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Abstract: Periodic noise is a well-known problem in seismic exploration, caused by power lines, pump
jacks, engine operation, or other interferences. It contaminates seismic data and affects subsequent
processing and interpretation. The conventional methods to attenuate periodic noise are notch
filtering and some model-based methods. However, these methods either simultaneously attenuate
noise and seismic events around the same frequencies, or need expensive computation time. In this
work, a new method is proposed to attenuate periodic noise based on sparse representation. We use
a noise dictionary to sparsely represent periodic noise. The noise dictionary is constructed based on
ambient noise. An advantage of our method is that it can automatically suppress monochromatic
periodic noise, multitoned periodic noise and even periodic noise with complex waveforms without
pre-known noise frequencies. In addition, the method does not result in any notches in the spectrum.
Synthetic and field examples demonstrate that our method can effectively subtract periodic noise
from raw seismic data without damaging the useful seismic signal.

Keywords: periodic noise; notch; dictionary; sparse representation

1. Introduction

Noise decreases the signal-to-noise ratio (SNR) of seismic data and affects the quality
of subsequent processes [1,2]. There are six types of noise recorded using geophones [3],
in which periodic noise is a kind of noise caused by power lines, pump jacks [4], engine
operation [5], or other interferences, shown as monochromatic noise or multitoned noise.
Sometimes, periodic noise is so strong that seismic records are severely contaminated.
However, it is not easy to attenuate periodic noise, since it overlaps with seismic waves in
the time domain and the frequency domain.

For periodically monochromatic noise, the conventional method of attenuation is notch
filtering, which requires exact knowledge of the frequency of monochromatic noise [6].
Obviously, the notch filtering method can attenuate seismic waves at the cutoff frequency.
Model-based approaches [7–10] such as sinusoidal approximation are used to remove
power line noise, though this method requires accurate estimation of noise frequency and
needs significant computation time [11]. Henley [12] presented a spectral clipping method
to detect monochromatic noise automatically; however, it is not applicable to weak periodic
noise. Karsli and Dondurur [13] used an improved mean filtering method to attenuate
power line harmonic noise without noise frequency estimation; however, this requires
knowledge of the rough frequency band.

In recent years, following the application of wide-azimuth, broadband, high-density
seismic acquisition technology—including micro-seismic observation [14] and time-lapse
monitoring based on fiber sensing—the size of 3D seismic data is increasing, and the fre-
quency band of reflections is becoming wider. Besides monochromatic noises suppression,
recognition of multitoned noises and their automatic suppression are urgently needed.
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Methods based on sparsity representation, such as S-transform, singular spectrum analysis
and empirical mode decomposition, extend realization of automatic denoising [15–17]. Xu
et al. [4] proposed a method based on morphological diversity of monochromatic noise
and seismic waves, which assumed that the raw data are only composed of two kinds of
signals, the monochromatic noise and seismic waves. It is not applicable to seismic data
with strong white Gaussian noise or multitoned noise.

In this paper, a new method is proposed to attenuate periodic noise. The proposed
method is based on sparse representation using a noise dictionary. The novelty is the
construction of a noise dictionary, which can represent periodic noise sparsely. First, the
noise dictionary is constructed using ambient noise. Next, the noise dictionary is used to
sparsely represent periodic noise. Then, the de-noised data are obtained by subtracting
the periodic noise from the raw seismic data. The method is applied to synthetic and field
seismic data. The effectiveness of the proposed method is that it can subtract periodic
noise from raw seismic data without any notches in the spectrum compared with the notch
filtering method.

2. Method

Periodic noise is recurring in raw seismic data, and its amplitude is constant within the
recording time [6]. Based on these characteristics, we can differentiate and estimate periodic
noise from ambient noise. Because ambient noise, such as periodic noise, white Gaussian
noise and other non-stationary [1,18] random noise, is ubiquitous in seismic records before
the first arrivals, we can extract noise features and construct the noise dictionary from it.
The algorithm is outlined in the flow skeleton (Figure 1).
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2.1. Noise Period Scanning

The waveform of periodic noise is similar in a single trace. Based on the similarity, we
scan the noise period from ambient noise, which exists in the records before the first arrivals.
First, given the scanned period interval [Tmin, Tmax], the noise period T is changed from
the initial scanned period Tmin to the final scanned period Tmax. The data Sj on the single
trace hj(j = 1, 2, . . . , m) are split into many time windows si(i = 1, 2, . . . , n), denoted as

Sj = [s1, s2, . . . , sn] (1)

where the length of time window si is equal to the scanned period T. The size of Sj is N× 1
(N ≥ nT). Next, the correlation coefficients for the adjacent two time windows si and si+1
are calculated:

Corr(si, si+1) =
Cov(si, si+1)√

Var(si)
√

Var(si+1)
(2)

where Cov(si, si+1) is the covariance of the two time windows and Var(s) is the variance
of s. For accuracy, we average the correlation coefficients to obtain a coefficient to evaluate
the similarity of all time windows.

C(T) =
1

n− 1

n−1

∑
i=1

Corr(si, si+1) (3)

Then, the scanned period T is increased and the former procedures are repeated until
all periods in the interval [Tmin, Tmax] are scanned. The period which matches the maximum
value of the correlation coefficients is our estimated period:

T̃ = argmax
T
{C(T)} (4)

where T̃ is the period of periodic noise on the trace hj.

2.2. Waveform Estimation by Stacking

The time window, whose length is T̃, is chosen and is represented as s̃i. The chosen
time window s̃i is approximated as the noise waveform; however, it is affected by white
Gaussian noise. A stacking method is widely used to improve the SNR of the seismic
profile [19], because it weakens white Gaussian noise and emphasizes seismic waves. We
stack the approximate waveforms for an accurate noise waveform:

wj =
n

∑
i=1

s̃i (5)

where wj is the noise waveform on the trace hj and its length T̃ is equal to that of s̃i. The
waveforms of different traces are similar to the near traces h1, h2, . . . , hm when the traces are
interfered with by the same noise source. Therefore, we can stack the similar waveforms
w1, w2, . . . , wm along different traces:

w =
m

∑
j=1

wj (6)

where w is the noise waveform estimated from the traces h1, h2, . . . , hm. We note that
waveforms w1, w2, . . . , wm obtained by Equation (5) are not in phase. Before stacking,
waveforms wj(j 6= 1) need to be cyclically shifted to the same phase as w1 by scanning

the shift length in an interval
[
0, 1, . . . , T̃ − 1

]
. The suitable shift length corresponds to the

maximum correlation coefficient between wj(j 6= 1) and w1.
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2.3. Periodic Noise Representation

Based on the stationarity of periodic noise, the basis function ϕ0 of periodic noise is
obtained by extending the waveform w iteratively to the length of seismic data on a single
trace and then energy-normalized:

ϕ = [w, w, . . . , w] (7)

ϕ0 =
ϕ

‖ϕ‖2
(8)

where ‖•‖2 is the l2 norm. The size of ϕ is N × 1, which is equal to that of Sj. The noise
dictionary is constructed by basis functions of different phases:

D =
[

ϕ0 ϕ1 ϕ2 · · · ϕTj−1

]
(9)

where ϕ1, ϕ2, . . . , ϕT̃−1 are obtained by cyclically shifting 1, 2, . . . , T̃ − 1 time samples. The
size of D is N × T̃. The dictionary provides a sparse representation of periodic noise.
In sparse representation theory [20], the signals can be efficiently explained as linear
combinations of prespecified basis functions, where the linear coefficients are sparse. Based
on sparse representation theory, the mathematical model of our noise representation is

Sj = Dx (10)

where Sj(j = 1, 2, . . . , m) is the actual periodic noise and x is its coefficient represented by
the dictionary D. The size of x is T̃ × 1. An approach to solve Equation (10) is using the
sparsity constraint via an L0 regularization term. Then, the periodic noise of multi-trace
seismic data is obtained by solving the following optimization problem:

S̃j = argmin
Sj

∥∥Sj −Dx
∥∥2

2 s.t.‖x‖0 ≤ 1 (11)

where S̃j(j = 1, 2, . . . , m) is the approximate periodic noise and x is its coefficient repre-
sented by the dictionary D. In the optimization problem, the sparsity of this representation
is 1. Because only one basis function corresponds to a single trace, the coefficient x has
only one non-zero component. This is the reason for the condition on the right in Equation
(11) ‖x‖0 ≤ 1. Equation (11) is solved by the matching pursuit algorithm, which entails
computing the inner products between the residual and the dictionary elements, updating
the coefficient, and updating the residual iteratively [20,21]. Finally, the de-noised data are
obtained by subtracting the periodic noise from the raw seismic data.

3. Synthetic Example

A synthetic dataset consisting of 21 traces is shown in Figure 2 with a 1 ms sampling
rate and a 10 m geophone interval. Multitoned noises of 40 Hz and 50 Hz are incorporated
to the noise-free data. In addition, a small amount of white Gaussian noise is added.
Figure 3 shows the contaminated seismic dataset and its frequency–wavenumber (f-k)
spectrum. The reflections are hardly identifiable owing to the strong periodic noise. The
contaminations in the seismic data appear as two horizontal bands at 40 and 50 Hz in the
f-k domain. The signal on the 11th trace (Figure 4a) shows the influence of multitoned
noise clearly. Its amplitude spectrum (Figure 4b) also shows high spikes at frequencies of
40 Hz and 50 Hz.
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Figure 3. Synthetic contaminated seismic data. (a) Contaminated seismic data in offset-time domain
and (b) its frequency-wavenumber (f-k) spectrum where the red rectangle marks the ambient noise
we used.
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The main noise is attenuated and reflections can be clearly seen in Figure 6a. The elimi-
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Figure 4. Seismic signal on 11th trace. (a) Signal on the 11th trace in time domain and (b) its
amplitude spectrum.

The first 0.4 s of data is dominated by periodic noise marked by a red rectangle in
Figure 3a. In addition, it does not consist of seismic waves. Therefore, it is chosen to
construct the noise dictionary. The waveform estimated from the chosen data is shown in
Figure 5. After sparse representation, the result of noise attenuation is shown in Figure 6.
The main noise is attenuated and reflections can be clearly seen in Figure 6a. The eliminated
noise is periodic noise as shown in Figure 6b. Their spectra show that the multitoned noise
is attenuated and no seismic waves are eliminated. The de-noising result on the 11th trace
and the corresponding amplitude spectra are shown in Figure 7. The de-noised seismic
signal is close to the theoretical signal in both time sequence and amplitude spectrum,
except for weak white Gaussian noise.

Appl. Sci. 2023, 13, 2835 7 of 17 
 

 
(a) 

 
(b) 

Figure 4. Seismic signal on 11th trace. (a) Signal on the 11th trace in time domain and (b) its ampli-
tude spectrum. 

The first 0.4 s of data is dominated by periodic noise marked by a red rectangle in 
Figure 3a. In addition, it does not consist of seismic waves. Therefore, it is chosen to con-
struct the noise dictionary. The waveform estimated from the chosen data is shown in 
Figure 5. After sparse representation, the result of noise attenuation is shown in Figure 6. 
The main noise is attenuated and reflections can be clearly seen in Figure 6a. The elimi-
nated noise is periodic noise as shown in Figure 6b. Their spectra show that the multitoned 
noise is attenuated and no seismic waves are eliminated. The de-noising result on the 11th 
trace and the corresponding amplitude spectra are shown in Figure 7. The de-noised seis-
mic signal is close to the theoretical signal in both time sequence and amplitude spectrum, 
except for weak white Gaussian noise. 

 
Figure 5. Noise waveform estimated by the proposed method. Figure 5. Noise waveform estimated by the proposed method.



Appl. Sci. 2023, 13, 2835 8 of 17Appl. Sci. 2023, 13, 2835 8 of 17 
 

  
(a) (b) 

  
(c) (d) 

Figure 6. De-noising result of the synthetic seismic data by the proposed method. (a) De-noised data 
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Figure 6. De-noising result of the synthetic seismic data by the proposed method. (a) De-noised data
and (b) eliminated noise by the proposed method; and (c,d) their corresponding f-k spectra.
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nal are consistent with the theoretical signal. Because the amplitude spectrum is complex, 
it is hard to estimate its amplitudes, frequencies and phases, which are important for 
model-based approaches [8,9]. Therefore, the proposed method can effectively attenuate 
the multitoned noise and even periodic noise with a complex waveform but not influence 
the seismic events. 

Figure 7. De-noising result on the 11th trace. (a) De-noised signal and (b) eliminated noise on the
11th trace; and (c,d) their amplitude spectra. The red line corresponds to the de-noised signal and the
black line corresponds to the theoretical signal in (a,c).

A synthetic signal is shown in Figure 8a, where the main noise is stationary and
the waveform is recurring except for weak white Gaussian noise. The eliminated noise
and de-noised signal are shown in Figure 8b,c, respectively. Their amplitude spectra are
shown in Figure 9. Both the time sequence and amplitude spectrum of the de-noised signal
are consistent with the theoretical signal. Because the amplitude spectrum is complex,
it is hard to estimate its amplitudes, frequencies and phases, which are important for
model-based approaches [8,9]. Therefore, the proposed method can effectively attenuate
the multitoned noise and even periodic noise with a complex waveform but not influence
the seismic events.
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4. Field Example

The proposed method was tested using field data. The field data are a land seismic
shot recorded with a 2 ms sample rate and a 40 m geophone interval, as shown in Figure 10a.
The data contain periodic noise which may be caused by power lines, engine operation
and other interferences. The noise is so strong that it affects the quality of the subsequent
processes, especially for the first 12 traces. As shown in Figure 10c, we cannot see any
waves after the time 1.5 s. There are three horizontal bands around the frequencies of 7
Hz, 14 Hz and 50 Hz in the f-k domain (Figure 10b). The periodic noise at the frequency of
approximately 14 Hz, highlighted in Figure 10b, is the weakest, and the periodic noise at
the frequency of 50 Hz is the strongest.

We use the ambient noise marked by a red rectangle in Figure 10a to construct the noise
dictionary. The estimated waveform is shown in Figure 11. The result of noise attenuation
by the proposed method is shown in Figure 12. The periodic noise is attenuated to a large
degree. The horizontal bands of the f-k spectrum are almost eliminated, except for weak
residual noise of about 7 Hz frequency. In addition, there are no spectral notches in the f-k
spectrum (Figure 12b).

The notch filtering method is applied to the field data for a comparison. The narrow
stop band of the notch filter is the frequency range [ f0 − ∆ f , f0 + ∆ f ], where f0 is the noise
frequency and 2× ∆ f is the noise bandwidth. The values of f0 for the three noise bands are
set to 7 Hz, 14 Hz and 50 Hz, respectively. The noise bandwidth is estimated to be 2 Hz and
∆ f = 1Hz is set. The f-k spectra of the filtering result are shown in Figure 13. The horizontal
bands around the frequencies of 7 Hz, 14 Hz and 50 Hz are separated from the seismic
data. However, the seismic waves are also eliminated at those frequencies. This causes
spectral notches of seismic waves (Figure 13a). To further show the effectiveness of our
method, the spectra of the single-trace de-noised signals by the two methods are compared
in Figure 14. For the notch filtering method, the spectral notch causes amplitude loss of
seismic events around the frequencies of 7 Hz, 14 Hz and 50 Hz. However, amplitude loss
does not occur using our proposed method. The eliminated noise (Figure 15a) is stationary.
This is consistent with the characteristics of periodic noise caused by the power lines or
engine operation. For comparison, the noise eliminated by the notch filtering method is not
stationary because it contains seismic signals.
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5. Discussions

The proposed de-noising method is based on sparse representation of periodic noise.
The key to our method is the construction of the noise dictionary. Because ambient noise
contains no seismic waves but dominant periodic noise and other random noise, periodic
noise can be estimated without the influence of seismic reflections. Therefore, our method
is useful regardless of whether the seismic waves are strong or weak. A scanning method
is used to estimate the noise period. The accuracy of the noise period largely influences
our de-noising result. To obtain an accurate noise waveform, the waveforms in the time
domain and the space domain are stacked shown as the Equations (5) and (6), respectively.
It must be emphasized that our de-noising method is only applicable to stationary noise
with a constant period, waveform and amplitude. It can be used to attenuate power line
harmonic noise, pump jack noise and engine operation noise in land or oceanic seismic
exploration.

Based on the proposed method, ambient noise detection is urged for noise estimation.
However, ambient noise has not specifically been detected in oil exploration. Therefore,
we suggest that ambient noise should be acquired for one second before source excitation.
Long-term ambient noise will be helpful for building a perfect noise dictionary.

Wind- or water-induced noise is not strictly stationary, and the stationarity becomes
weak with increasing recording time [22,23]. Our method cannot be used to attenuate this
kind of noise. To broaden the method for non-stationary noise, higher-order statistics [24]
need to be considered further. In addition, methods of noise feature extraction from ambient
noise based on machine learning [25] will draw increased attention in the future.

6. Conclusions

A new method is proposed to attenuate periodic noise based on sparse representation.
The novelty is the construction of a noise dictionary based on ambient noise. Our method
can attenuate monochromatic or multitoned periodic noise automatically without pre-
known noise frequencies. The noise is assumed to be stationary noise with a constant
period, waveform and amplitude. Synthetic and field tests show the effectiveness of the
proposed method. Compared with the conventional notch filtering method, the proposed
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method can obtain de-noised data with no distortion in the time and frequency domains.
Therefore, our method can attenuate periodic noise without damaging the seismic events.
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