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Abstract: Existing generative adversarial networks (GAN) have potential in data augmentation and
in the intelligent fault diagnosis of bearings. However, most relevant studies only focus on the fault
diagnosis of rotating machines with sufficient fault-type samples, and some rare fault-type samples
may be missing in training in practical engineering. To address those deficiencies, this paper presents
an intelligent fault diagnosis method based on the dynamic simulation model and Wasserstein
generative adversarial network with gradient normalization (WGAN-GN). The dynamic simulation
model of bearing faults is constructed to obtaining simulation signals to replace and complement the
missing fault samples, which are combined with the measured signals as training data and then input
into the proposed WGAN-GN model for expanding and enhancing the data. To test the effectiveness
of the simulated samples, a fault classification model constructed by stacked autoencoders (SAE) is
used to classify the enhanced dataset. According to the results, the proposed model performs well
when used to diagnose faults under missing samples and is preferable to other methods.

Keywords: fault diagnosis; missing samples; dynamic simulation; generative adversarial networks;
gradient normalization

1. Introduction

In modern industrial production, one of the most important parts of rotating machinery
is bearing. Its health status is critical to maintaining the stable operation and safe use
of the rotating machinery [1], therefore it is important to develop advance condition
monitoring and accurate fault identification of bearings [2]. Due to advances in computer
technology, data-driven algorithms based on an increasing number of computer vision
and artificial intelligence fields, such as transfer learning [3], support matrix machine [4],
graph convolution [5] and convolutional autoencoder [6] have greatly enriched the fault
diagnosis methods of rotating machinery. Deep learning-based approaches have strong
feature learning capability and can imitate the learning process of the brain by creating
deep networks to depict the rich internal information of the data and ultimately achieve
accurate fault diagnosis [7–10].

Goodfellow et al. [11] firstly proposed the generative adversarial network (GAN) that
can generate new samples in an unsupervised learning way to extract the distribution
properties of data. GAN is also widely used in the field of fault diagnosis. Han et al. [12]
developed a novel framework for imbalanced fault classification based on Wasserstein gen-
erative adversarial networks with gradient penalties (WGAN-GP). Li et al. [13] developed a
new ACGAN framework by adding an independent classifier. They introduced the Wasser-
stein distance and spectral normalization (SN) in the loss functions of GAN. Shao et al. [14]
introduced the attention module to guide WGAN-GP to enhance the learning ability. It
can be seen that GAN-like models have significant advantages in fault identification and
diagnosis due to their characteristics.
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It is observed that the above studies are aimed at generating more trustworthy sample
data and enhancing training datasets by optimizing and improving the structure of the
GAN when all fault-type samples are available for training. However, several types of fault
signal data may occasionally be missing, leading to a failure to identify rare fault categories
in practical engineering applications. Hence it is essential to build a model to replace and
complement the missing fault samples.

To resolve the above deficiencies, a new model-based GAN and dynamic simulation
model of fault bearing is proposed in this paper for rotating machinery under missing fault
samples. Firstly, to obtain vibration responses of bearings in various states and get the
missing fault samples, a rotor-bearing system simulation model is developed. Secondly,
gradient normalization (GN) [15,16] is adopted to enhance the feature learning ability of the
Wasserstein generative adversarial network (WGAN). The proposed WGAN-GN is used to
generate samples for the fault types, and then the generated samples are combined with
the original samples into a complete dataset. Next, a stacked autoencoders (SAE) model is
employed to extract advanced features from the complete dataset and achieve accurate fault
classification. Finally, the viability and robustness of the proposed method are confirmed
by several experimental instances. The following is a summary of the main contributions:

(1) A rotor-bearing system simulation model is built to obtain simulation signal of the
missing fault type samples.

(2) A novel WGAN-GN method is proposed to generate replaced data under missing
sample conditions.

(3) The generated simulated data is joined with the raw data to create a complete dataset
for SAE network training to achieve the extraction of features and fault classification.

This paper is organized as follows. The theoretical foundation is explained in Section 2.
The framework and steps involved in the proposed method are described in Section 3 in
detail. To demonstrate the efficacy of the method, two case studies are applied in Section 4.
Finally, the findings are condensed in Section 5.

2. Theoretical Background
2.1. Construction and Acquisition of Simulation Signal

Some types of fault samples may be missing during the fault diagnosis of mechanical
equipment. To simulate this type of situation and obtain the lacked fault samples, the
concentrate quality standard was established with the rolling bearing fault of the rotor-
bearing-casing coupling system dynamics model. This was followed by the establishment
of the dynamic model of the rolling bearing fault and the construction of the lack of fault
samples. As shown in Figure 1, a simulation model made up of a rotor, bearing, bearing
seat, shaft, and other parts are depicted. The bearing inner ring remains connected to the
bearing housing while the shaft moves. Suppose the stiffness and damping of the primary
components are not changed numbers and the left bearing occurs faults, six differential
equations of motion pertaining to the left support bearing can be listed [17]:
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where, mbL is the mass of bearing support; k f LH and k f LV are the transverse and longitudi-
nal support stiffness between the shell and the bearing support respectively. c f LH and c f LV
are the transverse and longitudinal support damping between the shell and the bearing
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support respectively. ktLH and ktLV are the transverse and longitudinal support stiffness
between the bearing outer ring and the bearing support respectively. ctLH and ctLV are the
transverse and longitudinal extrusion film damping between the bearing outer ring and
the bearing support. mrL is the equivalent mass of rotor. k and crb are the shaft stiffness
and damping of the rotor at the bearing. FxbL and FybL are the supporting reaction forces of
the bearing, and mwL is the mass of the outer ring of the bearing.
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A schematic illustration of a bearing with a localized defect area is shown in Figure 2
on the ball, inner ring, and outer ring components. The cyclically varying contact forces
FxbL and FvbL are the sum of the contact forces of the balls at different angles:

FxbL =
Z

∑
j=1

f jcosθj, FybL =
Z

∑
j=1

f jsinθj (7)

where θj is the angular position of the jth ball, and f j is the contact force between the jth
ball and the raceway calculated according to the following formula:

f j = Cb
[
δj
]n

= Cb
(
xcosθj + ysinθj − δ0 − δD

)n × H
(
xcosθj + ysinθj − δ0 − δD

)
(8)

where Cb is the Hertzian contact stiffness, H(·) is the Heaviside function, δj is the clearance
between the ball and the raceway, δ0 is the initial clearance, δD is the clearance caused
by the local defect area, and n is the load-deformation coefficient, which is 2/3 for the
ball bearing.

The simulation model adopts a SKF6203 bearing and its main parameters are listed in
Table 1. The damage diameter LD is set to 0.3556 mm, the damage depth a is set to 2.794 mm,
the rotational speed is 1797r/min, and the sampling frequency is set to 10 kHz. Figure 3
shows a time-domain waveform diagram of the vibration acceleration signal collected by
the left support bearing under four different health states.
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Table 1. Main parameters of 6203.

Description of Parameters Values of Parameters

The radius of outer race/mm 17.0
The radius of inner race/mm 39.9

Pitch diameter/mm 28.3
Diameter of rolling element/mm 6.8

Number of balls 8
Contact angle/◦ 0◦
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2.2. Wasserstein Generative Adversarial Networks with Gradient Normalization (WGAN-GN)

The Generator (G) and Discriminator (D) are the two components that make up the
GAN structure, as shown in Figure 4. A random noise vector is utilized as the input of the
G, which attempts to create realistic data to deceive D. The D then learns to distinguish
between actual data and G-produced synthetic data. Typically, G and D are constantly
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optimized to enhance their ability to generate and discriminate data, and they are often
parameterized as deep neural networks and optimize a mini-max objective. The training
objective function of the GAN is displayed as follows:

min
G

max
D

Ex∼pr(x)[log(D(x))] +E∼
x∼pg(x)

[
log
(

1− D
(∼

x
))]

(9)

where pr(x) is the distribution of raw data and pg(x) is the distribution defined by pg = G∗(pz),
* is the push-forward measure and pz is the distribution of stochastic noise vector.
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If D is always optimal in this scenario, the G will inevitably converge to the true
distribution pr(x). However, gradient vanishing and gradient explosion are the two funda-
mental problems that training GAN always faces. Optimizing Equation (1) is comparable
to minimizing the Jensen-Shannon divergence (JS-divergence) between pg(x) and pr(x) for
these unstable training situations. If pg(x) and pr(x) do not overlap, the gradient would
vanish since the JS-divergence would be a constant number. Second, D frequently succumbs
to overfitting with finite real samples, which subsequently results in gradient explosion
near real samples. So the JS-divergence may be not a suitable cost function.

A series of recent studies have focused on solving the problem of unstable training.
The steep gradient space of the discriminator is one of the causes of unstable GAN training,
which can cause a pattern crash during the training of the generator. Although simple
methods such as L2 normalization and weight clipping can effectively make the GAN
training process more stable, the discriminator model capacity is constrained by these extra
restrictions. So instead of learning to produce true data, the generator is more likely to trick
the discriminator. The regularization or normalizing of the discriminator is another well-
liked method for formalizing the discriminator as a Lipschitz continuous function. This
way allows for the smoothing of the discriminator gradient space without compromising
discriminator speed.

The purpose of WGAN is to minimizing the Wasserstein distance between pg(x) and
pr(x), i.e.,

min
G

max
D,LD≤1

Ex∼pr(x)[D(x)]−E∼
x∼pg(x)

[
D
(∼

x
)]

(10)

where LD is the Lipschitz constant of discriminator D. LD is defined as follows:

LDin f := L ∈ R :|D(x)− D(y) ≤ L ‖ x− y ‖, ∀x, y ∈ Rn (11)
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where ‖ · ‖ can be the norm of vector.
By maximizing Equation (2) under the Lipschitz constraint in Equation (3), the dis-

criminator in WGAN seeks to approach the Wasserstein distance. The generator performs
better at simulating the real distribution if the discriminator can operate in a bigger func-
tion space because it can estimate the Wasserstein distance with greater accuracy. The
Lipschitz constraint, meanwhile, reduces the steepness of the value surface and lessens
the overfitting of the discriminator. In comparison to KL-divergence and JS-divergence,
Wasserstein distance provides superior smoothing properties. The vanishing gradient issue
can be theoretically resolved.

Three characteristics can be used to define the imposition of a Lipschitz constraint on
the discriminator.

(1) Constraint on a model or module. Model-level restriction, in our opinion, is preferable
to module-level constraint because it will limit the model capacity of layers, drastically
lowering the potential of neural networks.

(2) Constraint that are sample-based or not. The non-sampling-based method performs
better than the sampling-based method since the latter may not be applicable to data
that has not already been sampled.

(3) Firm or flexible restriction. Since the continuous Lipschitz constant ensures gradient
stability against unobserved data, the hard constraint outperforms the soft constraint.

How to achieve the Lipschitz constraint is a problem that needs to be focused on in
neural networks, because it is difficult to maintain a great balance between the Lipschitz
constraint and network capacity. Many methods have been proposed to achieve this con-
straint, but most of them cannot meet the above three conditions. It has been demonstrated
that the Lipschitz constant of layer level Lipschitz constraints (such as SN-GAN) may
drastically drop when the number of layers increase. The ideas of parameter clipping and
spectral normalization (SN) are similar. They both guarantee that the Lipschitz constant of
each layer is bounded by constraining parameters, so the total L constant is also bounded.
The gradient penalty ensures that the "soft constraint" is imposed through the penalty
term. Therefore, WGAN-GN is proposed as shown in Figure 5. To be specific, ReLU or
LeakyReLU is usually adopted as the activation function. It is a "piecewise linear function"
under this activation function, which means that it is a linear function in the local contin-
uous region, except for the boundary. Correspondingly, it is also a constant vector. The loss
function is as follows:

D̂ = D(x)/(‖ ∇D(x) ‖ +|D(x)|) (12)

L(D) = E∼
x∼pr(x)

[
D̂(D(x))

]
−E∼

x∼pg(x)
[D̂(D(

∼
x))] (13)

L(G) = −Ex∼pz(x)
[
D̂(G(x))

]
(14)
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Among them, D̂ is the custom function, D(x) is the independent variable (G(x) or
D(x)), ‖ ∇D(x) ‖ is the any norm of a vector.

The employed gradient normalization (GN) module has few hyperparameters and is
easy to apply to different rotating machines without substantial modifications.

3. System Framework and Model Training
3.1. System Framework Design

The generator in WGAN-GN is made up of four completely connected networks
with 10, 50, 100, and 200 neurons per layer, respectively. The discriminator has four fully
connected layers as well with 100, 50, 10, and 1 neurons per layer. ReLU is chosen as the
activation function, with the dimension of random noise set to 10. The SAE module is
used to classify faults, and the structure contains three layers with 200, 100, and 4 neurons.
The SAE-connected classifier is then implemented using Softmax regression. The SAE
weights are updated by the BP algorithm, which also allows parameters to be adjusted. The
adaptive moment estimation (ADAM) optimization algorithm is used for model updating.

3.2. Model Training Procedure WGAN-GN-SAE

(1) The system dynamics model of rolling bearing is established to perform the bearing
fault modeling, and the missing fault simulation vibration signal of rolling bearing
is obtained.

(2) The signal is pre-processed by fast Fourier transform (FFT) and Hilbert transform to
acquire the envelope signal, then the training and testing data are equally separated.

(3) The training data is input into WGAN-GN for data enhancement.
(4) The simulated data generated by WGAN-GN are coupled with the original data to

enhance the dataset and form a complete fault dataset.
(5) The complete fault dataset is used as training data of the SAE network, and the testing

data are used for model testing.

4. Experimental Verification
4.1. Case 1: Bearing Dataset with One Missing Failure Sample

The rolling bearing dataset used in this section is from Case Western Reserve University
(CWRU). As shown in Figure 6, the test bench includes a 2.72 kW motor, a torque sensor, a
power test meter, and an electronic controller (as shown in the Figure 7) [18]. The bearings
to be tested support the motor shaft, the drive side bearing is SKF 6205 and the fan side
bearing is SKF6203. The 6203 deep groove ball bearing is chosen for the roller bearing study
in this work, and the dataset includes normal condition (NC), outer ring fault (OF), inner
ring fault (IF), and roller element fault (RF). The fault is handled by electrical discharge
machining (EDM) single point damage.

4.1.1. Data Pre-Processing

In this section of experiments, the signals of bearing outer ring fault (6:00 position)
obtained from the dynamic simulation model, inner ring fault and rolling element fault
from real measurement are investigated. Firstly, in order to verify that a good diagnosis
can be achieved in the proposed method in this paper, the dataset in Tables 2 and 3 is used
as the experimental data. 200 samples are randomly selected from each health state, then
the envelope signal of the sample is obtained, each sample contains 200 envelope signal
data points. Half of the samples are used as training data and the other half as test data. In
dataset B, the training data are the signal obtained from the simulation model and the test
data are the signal obtained from the real measurement in the outer ring fault type.

4.1.2. Generate Visual Evaluation of the Sample

The Envelope signals of the 4 fault states were generated by applying the proposed
WGAN-GN model. Figure 8 gives the comparison of the generated and real samples. It is
clear that the feature trends are very similar. There are some differences in the amplitude,



Appl. Sci. 2023, 13, 2857 8 of 15

indicating that the WGAN-GN has learned the distribution of the real data, and the
generated samples are sampled from the real distribution instead of simply copying the
original samples, which can enhance the robustness and generality of the proposed method.
To put it another way, WGAN-GN has taken the major features from the original signal
and removed some noisy components that are bad for pattern recognition.
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Table 2. Situation of Dataset A.

Category Fault Location Signal Source
Dataset B

Sample Size
(Train/Test)

NC Normal Measurement 100/100
RF Ball Measurement 100/100
IF Inner Race Measurement 100/100
OF Outer Race Measurement 100/100
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Table 3. Situation of Dataset B.

Category Fault Location Signal Source
Dataset B

Sample Size
(Train/Test)

NC Normal Measurement 100/100
RF Ball Measurement 100/100
IF Inner Race Measurement 100/100
OF Outer Race Simulation 100/100
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It becomes vital to look into the feature learning process in order to further demon-
strate the feature extraction capacity of WGAN-GN. The extraction process for all the NC
tomographic samples is displayed in the 3D space as shown in Figure 9. It is seen that the
variation amplitude becomes larger and the characteristics become more and more obvious
as the network layer deepens.
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4.1.3. Comparison of Neural Network Model Training Results

To accurately demonstrate how superior the proposed approach is. Each method
received twenty experiments, and the classification accuracy results of Datasets A and B
are displayed in Figure 10. For Dataset A, the average classification accuracy and standard
deviation of WGAN-GN are 97.45% and 0.27%, respectively, and the two corresponding
values are 91.27% ± 1.01% for WGAN and 81.19% ± 1.49% for GAN. The average ac-
curacy of GAN is 81.78% ± 1.16% for Dataset B, while the average accuracy of WGAN
is 90.88% ± 1.05%. In contrast, the average accuracy of WGAN-GN is 96.95% ± 0.49%.
The comparison shows that the proposed WGAN-GN is significantly better than other
methods. The strategy proposed in this study can improve the accuracy of diagnosis to
a certain extent when the real measured signals are used as the data set. However, when
the simulation signal obtained from the kinetic model is used as one of the fault signals,
the experimental accuracy is also not significantly decreased, indicating that the obtained
simulation signal can replace the real measured signal to a certain extent for fault diagnosis.

T-SNE [19] is used for the visual operation of dimension reduction, and the results
of Dataset A are shown in Figure 11. As be observed, GAN is only able to appropriately
identify RF and OF samples, and there are different degrees of confusion among other fault
samples. As Figure 10b, WGAN has some classification ambiguity, but the aggregation
among samples is relatively good. In contrast, the proposed WGAN-GN fully isolates all
bearing failure samples, and the samples of the same type are strongly aggregated, which
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illustrates the efficiency of the proposed method. In addition, when using simulation signal
as the training data as in Figure 12, WGAN-GN still performs far better than the other two
approaches. As a result, it is concluded that, the constructed model has the best ability
for fault classification compared to the other methods. Meanwhile it also proves that the
obtained simulation signal can replace the real measured signal to a certain extent for
fault diagnosis.
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4.2. Case 2: Bearing Dataset with Two Missing Failure Samples

The dataset used in this section is still from Case Western Reserve University, the
difference is that in order to further verify the efficiency of the proposed method, increasing
the number of emulated signals. 200 samples are also randomly selected from each health
state, then the envelope signal of the sample is obtained. Half of the samples are used as
training data and the other half as test data. The details of the Dataset C are listed in Table 4.
This section selects the inner ring fault and outer ring fault as the missing fault samples,
and the missing fault samples with simulated signals are replaced for the experiments.

Table 4. Situation of Dataset C.

Category Fault Location Signal Source
Dataset C

Sample Size
(Train/Test)

NC Normal Measurement 100/100
RF Ball Measurement 100/100
IF Inner Race Simulation 100/100
OF Outer Race Simulation 100/100
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Diagnosis Results

Figure 13 gives the comparison result of Dataset C. It is obvious that the trends
of the generated samples and the raw samples are very similar, and the features in the
generated samples have basically the same distribution as the features in the raw samples.
By contrasting the generated samples with the original samples of 3D plots, RF samples
are chosen to investigate the feature extraction capability of WGAN-GN. According to
Figure 14, the simulated signals generated by WGAN-GN has nearly identical properties
to the original samples.
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Figure 15 displays the findings of the diagnosis accuracy test. For Dataset C, the
average accuracies of the three methods are 81.37%, 90.00%, and 96.48%, respectively, with
1.61%, 1.01%, and 0.85% as their standard deviations. The proposed approach continues
to offer maximum degree of diagnostic accuracy when compared to other methods. Fur-
thermore, Figure 16 displays the outcomes of the dimension reduction. It is concluded
that the proposed model greatly outperforms them in terms of clustering and classification
compared to the other two methods. It also proves that the obtained simulation signal can
replace the real measured signal to a certain extent for fault diagnosis at the same time.
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5. Conclusions

In this study, a new method based on dynamic simulation model and WGAN-GN is
proposed as a solution for fault diagnosis of missing experimental fault samples of bearing.
In the proposed method, a dynamic simulation model is first built to obtain simulated data
of missing fault type, which can be used to form relatively complete fault samples with
other signals. Then WGAN-GN is employed to generate expanded samples from a smaller
number of relatively complete fault samples. Next, these simulated samples are combined
with the original samples to form an enhanced fault dataset which can be called as complete
fault dataset. Finally, SAE is used to classify the complete fault samples. Three datasets
of rotating machines were used to confirm the validity of the method. The following is a
summary of the main conclusions:

1. It is demonstrated that the developed dynamic simulation model can generate high-
quality replacement samples with missing fault samples to some extent.

2. The effective feature extraction and data generation capability of the proposed model is
illustrated by the features learned continuously from the hidden layer of WGAN-GN.

3. The experimental results show that using the proposed method can help to improve
the accuracy of diagnosis when the types of fault sample data are insufficient.

4. Both the applicability to other mechanisms and the problem regarding the in-fluence
of noise are part of our future research objectives.
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