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Abstract: This study proposes a new algorithm for a higher-order vector finite element method based
on two new types of second-order edge elements to solve the electromagnetic field diffusion problem
in a 3D anisotropic medium. To avoid source singularity in the quasistatic variant of Maxwell’s
function, a secondary field formulation was adopted. The modeling domain was discretized using
two types of quadratic edge hexahedral elements, which were obtained using the edge unification
method to reduce variables on each side of two conventional quadratic edge elements. Compared
with the traditional quadratic element, the number of unknowns that needed to be solved was
significantly reduced. The sparse linear equation of the finite element system was solved using an
open-source direct solver called MUMPS. The numerical results demonstrated that the proposed
algorithm has the same level of accuracy as the conventional vector finite element method and has a
significant advantage over it in terms of computational cost.

Keywords: vector finite element method; marine controlled-source electromagnetic method; quadratic
edge element; hexahedral element; anisotropic

1. Introduction

The marine controlled-source electromagnetic method (MCSEM) uses controllable
artificial field sources to transmit electromagnetic signals in the ocean and measures the
electric or magnetic fields at a location far away from the field source to detect the electrical
distribution of the media below the seabed. The resistance characteristics of oil and gas
reservoirs are the most important properties, which can generate characteristic surface
electromagnetic signals. In other words, MCSEM technology can distinguish underground
oil and gas from other fluids. In theory, CSEM measurement is to record data with mul-
tiple power-receiver offsets, several different frequencies, and a certain power-receiver
arrangement. The marine controlled-source electromagnetic (MCSEM) method has become
a popular geophysical exploration tool for offshore hydrocarbon (HC) exploration [1–3].
During the last decade, marine CSEM has been widely used to reduce ambiguities in data
interpretation and reduce the risk of exploration. With the rapid development of MCSEM
exploration instruments, large-scale and high-quality data have been obtained, resulting
in the need to develop high-precision MCSEM three-dimensional (3D) data interpretation
tools. The 3D inversion algorithm technology of MCSEM is commonly used for data
interpretation. Forward modeling is the basis of inversion, and high-precision forward
modeling technology is key to achieving high-precision inversion.

The integral equation (IE) [4–6], finite difference (FD) [7–12], and finite element (FE)
methods [13–17] are popular numerical techniques for electromagnetic (EM) field modeling.
In the FE method, it is easier to use an unstructured mesh to create an irregular body,
locally refine the interest region, and coarsen the boundary area of the model domain [15].
With this processing, numerical modeling becomes efficient and effective. Therefore, these
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advantages make the FE method more suitable for simulating the complex EM response of
irregular models than FD and IE methods.

Compared with the conventional finite element method, which is based on a node, the
edge-based finite element method has the advantage that divergence-free conditions are
automatically satisfied by appropriately selected basic functions [18]. In recent years, the
vector finite element method based on edge elements has been used to solve the electromag-
netic field problem, and is known as Maxwell’s equations [19,20]. It should be noted that
to date, most formulations for the 3D CSEM problem have implemented the lowest order.
In addition, some studies have used higher-order elements to solve three-dimensional
forward modeling of CSEM, but these were all aimed at tetrahedral elements [14,21]. To
the best of our knowledge, no high-order hexahedron element is currently used for three-
dimensional forward modeling of the controlled-source electromagnetic method. As we
know, high-order edge elements can provide accurate solutions but result in an increase in
unknown variables and lead to larger computing costs. Fortunately, we can improve the
accuracy of the solution at a small computational cost by eliminating some variables when
using higher-order elements [22,23].

In this study, we applied the unification method to the edge to reduce one edge
variable on each side of the conventional serendipity and the Lagrange-type quadratic
hexahedral element, resulting in two new types of second order edge elements. We also
introduced a new vector FE method based on the proposed elements to solve the 3D marine
CSEM modeling problem in an anisotropic medium. For a complex bathymetry simulation,
we used a general hexahedral element to discretize the modeling domain. We validated
our code by using several models in isotropic and anisotropic media.

2. Theory

In geophysical applications, the displacement current is typically ignored when the
frequency of the electromagnetic field is low. Maxwell’s equations can then be simplified
as follows [24]:

∇× E = iωµ0H (1)

∇×H = σE + Js (2)

where the space magnetic permeability is denoted by µ0, angular frequency is denoted by
ω, source current is denoted by Js, and conductivity tensor is denoted by σ:

σ =

σx 0 0
0 σy 0
0 0 σz

 (3)

where σx, σy and σz are principal conductivities. In this study, we discuss only the principal
axis anisotropy case. However, our formulation also works in the case of general anisotropy.

Calculate the curl at the left and right ends of Equation (1), and use Equation (2) to
eliminate the magnetic field:

∇×∇× E− iωµ0σE = iωµ0Js (4)

The total and secondary field formulations are two types of formulations that are
typically used for solving the 3D MCSEM modeling problem. In contrast to the total field
formulation, the secondary field formulation’s source term comprises a primary electric
field. This type of source term is smoother than the current source used in the total-field
formulation. Therefore, in this study, we use a secondary field formulation to address
the marine CSEM modeling problem in an anisotropic medium. In this formulation, the
total field can be decomposed into two parts: the background (primary field, Ep) and the
anomaly fields (secondary field, Es):

E = Es + Ep (5)
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Similarly, the conductivity tensor can be decomposed into background (σb) and anoma-
lous conductivities (∆σ):

σ = σb + ∆σ (6)

With substitution of Equations (5) and (6) into Equation (4), the Helmholtz equation
with the electric component of the secondary field can be written as:

∇×∇× Es − iωµ0σEs = iωµ0∆σEp (7)

The secondary magnetic component can easily be calculated using Equation (8) once
the secondary electric component in Equation (7) can be solved:

Hs =
1

iωµ0
∇× Es (8)

3. Edge-Based Finite Element Analysis

In this study, we used the edge-based FE method with quadratic elements, as discussed
in the previous section. We used the edge shape function Ni to approximate the secondary
electric field within an edge element:

Es =

Nedge

∑
i

NiEs,j (9)

where Nedge denotes the total number of edges in the edge element. For the first-order edge
element, the Nedge = 12; for conventional serendipity and Lagrange-type second-order
hexahedral elements, Nedge = 36 and 54, respectively.

By substituting (9) into (7) and applying the Galerkin method, we can determine that
the weak form of the original differential equation is:

Ri =
∫

Ω
Ni·
[
∇×∇× Es − iωµ0σEs − iωµ0∆σEp

]
dv (10)

where Ω denotes the modeling area.
Applying first vector Green’s theorem to Equation (10), the secondary electric field

is given, and it is continuous across the inner boundary; the surface term in Equation (10)
vanishes. Then, the discretized form of Equation (10) for each element can be expressed
as follows:

RNe
i =

Ne

∑
1

[
KeEe

s − iωµ0Me
1Ee

s − iωµ0Me
2Ee

p

]
(11)

where Ke and Me
1 and Me

2 are the local stiffness matrices defined as follows:

Ke
i,j =

∫
Ωe
(∇×Ne

i )·
(
∇×Ne

j

)
dv (12)

Me
1i,j =

∫
Ωe

Ne
i ·σ·N

e
j dv (13)

Me
2i,j =

∫
Ωe

Ne
i ·∆σ·Ne

j dv (14)

where Ωe denotes the domain of an element.
By assembling a global matrix with local matrices, a linear equation for the elements

is obtained. The equation is typically sparse:

Ae = b, (15)

Here A denotes the global stiffness matrix, and b denotes the RHSs of the equations.
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To solve Equation (14), a proper condition should be added to the equation. For
simplicity, let us consider the homogeneous Dirichlet boundary condition:

e|Γ = 0 (16)

Here, Γ is the boundary area.
IDR(s) iterative solvers with an ILU preconditioner were used to solve the linear

equations in Equation (15).

4. First and Conventional Quadratic Edge Elements

In the edge-based FE method, we can use regular rectangular, general tetrahedral,
general hexahedral, or other complex elements to discretize the modeling domain. To
simplify the problem and simulate bathymetry, hexahedral elements were used to discretize
the modeling domain in this study.

To calculate the stiffness matrix of the hexahedral element, a general hexahedral ele-
ment should be transformed into an origin-centered cubic element. A general hexahedron
in Cartesian coordinates xyz is shown in Figure 1a, and a transformed reference domain
(cubic element) in Cartesian coordinates ξζη is shown in Figure 1b.
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The transformation can be described by the following formulas [25]:

x = ∑8
i=1 Ne

i (ξ, η, ζ)xe
i (17)

y = ∑8
i=1 Ne

i (ξ, η, ζ)ye
i (18)

z = ∑8
i=1 Ne

i (ξ, η, ζ)ze
i (19)

where Ne
i is the scalar node-based shape function, which can be defined as follows:

Ne
i (ξ, η, ζ) =

1
8
(1 + ξξi)(1 + ηηi)(1 + ζζi) (20)

where i is a local node index of the element.
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In the analysis of the vector finite element, two volume integrals (12)–(14) must be
evaluated. For a hexahedron element, it is easy to transform with two integrals in the
ξηζ-coordinate using the Jacobian transform:

Ke
i,j =

∫ 1

−1

∫ 1

−1

∫ 1

−1
(∇×Ne

i (ξ, η, ζ))·
(
∇×Ne

j (ξ, η, ζ)
)
|J(ξ, η, ζ)|dξdηdζ, (21)

Me
1i,j =

∫ 1

−1

∫ 1

−1

∫ 1

−1
Ne

i (ξ, η, ζ)·σ·Ne
j (ξ, η, ζ)|J(ξ, η, ζ)|dξdηdζ, (22)

Me
2i,j =

∫ 1

−1

∫ 1

−1

∫ 1

−1
Ne

i (ξ, η, ζ)·∆σ·Ne
j (ξ, η, ζ)|J(ξ, η, ζ)|dξdηdζ, (23)

J(ξ, η, ζ) and |J(ξ, η, ζ)| denote the Jacobian matrix and determinant of J(ξ, η, ζ), respectively.

J(ξ, η, ζ) =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

 (24)

In the next section, we introduce several conventional first-order and quadratic hexa-
hedral elements and two quadratic edge hexahedral elements of the new type.

4.1. First-Order Edge Hexahedral Element

A conventional first-order hexahedral element is shown in Figure 2, which has eight
nodes and twelve edges. The shape function of the edge on the sides along the ξ-axis
direction are accordingly defined as [25]:

Ni =
1
8
(1 + ηiη)(1 + ζiζ)∆ξ (25)
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Similarly, the shape function of the edge on the sides along the η-axis or ζ-axis direction
is defined as:

Nj =
1
8
(
1 + ξ jξ

)(
1 + ζ jζ

)
∆η (26)

and
Nk =

1
8
(1 + ξkξ)(1 + ζkζ)∆ζ (27)

where ξ, η and ζ denote the local coordinate in the elements.

4.2. A Quadratic Hexahedron Element of a Conventional Serendipity Type

Figure 3 shows a conventional serendipity quadratic hexahedron element with 12 edges
on its surface, 20 nodes in the element, and 24 edges on the sides. The shape function
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for the serendipitous quadratic hexahedron element can be defined as follows: the shape
function of the edge on sides which along ξ-axis direction should be:

Ni =
1
8
(1 + ηiη)(1 + ζiζ)(4ξiξ + ηiη + ζiζ − 1)∆ξ (28)
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The edge shape function of the edges along the ξ-axis direction on the ζ = ±1 surface:

Ni =
1
4

(
1− η2

)
(1 + ζiζ)∆ξ (29)

The edge shape function of the edges along the ξ-axis direction on the η = ±1 surface:

Ni =
1
4

(
1− ζ2

)
(1 + ηiη)∆ξ (30)

The sides along the η-axis direction on the sides:

Nj =
1
8
(
1 + ξ jξ

)(
1 + ζ jζ

)(
4ηjη + ξ jξ + ζ jζ − 1

)
∆η (31)

The edges along the η-axis direction on the ξ = ±1 surface:

Nj =
1
4

(
1− ζ2

)(
1 + ξ jξ

)
∆η (32)

The edges along the η-axis direction on the ζ = ±1 surface:

Nj =
1
4

(
1− ξ2

)(
1 + ζ jζ

)
∆η (33)

The edges along the ζ-axis direction on the η = ±1 surface:

Nk =
1
4

(
1− ξ2

)
(1 + ηkη)∆ζ (34)

4.3. Lagrange Quadratic Hexahedron Element

Figure 4 shows a Lagrange quadratic hexahedron element (LC) with 27 nodes and
24 edges on the sides, 24 edges on the surface, and 8 edges within the element. The shape
function of the Lagrange quadratic hexahedron element is defined as the edges on the sides
along the ξ-axis direction:

Ni =
1
8
(1 + 4ξiξ)ηζ(ηi + η)(ζi + ζ)∆ξ (35)
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The edges along the ξ-axis direction on the ζ = ±1 surface:

Ni =
1
4
(1 + 4ξiξ)ζ

(
1− η2

)
(ζi + ζ)∆ξ (36)

The edges along the ξ-axis direction on the η = ±1 surface:

Ni =
1
4
(1 + 4ξiξ)η

(
1− ζ2

)
(ηi + η)∆ξ (37)

The edges along the ξ-axis direction within the element:

Ni =
1
2
(1 + 4ξiξ)

(
1− η2

)(
1− ζ2

)
∆ξ (38)

The edges along the η-axis direction on the sides:

Nj =
1
8
(
1 + 4ηjη

)
ξζ
(
ξ j + ξ

)(
ζ j + ζ

)
∆η (39)

The edges along the η-axis direction on the ζ = ±1 surface:

Nj =
1
4
(
1 + 4ηjη

)
ζ
(

1− ξ2
)(

ζ j + ζ
)
∆η (40)

The edges along the η-axis direction on the ξ = ±1 surface:

Nj =
1
4
(
1 + 4ηjη

)
ξ
(

1− ζ2
)(

ξ j + ξ
)
∆η (41)

The edges along the η-axis direction within the element:

Nj =
1
2
(
1 + 4ηjη

)(
1− ξ2

)(
1− ζ2

)
∆η (42)

The edges along the ζ-axis direction on the sides:

Nk =
1
8
(1 + 4ζkζ)ξη(ξk + ξ)(ηk + η)∆ζ (43)

The edges along the ζ-axis direction on the ξ = ±1 surface:

Nk =
1
4
(1 + 4ζkζ)ξ

(
1− η2

)
(ξk + ξ)∆ζ (44)
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The edges along the ζ-axis direction on the η = ±1 surface:

Nk =
1
4
(1 + 4ζkζ)η

(
1− ξ2

)
(ηk + η)∆ζ (45)

The edges along the ζ-axis direction within the element:

Nk =
1
2
(1 + 4ζkζ)

(
1− η2

)(
1− ξ2

)
∆ζ (46)

4.4. A New Type of Quadratic Edge Element

There are two edges on the side of a conventional quadratic hexahedron element.
Within an edge element, because the curls of the edge shape functions are linearly depen-
dent, many edge variables are redundant. The computation time and storage requirements
of these elements has increased significantly. Therefore, eliminating these redundant vari-
ables helps improve efficiency at no cost to computational accuracy. In this section, we
adopt a new method to eliminate redundant variables from the conventional quadratic ele-
ment.

Let us first consider a one-sided conventional quadratic edge element, as shown in
Figures 3 and 4. We named the two edges on this side edge1 and edge2. N1 and N2 are the
shape functions of edge1 and edge2, and their corresponding edge variables are A1 and
A2. Because one of these is redundant, we decided to eliminate A2 and consider A1 = A2.
Assume Aside is the vector field interpolation contribution of the two edges:

Aside = N1 A1 + N2 A2
= (N1 + N2)A1

(47)

Make a line integration of A along this side and name it as Aunif. Note that the
following integration is orthogonal:∫

eKL
NILds = δ(IL)(KL) (48)

Here, ds is the differential vector of the line element along edge eKL, and δ(IL)(KL)
represents the Kronecker delta. Thus, the integration Aunif is written as:

Aunif =
∫

edge1

A·ds +
∫

edge2

A·ds = A1 + A2 = 2A1 (49)

Then Equation (47) is rewritten as:

Aside = (N1 + N2)A1 = (N1 + N2)
Aunif

2
= Nunif Aunif (50)

In Equation (50), we obtain a new shape function Nunif = (N1 + N2)/2 for the edge,
as shown in Figure 5b. According to this, Nunif can be written in detail as follows:
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For the serendipity quadratic hexahedron element, the edges on the sides along the
ξ-axis direction:

Nk =
1
2
(1 + 4ζkζ)

(
1− η2

)(
1− ξ2

)
∆ζ (51)

The edges on the sides along the η-axis direction:

Nj =
1
8
(
1 + ξ jξ

)(
1 + ζ jζ

)(
ξ jξ + ζ jζ − 1

)
∆η (52)

The edges on the sides along the ζ-axis direction:

Nk =
1
8
(1 + ξkξ)(1 + ηkη)(ξkξ + ηkη − 1)∆ζ (53)

For the Lagrange quadratic hexahedron element, the edges on the sides along the
ξ-axis direction:

Ni =
1
8

ηζ(ηi + η)(ζi + ζ)∆ξ (54)

The edges on the sides along the η-axis direction:

Nj =
1
8

ξζ
(
ξ j + ξ

)(
ζ j + ζ

)
∆η (55)

The edges on the sides along the ζ-axis direction:

Nk =
1
8

ξη(ξk + ξ)(ηk + η)∆ζ (56)

The shape functions of the edges in the element and the faces remained intact. There-
fore, we obtained two new quadratic edge elements (Figure 6). There is only one edge
on the sides of the two new quadratic edge elements (Figure 6); therefore, the redundant
variable can be effectively eliminated. Table 1 lists various types of elements and the
distribution of their basis functions.
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Figure 6. The location and number of shape functions of two new types quadratic elements: (a) new
serendipity quadratic element (SN); (b) new Lagrange quadratic element (LN). The green arrows and
the red arrows represent the shape functions on the edges and on the faces, respectively.

Table 1. Elements and the distribution of their basic functions.

Element Edges Faces Interior Bubbles Total

1st 12 0 0 12
SC 24 12 0 36
SN 12 12 0 24
LC 24 24 6 54
LN 12 24 6 42
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4.5. Interpolation and Convergence

Interpolation capacity and convergence tests are performed using two new types
of second-order element. Those functions are approximated in the domain defined by
Ω = [−1 1]3. Figure 7 shows the error of interpolation of the tested functions and their
respective convergence rates. The two basis functions (SC, LC) have similar convergence
rates, both close to one.
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Figure 7. Interpolation errors and convergence rates for the two basis functions approximated by
EFEM. H is the length of edge of a element.

5. Model Studies

All MCSEM response simulations were performed on a platform with hardware and
operation, as follows. The CPU was a double Intel processor, each processor having 6 cores
and 12 threads, and RAM memory was 64 GB at a frequency of approximately 1333 MHz.
The operating system was a 64-bit Windows 7 professional version.

5.1. Verification of the New Algorithm

To verify the new algorithm, an isotropic horizontal layered geoelectrical model, as
shown in Figure 8, was considered first. In this model, air and seawater were 1000 m thick.
A 100 m thin-layer reservoir was embedded in the sediment at 1500 m to 1600 m depth.
The EM field response was based on the model presented in Table 2. An x-oriented 1 Hz
frequency current source was placed at the location (0, 0, 950 m). The receiving stations
were located on the seafloor (z = 1000 m). The modeling domain was 3 km × 3 km square
and 4 km in the vertical direction (−1 km ≤ z ≤ 3 km). A non-uniform rectangular grid
was used to discretize Ω. We refined the grid near the current source, receiving stations,
and target layer. The analytical response was calculated using the numerical integration of
the Hankel transform [25–29].

Table 2. The conductivities of an isotropic horizontally layered geoelectric model.

Layer Conductivity (s/m)

Air 10−6

Sea Water 3.30
Sediment 1.00
Reservoir 0.01
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Figure 8. Horizontally layered geoelectric model with rectangular mesh; the red star denotes the
electric dipole source. The blue, green, red and gray areas represent the air layer, sea water, oil and
gas, and bedrock, respectively.

Figures 9 and 10 show the difference in the x-component of the electric field by
applying conventional serendipity (SC)-and Lagrange (LC)-type second-order hexahedral
elements, and the proposed elements (new serendipity (SN) and Lagrange element (LN)).
These new quadratic edge elements were at the same level of accuracy as conventional
quadratic elements, both higher than that of linear edge elements.
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Table 3 lists the CPU times for different elements. Less time was required when using
new quadratic elements than when using conventional quadratic elements. Therefore, one
can say that the computation is reduced at no cost to accuracy.

Table 3. The comparison of CPU time by using different methods.

Element Number of Elements DOF CPU Time (s)

1st order 332,112 867,730 30.5
SC 332,112 3,952,952 51.7
SN 332,112 2,960,408 76.2
LC 332,112 5,920,816 111.4
LN 332,112 4,924,272 221.9

5.2. Off-Shore Hydrocarbon ReservoirMmodel

Consider a geoelectric model with a hydrocarbon reservoir embedded in sediment,
as shown in Figures 11 and 12. In this model, air and seawater were 1000 m thick, similar
to the previous model. The conductivity values of each component are listed in Table 4.
The modeling domain was a 4 km × 4 km × 4 km cube with 1 km ≤ z ≤ 3 km vertically .
The hydrocarbon reservoir was buried 2.0–2.1 km deep and occupied a 1 km × 1 km area
horizontally. An x-oriented 1 Hz frequency current source was placed at the location
(−3000, 0, 950) m. Receiving stations were placed on the seafloor (z = 1000 m). We used
the same type of rectangular grid used in the previous model to discretize the model
domain. We also refined the local grid for the current source, receiving stations, and the
target layer area.
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Table 4. The conductivities of a hydrocarbon reservoir geoelectrical model.

Layer Conductivity in Horizontal (s/m) Conductivity in Vertical (s/m)

Air 10−6 10−6

Sea Water 3.30 3.30
Sediment 1.00 0.80
Reservoir 0.05 0.05

Figures 13 and 14 show the x-component of the secondary electric field calculated with
different edge elements. The results of the four types of second-order elements were in
agreement with each other. Furthermore, a strong anomalous field distortion caused by the
background conductivity anisotropy can also be observed. Table 5 shows the cost-time of
calculation with four types of quadratic edge elements. Similar to the previous model, the
efficiencies of the two types of quadratic edge elements (SN and LN) were higher than those
of conventional serendipity or Lagrange-type quadratic hexahedron elements (SC, LC).
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Table 5. The cost-time of CPU when using different methods.

Element Number of Elements DOF CPU Time (s)

SC 560,000 6,679,300 141.7
SN 560,000 4,999,050 156.2
LC 560,000 9,998,100 311.4
LN 560,000 8,317,850 471.9

5.3. Pyramid Type Bathymetry Model

Further verification of the new algorithm was performed by considering a pyramid-
type bathymetry model (Figure 15) without a reservoir. The top area of the pyramid-type
bathymetry model was 0.5 km× 0.5 km in square, at 990 m depth. The bottom area was
1.0 km × 1.0 km square, at 1000 m in depth. Air and sea water were 1000 m thick. In
the domain of pyramid-type bathymetry, the depth of seawater ranges from 900 m to
1000 m. Figure 16 shows the pyramid-type bathymetry model with a reservoir. The
domain of the reservoir was Ω = {−1000 m ≤ x, y ≤ 1000 m, 1500 m ≤ z ≤ 1600 m}. The
modeling domain was Ω = {−4 km ≤ x, y ≤ 4 km,−1 km ≤ z ≤ 3 km}. In these models,
the conductivities of air, seawater, and sediment were the same as previously, whereas
the reservoir’s conductivity was 0.05 s/m. The electric dipole source was x-oriented at
(−3000, 0, 800) m at 1 Hz frequency, and the receiving station was located at z = 800 m.
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Figures 17–20 show the secondary electric component in the x-direction of the
bathymetry model, which has no reservoir or one reservoir in the isotropic sediment.
Figures 21–24 show a comparison of the x-component of the secondary electric field of the
bathymetry model with and without a reservoir in anisotropic sediment. Bathymetry and
anisotropic background clearly affected the distribution of the marine controlled-source
electromagnetic field (Figures 18–24), which should be considered in the processing of
MCSEM data. Figures 25 and 26 show a comparison of the degrees of freedom (DOF)
and CPU time using different elements, respectively. Clearly, these two new elements
contributed significantly to reducing the CPU time in computing.
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6. Conclusions

We developed a new vector finite element algorithm to solve the 3D marine CSEM
modeling problem in an anisotropic medium. An algorithm based on a secondary field
formulation and two new quadratic edge elements was proposed. Compared with the
vector FEM algorithm based on the conventional quadratic edge element, the proposed
algorithm significantly reduced the computational cost without losing accuracy. The
algorithm in this paper has good generality and is suitable for solving other electromagnetic
induction problems in isotropic and anisotropic media, including airborne and borehole
electromagnetic methods.
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