ∪ G(φ∗i). Note that with an explicit schedule, δve calculated in Formula
(3), it is not necessarily the longest path in H(φ∗i) that runs in the interfering workload [11].
On the contrary, δve offers the path that is always finished last because of the pre-planned
joint execution sequence.

However, the final limit of the response time is different from the general situation.
With joint priority, whole workload in (Ci− Li− αi− βi) do not have to hinder the execution
of δve . Re is the response time of the DAG task with ESO. It is defined in Formula (4), in
which decides the joints that could prolong δve , Iδve ,j offers the real latency on δve from joint
vj in the interfering workload.

Re = βi + ∑φ∗i ∈Φ∗ Li +

 0 i f
∣∣∣ΛNe(δve)

|< m⌈
∑vj∈Ne(δve)

Iδve ,j/m
⌉

otherwise
(4)

The length of φ∗i (Li) and the WC latency on δve(Iδve
) in the interfering workload, of φ∗i

is the WC completion time and H(φ∗i) is upper bounded by βi + Li +
⌈

∑vj∈Ne(δve)
Iδve ,j/m

⌉
.

If the number of paths in the joints that can cause Iδve
is smaller than m, (|∧Ne(δve)

∣∣∣< m) , δve

runs directly after φ∗i and finishes by Li + βi. Note that Iδve
= 0, βi = 0, as whole workload

in H(φ∗i) contributes to αi so that φ∗i+1 can start immediately after φ∗i .
These joints can interfere with δve (namely, Ne(δve)) are bound by Formula (5), in

which Iδve ,j offers the real latency from joint vj on δve .

Ne(δve) = ∪
vk∈δve

{vj|h(vj) > h(φ∗i) ∧ qj > qk, ∀vj ∈ N(vk)}∪

∪
vk∈δve

1···m
argmax

vk

{Iδve ,j|h(vj) > h(φ∗i) ∧ qj < qk, vj ∈ N(vk)}
(5)

Appl. Sci. 2023, 13, 2779 12 of 19

Iδve ,j is given in Formula (6), which takes the workload of vj executed after h(φ∗i) as
the WC latency on δve .

Iδve ,j =

{
Cj, h(vj)− Cj ≥ h(φ∗i)

h(vj)− h(φ∗i), otherwise
(6)

This concludes the analysis for scheduling methods with node execution order known
a priori. As with the general boundary, it is continuable, because the diminution of WCET of
any arbitrary joint does not cause the completion later than the WC boundary. This analysis
provides stricter results by removing joints that do not cause delay due to their priority
than the general limitation of NC-joints with random order, in which Ne(vj) ⊆ N(vj),
Ive ≤ Ci − Li − αi − βi.

It is noted that the proposed method cannot strictly govern timetable-specific analysis
but could offer more accurate results in general. In fact, this threshold can be used as a
safety upper limit for recommended analysis to offer the most real approximation of the
known worst case.

5. Hierarchical Scheduling in Hypervisor

In order to make full use of the advantages of global scheduling and federal scheduling,
we adopt the above new method of scheduling real-time DAG tasks. We use a hierarchical
scheduling method to divide the whole scheduling problem into two parts:

(1) Scheduling DAG tasks on virtual processors.
(2) Scheduling virtual processors on physical processors.

More specifically, each DAG task is assigned several dedicated virtual processors (and
executed exclusively on these processors at runtime). By correctly describing the resources
provided by the virtual processor, we can analyze each DAG task independently as in
federated scheduling. On the other hand, virtual processors are scheduled on physical
processors at runtime, which effectively enables processors to be shared among different
DAG tasks. Therefore, our hierarchical scheduling method inherits the advantages of
federal scheduling and global scheduling, thus obtaining better schedulability.

5.1. Overview of Virtualization

The work of this section is different from scheduling tasks to physical cores directly
but uses a hierarchical scheduling method to schedule tasks. Furthermore, the hierarchi-
cal algorithm schedules every task to the unique virtual processor of this task and then
schedules whole virtual cores to the physical core. This method involves an offline design
part and an online scheduling part [24,25]. Scheduler-1 schedules the workload of every
DAG task to VCPUs. Scheduler-2 schedules the VCPUs on whole the PCPUs. Illustration
of Hierarchical scheduling in Figure 4.

5.2. Schedule Tasks to VCPUs

Note that task scheduling is on the virtualization platform. Only the scheduling of a
task is considered. Please note that the virtualization environment can only be accessed
by its corresponding DAG task. Therefore, when a DAG task is dispatched on its virtual
platform Π, there is no interference from other tasks, and the scheduling of every DAG
is independent of other tasks [25]. The goal is to construct a virtualization platform π, on
which the deadline of k can be arranged by the Scheduler-1 and guaranteed.

5.3. Schedule VCPUs to PCPUs

Note that the problem of scheduling whole VCPUs together on PCPUs Is similar to
task scheduling on the virtualization environment. This problem consists of two issues:
how to provide specific services required by virtualization environment on PCPUs, and
whether these virtual platforms can be successfully scheduled on PCPUs.

Appl. Sci. 2023, 13, 2779 13 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 21

Guest OS Guest OS Guest OS

Scheduler-2

Scheduler-1

Hypervisor

Multicore on hardware platform

...

Tasks VCPU PCPU

VM VM VM

Figure 4. Illustration of Hierarchical scheduling.

5.2. Schedule Tasks to VCPUs

Note that task scheduling is on the virtualization platform. Only the scheduling of a

task is considered. Please note that the virtualization environment can only be accessed

by its corresponding DAG task. Therefore, when a DAG task is dispatched on its virtual

platform Π, there is no interference from other tasks, and the scheduling of every DAG is

independent of other tasks [25]. The goal is to construct a virtualization platform π, on

which the deadline of k can be arranged by the Scheduler-1 and guaranteed.

5.3. Schedule VCPUs to PCPUs

Note that the problem of scheduling whole VCPUs together on PCPUs Is similar to

task scheduling on the virtualization environment. This problem consists of two issues:

how to provide specific services required by virtualization environment on PCPUs, and

whether these virtual platforms can be successfully scheduled on PCPUs.

5.4. VCPUs in Hypervisor

The architecture of parallel hierarchical scheduling is described in detail. Every task

is a DAG, and these tasks cannot directly use processor resources. Instead, processor re-

sources are used in a shared way through middleware. We define middleware as VCPUs.

Figure 5 shows the complete architecture of our platform, which is layered. It will imple-

ment our approach on avionic system developed based on a hypervisor. Below, it will

introduce the implementation of the two scheduling components and the runtime perfor-

mance in detail. The first problem is how to allocate processor resources to VCPUs. The

second is how OpenMP threads use VCPUs. Because the OpenMP thread and system

thread are in a one-to-one relationship, using the OpenMP thread instead of the system

thread.

Figure 4. Illustration of Hierarchical scheduling.

5.4. VCPUs in Hypervisor

The architecture of parallel hierarchical scheduling is described in detail. Every task is
a DAG, and these tasks cannot directly use processor resources. Instead, processor resources
are used in a shared way through middleware. We define middleware as VCPUs. Figure 5
shows the complete architecture of our platform, which is layered. It will implement our
approach on avionic system developed based on a hypervisor. Below, it will introduce
the implementation of the two scheduling components and the runtime performance in
detail. The first problem is how to allocate processor resources to VCPUs. The second is
how OpenMP threads use VCPUs. Because the OpenMP thread and system thread are in a
one-to-one relationship, using the OpenMP thread instead of the system thread.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 21

Multicore Processors Platform

Trace Event

Mechanism

OpenMP Liblitmus Feather Trace

VM Applications

Thread
Virtual

Processors

Real-time Scheduling Plugins

PSN-

EDF

GSN-

EDF
PVP ...

Hypervisor

Scheduler-1

Scheduler-2

...

Figure 5. The architecture of virtualization platform.

6. Results

6.1. Evaluations

This experiment verified the capacity proportional to the number of processors. For

every configuration, 1000 tests were conducted on the comparison method. Every experi-

ment casually generates a DAG task. The standardized worst-case maximum CT is used

as an index. Figure 6 shows the worst-case maximum CT of the existing method and the

proposed method under the different numeral of processors on the DAG generated at p =

8. When m ≤ 4, rta-cpf provides similar results to the classical bound, that is, most of its

results are the upper bound of the classical bound. This is because the parallelism of DAG

is limited when the numeral of cores is small, so every NC-joint has a long worst-case CT

(in Formula (3)). This leads to a lower i
α limit (a higher i

β limit) for every supplier, so

the worst-case maximum CT is longer. With the further increase of m, rta-cpf becomes

effective (m = 6), and in the case of m = 7.8, it exceeds the classical limit by 15.7% and 16.2%

(and as high as 31.7% and 32.2%) on average. In this case, more workloads can be executed

in parallel with the CP, that is, the increase of i
α and the decrease of i

β . Therefore, rta-

cpf leads to stricter results by explicitly considering this workload, thus safely reducing

the interference on the CP. Similar results were obtained in the comparison between rta-

cpf-eo and He2019, in which rta-cpf-eo provided a shorter worst-case CT approximation

when m ≥ 4, for example, it was as high as 11.1% and 12.0% when m = 7 and m = 8, respec-

tively. We note that the execution order of joints in the two methods will also affect the

limit of analyzing the worst case. We compare the scheduling and analysis methods re-

spectively. In short, when m = 7, rta-cpf provides similar results to it, and is superior to it

when m = 8. The result shows the usefulness of the proposed method.

Figure 5. The architecture of virtualization platform.

6. Results
6.1. Evaluations

This experiment verified the capacity proportional to the number of processors. For
every configuration, 1000 tests were conducted on the comparison method. Every experi-
ment casually generates a DAG task. The standardized worst-case maximum CT is used

Appl. Sci. 2023, 13, 2779 14 of 19

as an index. Figure 6 shows the worst-case maximum CT of the existing method and the
proposed method under the different numeral of processors on the DAG generated at p = 8.
When m ≤ 4, rta-cpf provides similar results to the classical bound, that is, most of its
results are the upper bound of the classical bound. This is because the parallelism of DAG
is limited when the numeral of cores is small, so every NC-joint has a long worst-case CT
(in Formula (3)). This leads to a lower αi limit (a higher βi limit) for every supplier, so the
worst-case maximum CT is longer. With the further increase of m, rta-cpf becomes effective
(m = 6), and in the case of m = 7.8, it exceeds the classical limit by 15.7% and 16.2% (and
as high as 31.7% and 32.2%) on average. In this case, more workloads can be executed in
parallel with the CP, that is, the increase of αi and the decrease of βi. Therefore, rta-cpf leads
to stricter results by explicitly considering this workload, thus safely reducing the interfer-
ence on the CP. Similar results were obtained in the comparison between rta-cpf-eo and
He2019, in which rta-cpf-eo provided a shorter worst-case CT approximation when m ≥ 4,
for example, it was as high as 11.1% and 12.0% when m = 7 and m = 8, respectively. We note
that the execution order of joints in the two methods will also affect the limit of analyzing
the worst case. We compare the scheduling and analysis methods respectively. In short,
when m = 7, rta-cpf provides similar results to it, and is superior to it when m = 8. The
result shows the usefulness of the proposed method.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 21

Figure 6. WC CT of DAG using different numeral of processors.

6.1.1. Sensitivity of DAG Priorities

From some results, it is not easy to understand how the DAG attribute affects the WC

maximum CT. To adapt to this situation, this experiment shows how the evaluated anal-

ysis is sensitive to some DAG features. That is, by controlling the parameters of Dag and

evaluating the maximum CT in the normalized value, we can see how much the perfor-

mance of the analysis has changed. Otherwise, this will not be distinguished by the WC

maximum CT or schedulability analysis. Specifically, we consider the following parame-

ters in this experiment: (i) DAG parallelism (the maximum possible width when generat-

ing a randomized DAG), p , and (ii) the ratio of DAG CP to total workload %L, where

%L = L/C × 100%.

Figure 7 evaluates the influence of CP length on the usefulness of the proposed
method, m = 2. The CP varies from 60% to 90% of the total workload of the generated

DAG. In this experiment, compared with the existing methods, the proposed analysis

shows the most remarkable performance. For the proposed method, due to the change in

the internal structure of the generated DAG (for example, L = 0.6), the WC maximum CT

of rta-cpf varies with a small amount of %L. However, with the further increase of %L,
rta-cpf provides a constant CT because whole non-critical workloads can be executed in

parallel with the CP. In this case, the maximum CT is directly equal to the length of the

CP. Similar results were obtained for rta-cpf-eo, which provided a constant CT (the length

of the CP) under whole experimental settings. Note that, with the further increase of %L,

it is completely dominated by rta-cpf. Sensitivity of CP ratio (m = 4, p = 8) in Figure 8.

Figure 7. Sensitivity of parallelism parameter (m = 4).

Figure 6. WC CT of DAG using different numeral of processors.

6.1.1. Sensitivity of DAG Priorities

From some results, it is not easy to understand how the DAG attribute affects the
WC maximum CT. To adapt to this situation, this experiment shows how the evaluated
analysis is sensitive to some DAG features. That is, by controlling the parameters of Dag
and evaluating the maximum CT in the normalized value, we can see how much the
performance of the analysis has changed. Otherwise, this will not be distinguished by
the WC maximum CT or schedulability analysis. Specifically, we consider the following
parameters in this experiment: (i) DAG parallelism (the maximum possible width when
generating a randomized DAG), p, and (ii) the ratio of DAG CP to total workload %L,
where %L = L/C × 100%.

Figure 7 evaluates the influence of CP length on the usefulness of the proposed method,
m = 2. The CP varies from 60% to 90% of the total workload of the generated DAG. In
this experiment, compared with the existing methods, the proposed analysis shows the
most remarkable performance. For the proposed method, due to the change in the internal
structure of the generated DAG (for example, L = 0.6), the WC maximum CT of rta-cpf varies
with a small amount of %L. However, with the further increase of %L, rta-cpf provides
a constant CT because whole non-critical workloads can be executed in parallel with the
CP. In this case, the maximum CT is directly equal to the length of the CP. Similar results
were obtained for rta-cpf-eo, which provided a constant CT (the length of the CP) under
whole experimental settings. Note that, with the further increase of %L, it is completely
dominated by rta-cpf. Sensitivity of CP ratio (m = 4, p = 8) in Figure 8.

Appl. Sci. 2023, 13, 2779 15 of 19

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 21

Figure 6. WC CT of DAG using different numeral of processors.

6.1.1. Sensitivity of DAG Priorities

From some results, it is not easy to understand how the DAG attribute affects the WC

maximum CT. To adapt to this situation, this experiment shows how the evaluated anal-

ysis is sensitive to some DAG features. That is, by controlling the parameters of Dag and

evaluating the maximum CT in the normalized value, we can see how much the perfor-

mance of the analysis has changed. Otherwise, this will not be distinguished by the WC

maximum CT or schedulability analysis. Specifically, we consider the following parame-

ters in this experiment: (i) DAG parallelism (the maximum possible width when generat-

ing a randomized DAG), p , and (ii) the ratio of DAG CP to total workload %L, where

%L = L/C × 100%.

Figure 7 evaluates the influence of CP length on the usefulness of the proposed
method, m = 2. The CP varies from 60% to 90% of the total workload of the generated

DAG. In this experiment, compared with the existing methods, the proposed analysis

shows the most remarkable performance. For the proposed method, due to the change in

the internal structure of the generated DAG (for example, L = 0.6), the WC maximum CT

of rta-cpf varies with a small amount of %L. However, with the further increase of %L,
rta-cpf provides a constant CT because whole non-critical workloads can be executed in

parallel with the CP. In this case, the maximum CT is directly equal to the length of the

CP. Similar results were obtained for rta-cpf-eo, which provided a constant CT (the length

of the CP) under whole experimental settings. Note that, with the further increase of %L,

it is completely dominated by rta-cpf. Sensitivity of CP ratio (m = 4, p = 8) in Figure 8.

Figure 7. Sensitivity of parallelism parameter (m = 4). Figure 7. Sensitivity of parallelism parameter (m = 4).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 21

Figure 8. Sensitivity of CP ratio (m = 4, p = 8).

The method is superior to the classical method and the latest technology in general.

In short, we observe that whole the tested parameters have an influence on the function

of the proposed method. For rta-cpf, it is sensitive to the relationship between m and p

, in which low m or high p shows the usefulness of this method. These two factors

have a direct impact on the CT of whole NC-joints. %L will also significantly affect the
performance of rta-cpf. In rta-cpf, a longer CP usually leads to a more accurate approxi-

mation of the maximum CT. Similar to rta-cpf-eo, rta-cpf shows better performance with

the increase of% L. Hence, due to its explicit execution sequence, rta-cpf-eo shows stronger

performance than rta-cpf, and is not affected by parameter q.

6.1.2. Usefulness of The Proposed Schedulability

The proposed algorithm is compared with the advanced joint-level priority allocation

method (namely He2019). In short, it is proved that the WC achieves maximum CT con-

sidering priority allocation. The goal is to prove the WC He2019 of improvement, grouped

by the numeral of processors m, p = 8, “?” means beat the market. Scenarios are realized

through priority allocation. Overall, 1000 random task sets will be generated under every

configuration. This evaluation compares two indicators: (i) time suggested rta-cpf-eo is

more than the comparison algorithm, (ii) the latency of standardized CT in the improve-

ment cases.

Figure 9 shows the extended comparison between the proposed ranking algorithm

and the algorithm in He2019 in the case of different numerals of processors. The frequency

denotes the number of cases where the proposed timetable is red or blue. The WC maxi-

mum CT analysis for explicit orders is applicable to both orders, so the performance dif-

ference comes from the order strategy. From the results, the proposed algorithm is gener-

ally superior to it at higher frequencies, especially in the case of a small numeral of cores,

for example, in the case of m = 2 near the frequency of 600. With the increase of m, the

frequency difference of the method gradually decreases, and it becomes difficult to dis-

tinguish when m = 8. In these cases, most joints can execute in parallel, so the influence of

different sequences on the final maximum CT becomes less significant.

Figure 8. Sensitivity of CP ratio (m = 4, p = 8).

The method is superior to the classical method and the latest technology in general. In
short, we observe that whole the tested parameters have an influence on the function of
the proposed method. For rta-cpf, it is sensitive to the relationship between m and p, in
which low m or high p shows the usefulness of this method. These two factors have a direct
impact on the CT of whole NC-joints. %L will also significantly affect the performance
of rta-cpf. In rta-cpf, a longer CP usually leads to a more accurate approximation of the
maximum CT. Similar to rta-cpf-eo, rta-cpf shows better performance with the increase of%
L. Hence, due to its explicit execution sequence, rta-cpf-eo shows stronger performance
than rta-cpf, and is not affected by parameter q.

6.1.2. Usefulness of The Proposed Schedulability

The proposed algorithm is compared with the advanced joint-level priority allocation
method (namely He2019). In short, it is proved that the WC achieves maximum CT
considering priority allocation. The goal is to prove the WC He2019 of improvement,
grouped by the numeral of processors m, p = 8, “?” means beat the market. Scenarios
are realized through priority allocation. Overall, 1000 random task sets will be generated
under every configuration. This evaluation compares two indicators: (i) time suggested
rta-cpf-eo is more than the comparison algorithm, (ii) the latency of standardized CT in the
improvement cases.

Figure 9 shows the extended comparison between the proposed ranking algorithm
and the algorithm in He2019 in the case of different numerals of processors. The frequency
denotes the number of cases where the proposed timetable is red or blue. The WC maximum
CT analysis for explicit orders is applicable to both orders, so the performance difference
comes from the order strategy. From the results, the proposed algorithm is generally
superior to it at higher frequencies, especially in the case of a small numeral of cores, for
example, in the case of m = 2 near the frequency of 600. With the increase of m, the frequency
difference of the method gradually decreases, and it becomes difficult to distinguish when
m = 8. In these cases, most joints can execute in parallel, so the influence of different
sequences on the final maximum CT becomes less significant.

Appl. Sci. 2023, 13, 2779 16 of 19
Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 21

Figure 9. Compare priority sorting with sorting in He2019.

Table 1 compares the advantages of the two algorithms in detail, expressed as a per-

centage. For EO > He2019 (that is, the proposed schedule is better than it), the average

optimization was observed (in terms of the WC maximum CT) is higher than 5.42% (as

high as 7.88%) in all cases. In the case of EO < He2019, the optimization is always lower

than that of EO > He2019.

Table 1. Advantage: percentage of improvement in joint ordering policy.

He2019 > EO

Core (m) Min. Avg. Max.

2 0.05 7.88 30.62

4 0.02 7.20 33.38

8 0.03 5.42 25.28

He2019 < EO

Core (m) Min. Avg. Max.

2 0.01 6.48 30.67

4 0.02 4.54 23.84

8 0.03 1.64 19.27

Table 2 shows the number of advantageous cases and the scientific significance of

improvement, He2019 > EO, He2019 < EO. The values in Table 2 are category values to

report its importance. Namely, the importance determines if any difference is more than

random, and the size of the difference. The data column illustrates the number of times

that an algorithm has a lower CT than another. As far as all of the circumstances are con-

cerned, the algorithm is superior to the most advanced algorithm. This order of magni-

tude further proves the advantages of our algorithm. For example, when m = 4, when EO

is superior to He2019, the effect size is medium, but when He2019 is superior to EO, the

effect size is small; For m = 8, even if data have similar values, the effect size is small and

can be ignored.

Table 2. The joint-level priority allocation realized in (α, β).

Core (m) Data Dataset

2
262 He2019 > EO

670 He2019 < EO

4
275 He2019 > EO

451 He2019 < EO

8
184 He2019 > EO

191 He2019 < EO

Similarly, by applying the same ranking to the two methods, we compared our anal-

ysis with that in He2019, and found consistent results. Therefore, we conclude that the

Figure 9. Compare priority sorting with sorting in He2019.

Table 1 compares the advantages of the two algorithms in detail, expressed as a
percentage. For EO > He2019 (that is, the proposed schedule is better than it), the average
optimization was observed (in terms of the WC maximum CT) is higher than 5.42% (as
high as 7.88%) in all cases. In the case of EO < He2019, the optimization is always lower
than that of EO > He2019.

Table 1. Advantage: percentage of improvement in joint ordering policy.

He2019 > EO

Core (m) Min. Avg. Max.

2 0.05 7.88 30.62
4 0.02 7.20 33.38
8 0.03 5.42 25.28

He2019 < EO

Core (m) Min. Avg. Max.

2 0.01 6.48 30.67
4 0.02 4.54 23.84
8 0.03 1.64 19.27

Table 2 shows the number of advantageous cases and the scientific significance of
improvement, He2019 > EO, He2019 < EO. The values in Table 2 are category values to
report its importance. Namely, the importance determines if any difference is more than
random, and the size of the difference. The data column illustrates the number of times that
an algorithm has a lower CT than another. As far as all of the circumstances are concerned,
the algorithm is superior to the most advanced algorithm. This order of magnitude further
proves the advantages of our algorithm. For example, when m = 4, when EO is superior
to He2019, the effect size is medium, but when He2019 is superior to EO, the effect size is
small; For m = 8, even if data have similar values, the effect size is small and can be ignored.

Table 2. The joint-level priority allocation realized in (α, β).

Core (m) Data Dataset

2
262 He2019 > EO
670 He2019 < EO

4
275 He2019 > EO
451 He2019 < EO

8
184 He2019 > EO
191 He2019 < EO

Appl. Sci. 2023, 13, 2779 17 of 19

Similarly, by applying the same ranking to the two methods, we compared our analysis
with that in He2019, and found consistent results. Therefore, we conclude that the proposed
scheduling and analysis is effective and superior to the most advanced technology in
general.

6.2. Synthetic Workload

For every DAG task, the number of vertices is casually selected in [50, 250]. The WCET
of every vertex is casually selected in [50, 100]. For every possible edge, take a random
value in [0, 1], and only add the edge to the graph when the generated value is less than
the predefined threshold q. Generally, the larger q, the more ordered the tasks (namely
the longer the CP of DAG). In Figure 10. Comparison of acceptance rates of different
dimensions under the comprehensive workload [26].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 21

proposed scheduling and analysis is effective and superior to the most advanced technol-

ogy in general.

6.2. Synthetic Workload

For every DAG task, the number of vertices is casually selected in [50, 250]. The

WCET of every vertex is casually selected in [50, 100]. For every possible edge, take a

random value in [0, 1], and only add the edge to the graph when the generated value is

less than the predefined threshold q . Generally, the larger q , the more ordered the tasks

(namely the longer the CP of DAG). In Figure 10. Comparison of acceptance rates of dif-

ferent dimensions under the comprehensive workload [26].

Deadline and Period: Periods are generated in an integer power of 2. We find the

minimum value A so that iL c≤ , and casually set iT to one of 2c, 2c + 1 or 2c + 2. When

the period iT of the task is 2c, 2c +1 or 2c +2, the ratio /i iL T of the task is in the range of

[1, 1/2], [1/2, 1/4] or [1/4, 1/8] respectively. The relative cut-off time is uniformly selected

from the range [],
i i

L T .

(a) (b)

Figure 10. Comparison of three schedulers; (a) scheduling overhead, (b) context-switch overhead.

Figure 11a compares the acceptance rates of task sets with different Standardized

utilization rates, where q is 0.1 and /i iL T is casually generated in the range of [1/8, 1].

Standardized utilization represents the X-axis, and acceptance rates according to the
standardized utilization under different processor numerals. It can be observed that SF-

XU and H-YANG are superior to G-MEL. This is because SF-XU and H-YANG’s analysis

techniques are both carried out under the framework of federal scheduling, eliminating

the interference between tasks, while G-MEL is based on RTA, which is much more pes-

simistic due to the interference between tasks. In short, the performance of H-YANG is
better than that of SF-XU because it provides a more efficient resource-sharing solution.

Figure 11b compares the acceptance rates of task sets with different intensities. Figure 11b

follows the same setup as that of Figure 11a, but generates task cycles at different ratios

between /i iL T . As the x-axis value increases, the tension decreases. The standardized uti-

lization rate of every task is casually selected from [0.1, 1]. Interestingly, with the increase

of tension, the gap between these three tests is increasing. It is because, with the increase
of the circle in CP length, the problem of resource waste of SF-XU becomes more and more

serious, and H-YANG alleviates this problem to some extent.

Figure 10. Comparison of three schedulers; (a) scheduling overhead, (b) context-switch overhead.

Deadline and Period: Periods are generated in an integer power of 2. We find the
minimum value A so that Li ≤ c, and casually set Ti to one of 2c, 2c + 1 or 2c + 2. When
the period Ti of the task is 2c, 2c +1 or 2c +2, the ratio Li/Ti of the task is in the range of [1,
1/2], [1/2, 1/4] or [1/4, 1/8] respectively. The relative cut-off time is uniformly selected
from the range [Li, Ti].

Figure 11a compares the acceptance rates of task sets with different Standardized
utilization rates, where q is 0.1 and Li/Ti is casually generated in the range of [1/8, 1].
Standardized utilization represents the X-axis, and acceptance rates according to the stan-
dardized utilization under different processor numerals. It can be observed that SF-XU
and H-YANG are superior to G-MEL. This is because SF-XU and H-YANG’s analysis tech-
niques are both carried out under the framework of federal scheduling, eliminating the
interference between tasks, while G-MEL is based on RTA, which is much more pessimistic
due to the interference between tasks. In short, the performance of H-YANG is better than
that of SF-XU because it provides a more efficient resource-sharing solution. Figure 11b
compares the acceptance rates of task sets with different intensities. Figure 11b follows the
same setup as that of Figure 11a, but generates task cycles at different ratios between Li/Ti.
As the x-axis value increases, the tension decreases. The standardized utilization rate of
every task is casually selected from [0.1, 1]. Interestingly, with the increase of tension, the
gap between these three tests is increasing. It is because, with the increase of the circle in
CP length, the problem of resource waste of SF-XU becomes more and more serious, and
H-YANG alleviates this problem to some extent.

Appl. Sci. 2023, 13, 2779 18 of 19
Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 21

(a) (b)

Figure 11. Comparison of different synthetic workload; (a) Standardized utilization, (b) Tensity.

7. Conclusions

A parallel hierarchical scheduling framework based on DAG tasks with limited dead-

lines is proposed in this article. Under this framework, the kinds of tasks are not distin-

guished, and a rule-based scheduling method is proposed which maximizes node paral-
lelism to improve the schedulability of single DAG tasks. Based on the rules, a response-

time analysis is developed that provides tighter bounds than existing analysis for (1) any

scheduling method that prioritizes the critical path, and (2) scheduling methods with ex-

plicit execution order known a priori. We demonstrate that the proposed scheduling and

analyzing methods outperform existing techniques. The scheduling framework has been
implemented on avionic real-time systems platform, and through experiments, we know

that the extra overhead brought by the method proposed in this chapter is acceptable.

Finally, a simulation experiment is constructed to verify the adjustability of the frame-

work. The experimental results demonstrate that the strategy proposed have better per-

formance in the article.
Based on the research conclusion of this article, there are still many directions worthy

of further analysis in the future. First, we can consider scheduling multi-DAG task models

on a given virtual computing platform according to different resource interfaces. Moreo-

ver, sharing resource models among DAG tasks is also an important direction for us to

consider. Energy-sensitive scheduling algorithm for the DAG task model is also worthy

of attention.

Author Contributions: Conceptualization, H.Y. and S.Z. (Shuang Zhang); methodology, H.Y. and

S.Z. (Shuai Zhao); software, H.Y. and S.Z. (Shuai Zhao); validation, Y.G., H.Y. and X.S.; formal anal-

ysis, Y.G.; investigation, H.Y.; resources, S.Z. (Shuang Zhang); data curation, X.S.; writing—original

draft preparation, H.Y.; writing—review and editing, Y.G.; visualization, X.S.; supervision, S.Z.

(Shuang Zhang); project administration, S.Z. (Shuang Zhang); funding acquisition, H.Y. All authors

have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key Scientific Research Projects of China, grant

numeral MJ-2018-S-34.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The work was supported by the school of computer at Northwestern Polytech-

nical University, some colleagues in University of York and Xi’an Aeronautical Computing Tech-

nique Research Institute.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 11. Comparison of different synthetic workload; (a) Standardized utilization, (b) Tensity.

7. Conclusions

A parallel hierarchical scheduling framework based on DAG tasks with limited dead-
lines is proposed in this article. Under this framework, the kinds of tasks are not dis-
tinguished, and a rule-based scheduling method is proposed which maximizes node
parallelism to improve the schedulability of single DAG tasks. Based on the rules, a
response-time analysis is developed that provides tighter bounds than existing analysis for
(1) any scheduling method that prioritizes the critical path, and (2) scheduling methods
with explicit execution order known a priori. We demonstrate that the proposed scheduling
and analyzing methods outperform existing techniques. The scheduling framework has
been implemented on avionic real-time systems platform, and through experiments, we
know that the extra overhead brought by the method proposed in this chapter is acceptable.
Finally, a simulation experiment is constructed to verify the adjustability of the framework.
The experimental results demonstrate that the strategy proposed have better performance
in the article.

Based on the research conclusion of this article, there are still many directions worthy
of further analysis in the future. First, we can consider scheduling multi-DAG task models
on a given virtual computing platform according to different resource interfaces. Moreover,
sharing resource models among DAG tasks is also an important direction for us to consider.
Energy-sensitive scheduling algorithm for the DAG task model is also worthy of attention.

Author Contributions: Conceptualization, H.Y. and S.Z. (Shuang Zhang); methodology, H.Y. and S.Z.
(Shuai Zhao); software, H.Y. and S.Z. (Shuai Zhao); validation, Y.G., H.Y. and X.S.; formal analysis,
Y.G.; investigation, H.Y.; resources, S.Z. (Shuang Zhang); data curation, X.S.; writing—original draft
preparation, H.Y.; writing—review and editing, Y.G.; visualization, X.S.; supervision, S.Z. (Shuang
Zhang); project administration, S.Z. (Shuang Zhang); funding acquisition, H.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by National Key Scientific Research Projects of China, grant
numeral MJ-2018-S-34.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The work was supported by the school of computer at Northwestern Polytech-
nical University, some colleagues in University of York and Xi’an Aeronautical Computing Technique
Research Institute.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2023, 13, 2779 19 of 19

References
1. Alonso, A.; de la Puente, J.; Zamorano, J.; de Miguel, M.; Salazar, E.; Garrido, J. Safety concept for a mixed criticality on-board

software system. IFAC PapersOnLine 2015, 48, 240–245. [CrossRef]
2. Burns, A.; Davis, R. A survey of research into mixed criticality systems. ACM Calc. Surv. 2017, 50, 1–37. [CrossRef]
3. Burns, A.; Davis, R. Mixed Criticality Systems: A Review; Technical Report MCC-1(L); Department of Calculater Science, University

of York: York, UK, 2019; p. 6. Available online: http://www-users.cs.york.ac.uk/burns/review.pdf (accessed on 10 March 2019).
4. LynxSecure. Available online: https://www.lynx.com/products/lynxsecure-separation-kernel-hypervisor (accessed on 14

January 2021).
5. QNX Adaptive Partitioning Thread Scheduler. Available online: https://www.qnx.com/developers/docs/7.0.0/index.html#

com.qnx.doc.neutrino.sys_arch/topic/adaptive.html (accessed on 14 January 2021).
6. QNX Hypervisor. Available online: https://blackberry.qnx.com/en/software-solutions/embedded-software/industrial/qnx-

hypervisor (accessed on 14 January 2021).
7. QNX Platform for Digital Cockpits. Available online: https://blackberry.qnx.com/content/dam/qnx/products/bts-digital-

cockpits-product-brief.pdf (accessed on 14 January 2021).
8. Wind River Helix Virtualization Platform. Available online: https://www.windriver.com/products/helix-platform/ (accessed

on 18 June 2021).
9. Wind River VxWorks 653 Platform. Available online: https://www.windriver.com/products/vxworks/certification-profiles/

#vxworks_653 (accessed on 18 June 2019).
10. Baruah, S. The Federated Scheduling of Systems of Conditional Sporadic DAG Tasks. In Proceedings of the 12th International

Conference on Embedded Software, Amsterdam, The Netherlands, 4–9 October 2015; pp. 1–10.
11. Li, J.; Chen, J.; Agrawal, K.; Lu, C.; Gill, C.; Saifullah, A. Analysis of Federated and Global Scheduling for Parallel Real-Time

Tasks. In Proceedings of the 26th Euromicro Conference on Real-Time Systems, Madrid, Spain, 8–11 July 2014; pp. 85–96.
12. Xu, J.; Nan, G.; Xiang, L.; Wang, Y. Semi-Federated Scheduling of Parallel Real-Time Tasks on Multiprocessors. In Proceedings of

the 2017 IEEE Real-Time Systems Symposium (RTSS), Paris, France, 5–8 December 2017; pp. 80–91.
13. He, Q.; Jiang, X.; Guan, N.; Guo, Z. Intra-task priority assignment in real-time scheduling of DAG tasks on multi-cores. IEEE

Trans. Parallel Distrib. Syst. 2019, 30, 2283–2295. [CrossRef]
14. Melani, A.; Bertogna, M.; Bonifaci, V.; Marchetti-Spaccamela, A.; Buttazzo, G.C. Response-Time Analysis of Conditional DAG

Tasks in Multiprocessor Systems. In Proceedings of the Euromicro Conference on Real-Time Systems, Lund, Sweden, 8–10 July
2015; pp. 211–221.

15. Graham, R.L. Bounds on multiprocessing timing anomalies. J. Appl. Math. 1969, 17, 416–429. [CrossRef]
16. Fonseca, J.; Nelissen, G.; Nélis, V. Improved Response Time Analysis of Sporadic DAG Tasks for Global FP Scheduling. In

Proceedings of the International Conference on Real-Time Networks and Systems, Grenoble, France, 4–6 October 2017; pp. 28–37.
17. Chen, P.; Liu, W.; Jiang, X.; He, Q.; Guan, N. Timing-anomaly free dynamic scheduling of conditional DAG tasks on multi-core

systems. ACM Trans. Embed. Comput. Syst. 2019, 18, 1–19. [CrossRef]
18. Chang, S.; Zhao, X.; Liu, Z.; Deng, Q. Real-time scheduling and analysis of parallel tasks on heterogeneous multi-cores. J. Syst.

Archit. 2020, 105, 101704. [CrossRef]
19. Guan, F.; Qiao, J.; Han, Y. DAG-fluid: A real-time scheduling algorithm for DAGs. IEEE Trans. Calc. 2020, 70, 471–482. [CrossRef]
20. Topcuoglu, H.; Hariri, S.; Wu, M.-y. Performance-effective and low-complexity task scheduling for heterogeneous computing.

IEEE Trans. Parallel Distrib. Syst. 2002, 13, 260–274. [CrossRef]
21. Lin, H.; Li, M.-F.; Jia, C.-F.; Liu, J.-N.; An, H. Degree-of-joint task scheduling of fine-grained parallel programs on heterogeneous

systems. J. Calc. Sci. Technol. 2019, 34, 1096–1108.
22. Zhao, S.; Dai, X.; Bate, I.; Burns, A.; Chang, W. DAG Scheduling and Analysis on Multiprocessor Systems: Exploitation of

Parallelism and Dependency. In Proceedings of the 2020 IEEE Real-Time Systems Symposium (RTSS), Houston, TX, USA, 1–4
December 2020; pp. 28–40.

23. Zhao, S.; Dai, X.; Bate, I. DAG Scheduling and Analysis on Multi-Core Systems by Modelling Parallelism and Dependency. IEEE
Trans. Parallel Distrib. Syst. 2022, 33, 231–245. [CrossRef]

24. Jiang, X.; Guan, N.; Long, X.; Wan, H. Decomposition-based Real-Time Scheduling of Parallel Tasks on Multi-cores Platforms.
IEEE Trans. Calc. Aided Des. Integr. Circuits Syst. 2019, 39, 183–198.

25. Yang, T.; Deng, Q.; Sun, L. Building real-time parallel task systems on multi-cores: A hierarchical scheduling approach. J. Syst.
Archit. 2019, 92, 1–11. [CrossRef]

26. Saifullah, A.; Ferry, D.; Li, J.; Agrawal, K.; Lu, C.; Gill, C. Parallel real-time scheduling of dags. Parallel Distrib. Syst. IEEE Trans.
2014, 25, 3242–3252. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.ifacol.2015.08.138
http://doi.org/10.1145/3131347
http://www-users.cs.york.ac.uk/burns/review.pdf
https://www.lynx.com/products/lynxsecure-separation-kernel-hypervisor
https://www.qnx.com/developers/docs/7.0.0/index.html#com.qnx.doc.neutrino.sys_arch/topic/adaptive.html
https://www.qnx.com/developers/docs/7.0.0/index.html#com.qnx.doc.neutrino.sys_arch/topic/adaptive.html
https://blackberry.qnx.com/en/software-solutions/embedded-software/industrial/qnx-hypervisor
https://blackberry.qnx.com/en/software-solutions/embedded-software/industrial/qnx-hypervisor
https://blackberry.qnx.com/content/dam/qnx/products/bts-digital-cockpits-product-brief.pdf
https://blackberry.qnx.com/content/dam/qnx/products/bts-digital-cockpits-product-brief.pdf
https://www.windriver.com/products/helix-platform/
https://www.windriver.com/products/vxworks/certification-profiles/#vxworks_653
https://www.windriver.com/products/vxworks/certification-profiles/#vxworks_653
http://doi.org/10.1109/TPDS.2019.2910525
http://doi.org/10.1137/0117039
http://doi.org/10.1145/3358236
http://doi.org/10.1016/j.sysarc.2019.101704
http://doi.org/10.1109/TC.2020.2990282
http://doi.org/10.1109/71.993206
http://doi.org/10.1109/TPDS.2022.3177046
http://doi.org/10.1016/j.sysarc.2018.10.006
http://doi.org/10.1109/TPDS.2013.2297919

	Introduction
	Preliminaries
	System Model
	Task Model
	Work-Conserving Schedulability Analysis

	Related Work
	Schedulability Analysis
	Scheduling
	Concurrent Parent and Child Model
	The CP Priority Execution (CPPE)
	Exploiting Parallelism and Joint Dependency

	Analysis of Response Time
	The (,)-pair Analysis Formulation
	Bounding i and i
	Explicit Execution Order (ESO)

	Hierarchical Scheduling in Hypervisor
	Overview of Virtualization
	Schedule Tasks to VCPUs
	Schedule VCPUs to PCPUs
	VCPUs in Hypervisor

	Results
	Evaluations
	Sensitivity of DAG Priorities
	Usefulness of The Proposed Schedulability

	Synthetic Workload

	Conclusions
	References

