A Morphing Deployable Mechanism for Re-Entry Capsule Aeroshell
Abstract
:1. Introduction
2. Re-Entry Mission from LEO
3. The Mechanically Deployable Morphing Aeroshell Concept
System Configuration
- The deployable surface can be modulated by changing the sphere-cone angle in order to provide drag modulation capabilities, control the trajectory, and target the payload into the desired area for landing and recovery.
- Once deployed, the system can also activate eight small movable aerodynamic flaps that can be individually “morphed” to guarantee additional precision in landing that enhance the capsule’s maneuverability during re-entry trajectory by using exclusively aerodynamic forces.
4. Multibody Simulations
5. Morphing Tab Concept
5.1. SMA Modelling Approach
- Integration of the SMA rods.
- Activation/heating of the upper SMA and then restoring/cooling into the neutral configuration.
- Activation/heating of the lower SMA and then restoring/cooling into the neutral configuration.
5.2. Parametrization and Results
- The thickness of the plate increases the robustness of the structure but, at the same time, reduces the actuation performance.
- The SMA diameter increases its authority and reduces the stress level; however, large diameters may cause the collapse of the structure.
- Finally, the shorter the SMA the higher the stretching needed for the connection to the structure, with a, consequently, higher amount of martensite production and, thus, strain recoverability; however, large stretching causes higher stress levels within the SMA and greater transmitted forces, potentially causing the collapse of the flat plate.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akin, D. Applications of ultra-low ballistic coefficient entry vehicles to existing and future space missions. In Proceedings of the SpaceOps 2010 Conference Delivering on the Dream Hosted by NASA Marshall Space Flight Center and Organized by AIAA, Huntsvillem, AL, USA, 25–30 April 2010; p. 1928. [Google Scholar]
- Smith, B.; Cassell, A.; Kruger, C.; Venkatapathy, E.; Kazemba, C.; Simonis, K. Nano-ADEPT: An Entry System for Secondary Payloads. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015; pp. 1–11. [Google Scholar]
- Carandente, V.; Elia, G.; Savino, R. Conceptual design of de-orbit and re-entry modules for standard cubesats. In Proceedings of the 2nd IAA Conference on University Satellite Missions and Cubesat Work-shop, Rome, Italy, 3–9 February 2013; pp. 4–7. [Google Scholar]
- Esper, J. Cubesat Application for Planetary Entry (CAPE) Missions: Micro-Return Capsule (MIRCA). In Proceedings of the 30th Annual AIAA/USU Conference on Small Satellites, SSC16-XII-05, Toulouse, France, 27–30 September 2016. [Google Scholar]
- Hughes, S.; Bailet, G.; Miller, N.; Korzun, A.; Zumwalt, C.; Cheatwood, F. Low Cost Innovative Atmospheric Entry Probes Combining CubeSat and HIAD Technologies. In Proceedings of the International Planetary Probe Workshop-13, Laurel, MD, USA, 13–17 June 2016. [Google Scholar]
- Carandente, V.; Savino, R. New Concepts of Deployable De-Orbit and Re-Entry Systems for CubeSat Miniaturized Satellites. Recent Pat. Eng. 2014, 8, 2–12. [Google Scholar] [CrossRef]
- Savino, R.; Aurigemma, R.; Aversana, P.D.; Gramiccia, L.; Longo, J.; Maraffa, L.; Punzo, F.; Scolamiero, L. European Sounding Rocket Experiment on Hypersonic Deployable Re-Entry Demonstrator Background of the Project. In Proceedings of the 8th European Symposium on Aerothermodynamics for Space Vehicles, Lisbon, Portugal, 2–7 March 2015. [Google Scholar]
- Jurewicz, D.; Brown, G.; Gilles, B.; Taylor, A.; Sinclair, R.; Tutt, B.; Lichodziejewski, D.; Kelley, C.; Hughes, S. Design and Development of Inflatable Aeroshell Structure for IRVE-3. In Proceedings of the 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Dublin, Ireland, 23–26 May 2011. AIAA Paper 2011-2522. [Google Scholar]
- Peacocke, L.; Bruce, P.J.K.; Santer, M. Coupled Aerostructural Modeling of Deployable Aerodecelerators for Mars Entry. J. Spacecr. Rocket. 2019, 56, 1221–1230. [Google Scholar] [CrossRef]
- Gardi, R.; Fedele, A.; Pezzella, G.; Vernillo, P.; Savino, R.; Mungiguerra, S.; Dell’Aversana, P.; Gramiccia, L.; Henriksson, K.; Smith, J. Mini-irene: Design of deployable heat shield capsule for a sounding rocket flight experiment. In Proceedings of the 68th International Astronautical Congress, Adelaide, SA, Australia, 25–29 September 2017. [Google Scholar]
- Vernillo, P.; Fedele, A.; Gardi, R.; Savino, R.; Punzo, F.; Gunnar, F.; Molina, R. Mini-irene: The first European flight experiment of a deployable heat shield. In Proceedings of the 23rd ESA Symposium on European Rocket and Balloon Programmes and Related Research, Visby, Sweden, 11–15 June 2017. [Google Scholar]
- Dutta, S.; Smith, B.; Prabhu, D.; Venkatapathy, E. Mission sizing and trade studies for low ballistic coefficient entry systems to Venus. In Proceedings of the 2012 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2012; pp. 1–14. [Google Scholar] [CrossRef] [Green Version]
- Cassell, A.; Smith, B.P.; Wercinski, P.F.; Ghassemieh, S.M.; Hibbard, K.E.; Nelessen, A.P.; Cutts, J.A. ADEPT, A Mechanically Deployable Re-Entry Vehicle System, Enabling Interplanetary CubeSat and Small Satellite Missions, SSC18-XII-08. In Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4–9 August 2018. [Google Scholar]
- Venkatapathy, E.; Hamm, K.; Fernandez, I.; Arnold, J.; Kinney, D.; Laub, B.; Andrews, D. Adaptive Deployable Entry and Placement Technology (ADEPT): A Feasibility Study for Human Missions to Mars. In Proceedings of the 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Dublin, Ireland, 23–26 May 2011. AIAA Paper No. 2011–2608. [Google Scholar]
- Cassell, A.; Brivkalns, C.; Bowles, J.; Garcia, J.; Kinney, D.; Wercinski, P.; Cianciolo, A.; Polsgrove, T. Human Mars Mission Design Study Utilizing the Adaptive Deployable Entry and Placement Technology. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017. [Google Scholar] [CrossRef]
- O’ Driscoll, D.; Bruce, P.J.; Santer, M.J. Origami-based TPS Folding Concept for Deployable Mars Entry Vehicles, AIAA 2020-1897. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar]
- Green, J.S.; Dunn, B.; Lindberg, R. Morphing Hypersonic Inflatable Aerodynamic Decelerator AIAA 2013-1256. In Proceedings of the AIAA Aerodynamic Decelerator Systems (ADS) Conference, Daytona Beach, FL, USA, 25–28 March 2013. [Google Scholar]
- Green, J.S. Morphing Hypersonic Inflatable Aerodynamic Decelerator. In Thesis Mechanical and Aerospace Engineering; University of Virginia: Charlottesville, VA, USA, 2012; Available online: https://libra2.lib.virginia.edu/downloads/q811kj77c?filename=Morphing_Hypersonic_Inflatable_Aerodynamic_Decelerator_-_Justin_S_Green.pdf (accessed on 15 February 2023).
- Fedele, A.; Carannante, S.; Grassi, M.; Savino, R. Aerodynamic control system for a deployable re-entry capsule. Acta Astronaut 2021, 181, 707–716. [Google Scholar] [CrossRef]
- Fedele, A.; Omar, S.; Cantoni, S.; Savino, R.; Bevilacqua, R. Precise re-entry and landing of propellantless spacecraft. Adv. Space Res. 2021, 68, 4336–4358. [Google Scholar] [CrossRef]
- Omar, S.; Bevilacqua, R. Guidance, navigation, and control solutions for spacecraft re-entry point targeting using aerodynamic drag. Acta Astronaut. 2019, 155, 389–405. [Google Scholar] [CrossRef]
- Carna, S.F.R.; Omar, S.; Guglielmo, D.; Bevilacqua, R. Safety analysis for shallow controlled re-entries through reduced order modeling and inputs’ statistics method. Acta Astronaut. 2019, 155, 426–447. [Google Scholar] [CrossRef]
- Savino, R.; Carandente, V. Aerothermodynamic and feasibility study of a deployable aerobraking re-entry capsule. Fluid Dyn. Mater. Process. 2012, 8, 453–477. [Google Scholar]
- Fedele, A. A Deployable Aerobraking System for Atmospheric Reentry. Ph.D. Thesis, Industrial Engineering, University of Florida, Gainesville, FL, USA, 2020. [Google Scholar] [CrossRef]
- Vanhamel, J.; Eaton, N.; Spreij, R. Using fiber bragg gratings for shape monitoring and adjustment of a thermal protection system aboard a targeted re-entry cubesat. In Proceedings of the 2nd International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions Engineering (FAR), Heilbronn, Germany, 19–23 June 2022. [Google Scholar]
- Chin, A.; Coelho, R.; Nugent, R.; Munakata, R.; Puig-Suari, J. The CubeSat: The Picosatellite Standard for Research and Education. In Proceedings of the AIAA SPACE Conference & Exposition, San Diego, CA, USA, 9–11 September 2008. [Google Scholar]
- Toorian, A.; Diaz, K.; Lee, S. The CubeSat Approach to Space Access. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008. [Google Scholar]
- Tauber, M.E. A Review of High-Speed, Convective, Heat-Transfer Computation Method; National Aeronautics and Space Administration Office of Management, Scientific and Technical Information Division: Washington, DC, USA, 1989; NASA Technical Paper 2914. Available online: https://ntrs.nasa.gov/api/citations/19890017745/downloads/19890017745.pdf (accessed on 14 February 2023).
- Pecora, R.; Amoroso, F.; Magnifico, M.; Dimino, I.; Concilio, A. KRISTINA: Kinematic rib-based structural system for innovative adaptive trailing edge. In Proceedings of the SPIE—The International Society for Optical Engineering, Las Vegas, NV, USA, 20–24 March 2016; Volume 9801, p. 980107. [Google Scholar]
- Pecora, R.; Dimino, I. SMA for Aeronautics. In Shape Memory Alloy Engineering: For Aerospace, Structural and Biomedical Applications; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; pp. 275–304. [Google Scholar]
- Song, S.H.; Lee, J.Y.; Rodrigue, H.; Choi, I.S.; Kang, Y.J.; Ahn, S.H. 35 Hz shape memory alloy actuator with bending-twisting mode. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunjai Nakshatharan, S.; Dhanalakshmi, K.; Josephine Selvarani Ruth, D. Effect of stress on bandwidth of antagonistic shape memory alloy actuators. J. Intell. Mater. Syst. Struct. 2016, 27, 153–165. [Google Scholar] [CrossRef]
- Watlow Website. Available online: https://www.watlow.it/products/heaters/watrod-electric-tubular-heaters.cfm (accessed on 2 February 2023).
rn (m) | 0.108 | 0.108 | 0.108 | 0.108 |
rc (m) | 0.305 | 0.35878 | 0.419 | 0.488 |
m (kg) | 24 | 24 | 24 | 24 |
A (m2) | 0.2923 | 0.40439 | 0.551 | 0.749 |
δC (deg) | 15 | 30 | 45 | 60 |
CD | 0.243 | 0.551 | 1.017 | 1.503 |
BC (kg/m2) | 337.779 | 107.716 | 42.882 | 21.306 |
vc-400 | 7.669 km/s | Constant circular speed on the orbit at 400 km |
vc-120 | 7.832 km/s | Constant circular speed on the orbit at 120 km |
Δv1 | −0.081 km/s | Δv required for moving from the first circular orbit to the Hohmann orbit. |
Δv2 | −0.082 km/s | Δv required for moving from Hohmann’s orbit to the second circular orbit. |
ΔvTot | 0.163 km/s | Total Δv required for moving from the first to the second circular orbit. |
T | 2691.145 s | Transfer time along half Hohmann. |
Component | Parameter | Value |
---|---|---|
SMA rods | Austenite, Martensite elastic modulus | 25 GPa, 10 GPa |
Austenite, Martensite Poisson ratio | 0.33 | |
Density | 6500 kg/m3 | |
Max recoverable strain | 0.023 | |
Martensite start and finish transformation stresses at 25 °C | 150 MPa, 325 MPa | |
Austenite start and finish transformation stresses at 25 °C | 175 MPa, 45 MPa | |
Stress/strain gradients for forward and rearward phase transformations | 6.8 MPa/°C, 7.6 MPa/°C | |
Tab | Steel elastic modulus | 210 GPa |
Steel Poisson ratio | 0.32 | |
Density | 7700 kg/m3 |
Parameter | Range |
---|---|
Flat plate thickness | 1.8–2.2 mm |
SMA rod diameter | 1.35–1.65 mm |
SMA initial length | 81–99 mm |
Parameter | Value |
---|---|
Flat plate thickness | 1.8 mm |
SMA rod diameter | 1.58 mm |
SMA initial length | 90 mm |
Parameter | Value |
---|---|
Tip displacement | 10.9 mm |
Beam Safety Margin | 0.81 |
SMA Safety Margin | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimino, I.; Vendittozzi, C.; Reis Silva, W.; Ameduri, S.; Concilio, A. A Morphing Deployable Mechanism for Re-Entry Capsule Aeroshell. Appl. Sci. 2023, 13, 2783. https://doi.org/10.3390/app13052783
Dimino I, Vendittozzi C, Reis Silva W, Ameduri S, Concilio A. A Morphing Deployable Mechanism for Re-Entry Capsule Aeroshell. Applied Sciences. 2023; 13(5):2783. https://doi.org/10.3390/app13052783
Chicago/Turabian StyleDimino, Ignazio, Cristian Vendittozzi, William Reis Silva, Salvatore Ameduri, and Antonio Concilio. 2023. "A Morphing Deployable Mechanism for Re-Entry Capsule Aeroshell" Applied Sciences 13, no. 5: 2783. https://doi.org/10.3390/app13052783
APA StyleDimino, I., Vendittozzi, C., Reis Silva, W., Ameduri, S., & Concilio, A. (2023). A Morphing Deployable Mechanism for Re-Entry Capsule Aeroshell. Applied Sciences, 13(5), 2783. https://doi.org/10.3390/app13052783