Chemometrics and Spectroscopic Analyses of Peganum harmala Plant’s Seeds by Laser-Induced Breakdown Spectroscopy
Abstract
:1. Introduction
2. Experimental Setup and Methods
3. Results
3.1. Optical Emission Spectra Studies
3.2. Plasma Excitation Temperature
3.3. Electron Plasma Number Density
3.4. Laser Irradiance (GW/cm2) and Spatial (mm) Dependence of Plasma Parameters
3.5. Quantitative Analysis Using CF-LIBS
- Stoichiometric-laser induced ablation;
- Local thermodynamical equilibrium (LTE);
- Temporal and spatial homogeneity;
- Optically thin lines.
3.6. Principal Component Analysis
3.7. Quantitative Analysis Using X-ray Fluorescence
3.8. Quantitative Analysis Using SEM-EDX
4. Discussions
Limitations of the Techniques: EDX, XRF, and LIBS
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yousefi, R.; Ghaffarifar, F.; Asl, A.D. The effect of Alkanna tincturia and Peganum harmala extracts on Leishmania major (MRHO/IR/75/ER) in vitro. Iran. J. Parasitol. 2009, 4, 40–47. [Google Scholar]
- Khawar, K.M.; Ozel, C.A.; Balci, S.E.M.I.H.A.; Ozcan, S.E.B.A.H.A.T.T.I.N.; Arslan, O.R.H.A.N. Efficient shoot regeneration in Syrian rue (Peganum harmala L.) under in vitro Conditions. Int. J. Agric. Biol 2005, 7, 790–793. [Google Scholar]
- Jinous, A.; Fereshteh, R. Chemistry, pharmacology and medicinal properties of Peganum harmala L. Afr. J. Pharm. Pharmacol. 2012, 6, 1573–1580. [Google Scholar]
- Begum, Z.; Khan, T. An Allometric Growth Estimation of Peganum harmala L. Species Collected from Gilgit and Ghizir Districts of Gilgit-Baltistan, Pakistan. J. Interdiscip. Biosci. 2017, 1, 7–10. [Google Scholar]
- Goel, N.; Singh, N.; Saini, R. Efficient in vitro multiplication of Syrian Rue (Peganum harmala L.) using 6-benzylaminopurine pre-conditioned seedling explants. Nat. Sci. 2009, 7, 129–134. [Google Scholar]
- Mirzaie, M.; Nosratabadi, S.J.; Derakhshanfar, A.; Sharifi, I. Antileishmanial activity of Peganum harmala extract on the in vitro growth of Leishmania major promastigotes in comparison to a trivalent antimony drug. Vet. Arh. 2007, 77, 365–375. [Google Scholar]
- ASGHARI, G.R.; Lockwood, G.B. Stereospecific Biotransformation of (±) Phenylethyl Propionate by Cell Cultures of Peganum harmala L. Iran. Biomed. J. 2002, 6, 43–46. [Google Scholar]
- Zaker, F.; Oody, A.; Arjmand, A. A study on the antitumoral and differentiation effects of Peganum harmala derivatives in combination with ATRA on leukaemic cells. Arch. Pharmacal Res. 2007, 30, 844–849. [Google Scholar] [CrossRef]
- Singh, A.B.; Khaliq, T.; Chaturvedi, J.P.; Narender, T.; Srivastava, A.K. Anti-diabetic and anti-oxidative effects of 4-hydroxypipecolic acid in C57BL/KsJ-db/db mice. Hum. Exp. Toxicol. 2012, 31, 57–65. [Google Scholar] [CrossRef]
- Shahverdi, A.R.; Monsef-Esfahani, H.R.; Nickavar, B.; Bitarafan, L.; Khodaee, S.; Khoshakhlagh, N. Antimicrobial activity and main chemical composition of two smoke condensates from Peganum harmala seeds. Z. Für Nat. C 2005, 60, 707–710. [Google Scholar] [CrossRef]
- Darabpour, E.; Bavi, A.P.; Motamedi, H.; Nejad, S.M.S. Antibacterial activity of different parts of Peganum harmala L. growing in Iran against multi-drug resistant bacteria. EXCLI J. 2011, 10, 252. [Google Scholar]
- Boulal, A.; Atabani, A.E.; Mohammed, M.N.; Khelafi, M.; Uguz, G.; Shobana, S.; Bokhari, A.; Kumar, G. Integrated valorization of Moringa oleifera and waste Phoenix dactylifera L. dates as potential feedstocks for biofuels production from Algerian Sahara: An experimental perspective. Sahara Exp. Perspect. Biocatal. Agric. Biotechnol. 2019, 20, 101234. [Google Scholar] [CrossRef]
- Herraiz, T.; González, D.; Ancín-Azpilicueta, C.; Arán, V.J.; Guillén, H. β-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem. Toxicol. 2010, 48, 839–845. [Google Scholar] [CrossRef]
- Mahmoudian, M.; Salehian, P.; Jalilpour, H. Toxicity of Peganum harmala: Review and a case report. IJPT 2002, 1, 1–4. [Google Scholar]
- Anjum, S.; Bazai, Z.A.; Rizwan, S.; Benincasa, C.; Mehmood, K.; Siddique, N.; Shaheen, G.; Mehmood, Z.; Azam, M.; Sajjad, A. Elemental characterization of medicinal plants and soils from Hazarganji Chiltan National Park and nearby unprotected areas of Balochistan, Pakistan. J. Oleo Sci. 2019, 68, 443–461. [Google Scholar] [CrossRef] [Green Version]
- Ayazi, Z.; Banihashemi, M. Determination of trace amount of silver in water samples by flame atomic absorption after preconcentration by ZnO nano sorbent. Sep. Sci. Technol. 2016, 51, 585–593. [Google Scholar] [CrossRef]
- Alexander, D.; Ellerby, R.; Hernandez, A.; Wu, F.; Amarasiriwardena, D. Investigation of simultaneous adsorption properties of Cd, Cu, Pb and Zn by pristine rice husks using ICP-AES and LA-ICP-MS analysis. Microchem. J. 2017, 135, 129–139. [Google Scholar] [CrossRef]
- Jing, F.; Yang, Z.; Chen, X.; Liu, W.; Guo, B.; Lin, G.; Huang, R.; Liu, W. Potentially hazardous element accumulation in rice tissues and their availability in soil systems after biochar amendments. J. Soils Sediments 2019, 19, 2957–2970. [Google Scholar] [CrossRef]
- Shen, T.; Li, W.; Zhang, X.; Kong, W.; Liu, F.; Wang, W.; Peng, J. High-sensitivity determination of nutrient elements in panax notoginseng by laser-induced breakdown spectroscopy and chemometric methods. Molecules 2019, 24, 1525. [Google Scholar] [CrossRef] [Green Version]
- Dong, M.; Wei, L.; Lu, J.; Li, W.; Lu, S.; Li, S.; Liu, C.; Yoo, J.H. A comparative model combining carbon atomic and molecular emissions based on partial least squares and support vector regression correction for carbon analysis in coal using LIBS. J. Anal. At. Spectrom. 2019, 34, 480–488. [Google Scholar] [CrossRef]
- Sheta, S.; Afgan, M.S.; Hou, Z.; Yao, S.C.; Zhang, L.; Li, Z.; Wang, Z. Coal analysis by laser-induced breakdown spectroscopy: A tutorial review. J. Anal. At. Spectrom. 2019, 34, 1047–1082. [Google Scholar] [CrossRef]
- Xue, B.; Tian, Y.; Lu, Y.; Li, Y.; Zheng, R. Characteristics of the secondary breakdown of DP-LIBS in bulk water with different axial focusing arrangements and laser energies. Spectrochim. Acta Part B At. Spectrosc. 2019, 151, 20–25. [Google Scholar] [CrossRef]
- Meng, D.; Zhao, N.; Wang, Y.; Ma, M.; Fang, L.; Gu, Y.; Jia, Y.; Liu, J. On-line/on-site analysis of heavy metals in water and soils by laser induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2017, 137, 39–45. [Google Scholar] [CrossRef]
- Kumar Myakalwar, A.; Spegazzini, N.; Zhang, C.; Kumar Anubham, S.; Dasari, R.R.; Barman, I.; Kumar Gundawar, M. Less is more: Avoiding the LIBS dimensionality curse through judicious feature selection for explosive detection. Sci. Rep. 2015, 5, 13169. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Teng, G.; Li, C.; Zhao, Y.; Peng, Z. Identification and classification of explosives using semi-supervised learning and laser-induced breakdown spectroscopy. J. Hazard. Mater. 2019, 369, 423–429. [Google Scholar] [CrossRef]
- Singh, V.K.; Kumar, V.; Sharma, J. Importance of laser-induced breakdown spectroscopy for hard tissues (bone, teeth) and other calcified tissue materials. Lasers Med. Sci. 2015, 30, 1763–1778. [Google Scholar] [CrossRef]
- Andrade, D.F.; Pereira-Filho, E.R. Direct determination of contaminants and major and minor nutrients in solid fertilizers using laser-induced breakdown spectroscopy (LIBS). J. Agric. Food Chem. 2016, 64, 7890–7898. [Google Scholar] [CrossRef]
- Jiang, T.J.; Guo, Z.; Ma, M.J.; Fang, L.; Yang, M.; Li, S.S.; Liu, J.H.; Zhao, N.J.; Huang, X.J.; Liu, W.Q. Electrochemical laser induced breakdown spectroscopy for enhanced detection of Cd (II) without interference in rice on layer-by-layer assembly of graphene oxides. Electrochim. Acta 2016, 216, 188–195. [Google Scholar] [CrossRef]
- Peng, J.; He, Y.; Zhao, Z.; Jiang, J.; Zhou, F.; Liu, F.; Shen, T. Fast visualization of distribution of chromium in rice leaves by re-heating dual-pulse laser-induced breakdown spectroscopy and chemometric methods. Environ. Pollut. 2019, 252, 1125–1132. [Google Scholar] [CrossRef]
- Miziolek, A.W.; Palleschi, V.; Schechter, I. (Eds.) Laser Induced Breakdown Spectroscopy; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Cremers, D.A.; Radziemski, L.J. Handbook of Laser-Induced Breakdown Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Singh, J.P.; Thakur, S.N. Laser-Induced Breakdown Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Tognoni, E.; Palleschi, V.; Corsi, M.; Cristoforetti, G.; Omenetto, N.; Gornushkin, I.; Smith, B.W.; Winefordner, J.D. From sample to signal in laser-induced breakdown spectroscopy: A complex route to quantitative analysis. In Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications; Cambridge Univ. Press: Cambridge, UK, 2006; pp. 122–170. [Google Scholar]
- Hahn, D.W.; Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), part I: Review of basic diagnostics and plasma–particle interactions: Still-challenging issues within the analytical plasma community. Appl. Spectrosc. 2010, 64, 335A–366A. [Google Scholar] [CrossRef] [Green Version]
- Hahn, D.W.; Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 2012, 66, 347–419. [Google Scholar] [CrossRef]
- Guo, G.; Niu, G.; Shi, Q.; Lin, Q.; Tian, D.; Duan, Y. Multi-element quantitative analysis of soils by laser induced breakdown spectroscopy (LIBS) coupled with univariate and multivariate regression methods. Anal. Methods 2019, 11, 3006–3013. [Google Scholar] [CrossRef]
- Yao, M.; Rao, G.; Huang, L.; Liu, M.; Yang, H.; Chen, J.; Chen, T. Simultaneous analysis of Cr and Pb in contaminated pork by laser-induced breakdown spectroscopy. Appl. Opt. 2017, 56, 8148–8153. [Google Scholar] [CrossRef]
- Alrebdi, T.A.; Fayyaz, A.; Asghar, H.; Elaissi, S.; Maati, L.A.E. Laser Spectroscopic Characterization for the Rapid Detection of Nutrients along with CN Molecular Emission Band in Plant-Biochar. Molecules 2022, 27, 5048. [Google Scholar] [CrossRef]
- Alrebdi, T.A.; Fayyaz, A.; Asghar, H.; Zaman, A.; Asghar, M.; Alkallas, F.H.; Hussain, A.; Iqbal, J.; Khan, W. Quantification of Aluminum Gallium Arsenide (AlGaAs) Wafer Plasma Using Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS). Molecules 2022, 27, 3754. [Google Scholar] [CrossRef]
- Iqbal, J.; Asghar, H.; Shah, S.K.H.; Naeem, M.; Abbasi, S.A.; Ali, R. Elemental analysis of sage (herb) using calibration-free laser-induced breakdown spectroscopy. Appl. Opt. 2020, 59, 4927–4932. [Google Scholar] [CrossRef]
- Fayyaz, A.; Liaqat, U.; Adeel Umar, Z.; Ahmed, R.; Aslam Baig, M. Elemental Analysis of Cement by Calibration-Free Laser Induced Breakdown Spectroscopy (CF-LIBS) and Comparison with Laser Ablation–Time-of-Flight–Mass Spectrometry (LA-TOF-MS), Energy Dispersive X-Ray Spectrometry (EDX), X-Ray Fluorescence Spectroscopy (XRF), and Proton Induced X-Ray Emission Spectrometry (PIXE). Anal. Lett. 2019, 52, 1951–1965. [Google Scholar]
- Plemmons, D.H.; Parigger, C.; Lewis, J.W.; Hornkohl, J.O. Analysis of combined spectra of NH and N 2. Appl. Opt. 1998, 37, 2493–2498. [Google Scholar] [CrossRef]
- Liu, Y.; Gigant, L.; Baudelet, M.; Richardson, M. Correlation between laser-induced breakdown spectroscopy signal and moisture content. Spectrochim. Acta Part B At. Spectrosc. 2012, 73, 71–74. [Google Scholar] [CrossRef]
- Lucena, P.; Doña, A.; Tobaria, L.M.; Laserna, J.J. New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 12–20. [Google Scholar] [CrossRef]
- Alrebdi, T.A.; Fayyaz, A.; Ben Gouider Trabelsi, A.; Asghar, H.; Alkallas, F.H.; Alshehri, A.M. Vibrational Emission Study of the CN and C2 in Nylon and ZnO/Nylon Polymer Using Laser-Induced Breakdown Spectroscopy (LIBS). Polymers 2022, 14, 3686. [Google Scholar] [CrossRef]
- Mousavi, S.J.; Hemati Farsani, M.; Darbani, S.M.R.; Mousaviazar, A.; Soltanolkotabi, M.; Eslami Majd, A. CN and C2 vibrational spectra analysis in molecular LIBS of organic materials. Appl. Phys. B 2016, 122, 106. [Google Scholar] [CrossRef]
- Aguilera, J.A.; Aragón, C. Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions: Comparison of local and spatially integrated measurements. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 1861–1876. [Google Scholar] [CrossRef]
- Gigosos, M.A.; Gonzalez, M.A.; Cardenoso, V. Computer simulated Balmer-alpha,-beta and-gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochim. Acta Part B At. Spectrosc. 2003, 58, 1489–1504. [Google Scholar] [CrossRef]
- El Sherbini, A.M.; Hegazy, H.; El Sherbini, T.M. Measurement of electron density utilizing the Hα-line from laser produced plasma in air. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 532–539. [Google Scholar] [CrossRef]
- Griem, H.R. Spectral Line Broadening by Plasmas; Academic Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- McWhirter, R.W.P. Plasma Diagnostic Techniques; Huddlestone, R.H., Leonard, S.L., Eds.; Academic: New York, NY, USA, 1965. [Google Scholar]
- Cristoforetti, G.; De Giacomo, A.; Dell’Aglio, M.; Legnaioli, S.; Togoni, E.; Palleschi, V.; Omenetto, N. Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion Spectrochim. Acta Part B 2010, 65, 86–95. [Google Scholar] [CrossRef]
- Milan, M.; Laserna, J.J. Diagnostics of silicon plasmas produced by visible nanosecond laser ablation. Spectrochim. Acta Part B At. Spectrosc. 2001, 56, 275–288. [Google Scholar] [CrossRef]
- Ciucci, A.; Corsi, M.; Palleschi, V.; Rastelli, S.; Salvetti, A.; Tognoni, E. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl. Spectrosc. 1999, 53, 960–964. [Google Scholar] [CrossRef]
- Fayyaz, A.; Liaqat, U.; Yaqoob, K.; Ahmed, R.; Umar, Z.A.; Baig, M.A. Combination of laser-induced breakdown spectroscopy, and time–of–flight mass spectrometry for the quantification of CoCrFeNiMo high entropy alloys. Spectrochim. Acta Part B At. Spectrosc. 2022, 198, 106562. [Google Scholar] [CrossRef]
- Wang, J.; Liao, X.; Zheng, P.; Xue, S.; Peng, R. Classification of Chinese herbal medicine by laser-induced breakdown spectroscopy with principal component analysis and artificial neural network. Anal. Lett. 2018, 51, 575–586. [Google Scholar] [CrossRef]
Element | Sample-(α) (1) | Sample-(β) (3) | Sample-(γ) (3) | Sample-(δ) (3) |
---|---|---|---|---|
Zinc (Zn) [μg/g] | 0 | 45–55 | 60–65 | 70–80 |
Mean ± SD | 0 | 50 ± 2.31 | 62.5 ± 1.19 | 75 ± 3.15 |
Element Chemical Composition (μg/g) ± SD | ||||
---|---|---|---|---|
Sample-(α) | Sample-(β) | Sample-(γ) | Sample-(Δ) | |
Li (%) | 2.87 ± 0.03 | 3.26 ± 0.01 | 2.18 ± 0.02 | 2.67 ± 0.05 |
C (%) | 36.64 ± 0.16 | 34.81 ± 0.02 | 37.57 ± 0.17 | 36.55 ± 0.13 |
Na (%) | 2.33 ± 0.02 | 2.57 ± 0.01 | 2.89 ± 0.03 | 3.92 ± 0.09 |
Mg (%) | 24.09 ± 0.22 | 25.31 ± 0.03 | 23.31 ± 0.15 | 24.27 ± 0.18 |
Cu (μg/g) | 8.07 ± 0.02 | 7.18 ± 0.01 | 9.44 ± 0.07 | 8.44 ± 0.02 |
Si (%) | 3.72 ± 0.04 | 1.08 ± 0.01 | 2.98 ± 0.03 | 2.48 ± 0.08 |
K (%) | 7.17 ± 0.17 | 6.91 ± 0.04 | 5.86 ± 0.11 | 6.63 ± 0.18 |
Ca (%) | 19.03 ± 0.19 | 18.69 ± 0.06 | 17.75 ± 0.18 | 17.35 ± 0.07 |
Pb (μg/g) | 1.10 ± 0.09 | 1.80 ± 0.04 | 1.73 ± 0.11 | 1.16 ± 0.15 |
Fe (%) | 2.83 ± 0.02 | 1.42 ± 0.02 | 2.59 ± 0.03 | 1.79 ± 0.05 |
Sr (%) | 1.14 ± 0.03 | 4.06 ± 0.05 | 4.32 ± 0.04 | 3.72 ± 0.03 |
Zn (μg/g) | 48.6 ± 1.81 | 61.9 ± 1.74 | 76.5 ± 1.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrebdi, T.A.; Fayyaz, A.; Asghar, H.; Kamal, A.; Iqbal, J.; Piracha, N.K. Chemometrics and Spectroscopic Analyses of Peganum harmala Plant’s Seeds by Laser-Induced Breakdown Spectroscopy. Appl. Sci. 2023, 13, 2780. https://doi.org/10.3390/app13052780
Alrebdi TA, Fayyaz A, Asghar H, Kamal A, Iqbal J, Piracha NK. Chemometrics and Spectroscopic Analyses of Peganum harmala Plant’s Seeds by Laser-Induced Breakdown Spectroscopy. Applied Sciences. 2023; 13(5):2780. https://doi.org/10.3390/app13052780
Chicago/Turabian StyleAlrebdi, Tahani A., Amir Fayyaz, Haroon Asghar, Asif Kamal, Javed Iqbal, and Naveed K. Piracha. 2023. "Chemometrics and Spectroscopic Analyses of Peganum harmala Plant’s Seeds by Laser-Induced Breakdown Spectroscopy" Applied Sciences 13, no. 5: 2780. https://doi.org/10.3390/app13052780
APA StyleAlrebdi, T. A., Fayyaz, A., Asghar, H., Kamal, A., Iqbal, J., & Piracha, N. K. (2023). Chemometrics and Spectroscopic Analyses of Peganum harmala Plant’s Seeds by Laser-Induced Breakdown Spectroscopy. Applied Sciences, 13(5), 2780. https://doi.org/10.3390/app13052780