
Citation: Constantin, V.; Besnea, D.;

Gramescu, B.; Moraru, E. Aspects

Related to the Design and

Manufacturing of an Original and

Innovative Marker Support System

for Use in Clinical Optometry. Appl.

Sci. 2023, 13, 2859. https://

doi.org/10.3390/app13052859

Academic Editor: Florin Popişter
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Abstract: The compliant mechanism studied in this paper is used in the structure of an assembly
necessary for the temporary mounting of visual markers on glasses frames. Proper correction of
vision defects in patients is a field of study in healthcare that has grown in complexity, along with
all aspects of technology, over the past decades. As such, along with better lenses and frames,
including custom solutions, the devices used to determine the patient’s specific parameters need
to be more complex and precise. However, this is only part of the problem: while many devices
exist that take measurements such as interpupillary distance with great precision, these come at a
very high cost and do not take into account aspects related to real-life usage of the lenses, such as
the patient’s position, angle, etc. Given the considerations above, this paper approaches the design,
simulation, realization and testing of a working model of a frame used to support markers used in
the optometry process. The design proposed in this paper assumes that the system used can be used
while the glasses are mounted on the patient’s face, without influencing in any way their position
in front of the patient’s eyes. Furthermore, the system must allow assembly and disassembly with
minimal effort, to allow the patient to perform some movements without changing the position of
the frame, as well as the easy access to the markers mounted on the spectacle frame. The main scope
of the paper is to design and choose the correct constructive solution of a compliant mechanism
for this important clinical optometric application in terms of geometric parameters, material and
technology used to obtain appropriate performances. The authors highlight how the parameters
and manufacturing technology for the device were chosen, and a finite element analysis is used to
simulate the mechanical behaviour of the mechanism and to choose the optimal variant in terms of
the desired displacement between three proposed materials for the given application. After justifying
the choice of the constructive solution, several physical models of optometric support markers were
realised using Fused Deposition Modeling (FDM), and Polyethylene terephthalate glycol (PETG)
or polylactic acid as materials. Furthermore, an electro-pneumatic experimental test stand was
developed to simulate and test the functionality of the device and to validate the proposed model.

Keywords: compliant mechanism; optometry; 3D printing; finite element analysis

1. Introduction

The use of multiple types of measuring systems is widespread in the field of optometry,
and specialists rely on such devices along with specific methods to determine a patient’s
specific needs in regard to customizing lenses. In this regard, certain aspects of measur-
ing these parameters are perceived as being mandatory, such as determining the user’s
perceived effect of the lenses on vision in a real-world environment: reading a computer
screen, a book, looking in the distance. One such aspect is that the glasses and lenses should
be mounted on the patient’s face, and their position should not be in any way modified by
the measuring apparatus. This is especially true when it comes to personalised progressive
lenses. As such, certain requirements have been identified, as explained below:
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- High elasticity—the mount should allow for usage with a wide array of models
of glasses.

- Maximum weight 5 g—total weight of the system will be two such mechanisms, for a
total of 10 g. It was considered that the mounting bracket should not be heavier than
one of the lightest pairs of glasses. This is mostly an empirical parameter, based on
previous iterations of such systems.

- Good resistance to repeated usage—the system should not be prone to easily breaking
while being used for multiple dimensions of seeing glasses.

- Easy to manufacture, but especially easy to modify between product iterations due to
the shifting fashions in eyewear; the mounting bracket should easily follow suit.

- Low cost and good aesthetics
- Made in one part—measuring accuracy will greatly depend on how well the system

is assembled. Related to this last point, a special model of a compliant mechanism
that achieves the transmission of force and motion through its own elastic body
transformation was proposed. Through several iterations, a shape was obtained,
mostly being designed around the normal shape of a user’s glasses frames.

Figure 1 shows two views of the proposed mechanism (side and isometric view),
which is equipped with two handles.
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A force of approximately 35 N (each) will be exerted on them, which is necessary
to open the mechanism with a total stroke of 30 mm. The forces necessary to open the
mechanism are determined following the study in the specialized literature [1], and of some
simple tests performed in the laboratory—allowing an average user to open the device
with minimal effort.

Similar systems have been developed for use in the field of optometry. Such systems,
currently employed throughout optometry clinics allow for easy measurement, with rela-
tively low errors of a small number of parameters, such as interpupillary distance, total,
left and right, as well as a basic calculation of the boxing parameters needed when cutting
and fitting the lens to a specific frame. One such example is the VisionFit Dispensing
System [2], which allows for measurement of interpupillary distances both for near and
far, boxing measurements, as well as some fitting parameters of the frames. This system
does not, however, allow for complex measurements to be taken (curvature of frames and
pantoscopic angle). Another such system is the Optikam [3], which allows measurement of
a much larger number of parameters, but does feature a very large and complex system
for attaching the markers to the patient’s face, and thus runs the risk of interfering with
the natural position the frame would otherwise have on the patient’s face. Another such
system is the DigiFit, which allows for measurements of a large number of parameters,
but does, however, generally require the lens to be taken out of the frame. Since some
corrections, such as squinting, are made by the lens, a complex system must be employed
to allow for corrections to the lens’s optic centre [4].

While the systems presented thus far allow for some parameters to be measured, there
are systems under use that allow for all parameters to be obtained. These, however, are



Appl. Sci. 2023, 13, 2859 3 of 14

very expensive and usually require special training and occupy a large part of the clinic for
use. One such system is the highly capable ZEISS i.Terminal 2 [5].

An important aspect in choosing the technology used is also the ease with which the
mechanism can be manufactured, without the need for specialized training and in proximity
to the field of operation (optometry). It is also important to consider the biocompatibility
of the materials used, as this mechanism will be used in the immediate vicinity of patients,
it is desirable that it does not affect their health in any way. One last important aspect is the
possibility of recycling these devices. Choosing a metal or composite material will make it
difficult to recycle the material to produce other devices [6].

Starting from the conditions listed above, several more variants of materials and
manufacturing technologies have been considered. These include:

- Plastic injection—the first of the technologies considered has the disadvantage of the
very high initial cost (mould cost), as well as the difficulties encountered in case of
modification to the initial model [7–10]

This technological process can only be considered if it is desired to produce a very
large number of components, without changing their shape [7–10].

- Selective laser sintering—this technology allows rapid modification of the model used,
is compatible with elastic materials, but the prohibitive costs and special conditions of
use make it unsuitable for the requested model [11–14].

- Stereolithography—this technology has several advantages, such as the relatively low
price of the equipment and ease of use, while disadvantages include the high cost of
the polymer and the fact that it requires ventilation installation [15–18].

- Thermoplastic extrusion—FDM technology allows the realization of prototypes in a
very short time, from a very wide range of materials that have a low price and are
affordable [19–22].

The wide spread of this technology has allowed for the very rapid development of
both commercial solutions for depositing plastic in layers and materials. FDM technology
involves the deposition of a continuous flow of material in the form of a heated filament to
obtain geometric shapes, under the control of a computer system. Deposition usually occurs
on the x and y axes (plane) with the increment of the Z axis after complete deposition
of the material on the current layer. The thermoplastic materials used are part of an
extraordinarily wide range and include Polylactic acid PLA, Acrylonitrile Butadiene Styrene
ABS, Thermoplastic Polyurethane TPU, Nylon, Polyethylene terephthalate glycol PETG,
and other variations of them or composite materials.

Among the presented solutions, the FDM technology corresponds in terms of cost and
quality for the execution of the compliant mechanism [23].

The materials used to make the mechanism were chosen based on the mechanical
characteristics, availability, and cost price: PLA, ABS and TPU. The shape of the mechanism
was determined after multiple experiments over several iterations and using the pros and
cons of current marked solutions. Regarding the size and stroke of the mechanism, they
were determined by measuring the lowest and highest frame sizes usually encountered in
the industry. Furthermore, a key determining factor of the size was the industry standards
in terms of lens size before it is cut to fit the frames (between 60–70 mm). Along with this,
the shape allows for easy dimensioning up or down, with regards to using FDM technology.

The shape and usability cases for the device were based on tens of years of experience
in the field of optometry. For the shape and requirements for the system, feedback received
from users who have employed similar systems for a number of years was considered.
Since the device will come into contact directly with both the optometrist and the patients,
it was very important that their feedback be the starting point for the design, and also, that
ease of use was a significant factor in determining the final shape of the frame. There are
no similar devices on the market in terms of the shape of the device, method of use, or
technologies used to produce it. Table 1 presents several constructive solutions proposed
by the authors with the characteristics described.
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Table 1. Several proposed designed shapes for the compliant mechanism.

Model Explanation
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Version 1—Loosely based on a half open contour of
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to be applied, and thus obtain an almost vertical
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fastening to the frames. The model was found

lacking for multiple reasons, especially due to the
fact that applying the necessary force was difficult.
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Version 2—The improved design of the handles
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thus obtain a better overall behaviour. However, in
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support interfered with the patient, since the actual
body of the marker support system pushed against

the patient’s face.
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Version 5—To allow for a larger opening of the
device, the orientation of the handles was changed.

Furthermore, the prongs were made
detachable—this is due to the technological aspects
of FDM, as it allows for much better control of the

settings used for each part of the frame.
Furthermore, since the prongs are in direct contact
with the frames, they must be coated to ensure that

they do not scratch the surface.
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2. Finite Element Analysis of Proposed Shape

In order to predict the displacement of the proposed system and, in this sense, to
choose the optimal material to realize the physical model for the given application, the
designed structures were simulated using the finite element method, starting with three
materials frequently used in FDM technology.

With the help of finite element method analysis, the 3D model was simulated assuming
that it was divided into several smaller elements, with their size and number depending on
the fineness of the meshing.

Exact numerical models should predict the mechanical behaviour of an investigated
structure, but in most cases these models must be validated. To be confirmed first, the
correct geometry and the corresponding characteristics of the materials used are required.
Furthermore, the exactness of the values obtained by the finite element method analysis
depends to a large extent on the fineness of the measurement and discretization parame-
ters, but, at the same time, it also depends on the correct application of mechanical loads.
The combination of Finite Element Analysis FEA with experimental validation of the me-
chanical behaviour of the compliant mechanisms investigated can be considered the most
appropriate way to study, compare, and choose the optimal materials and/or manufactur-
ing technologies for this application, and when the results of numerical and experimental
methods are close, the developed structure can be validated.

In this FEM study, three thermoplastic materials were used that could be possible
candidates for the marker clamp systems used in the optometric field—acrylonitrile butadi-
ene styrene (ABS) [24–27], polylactic acid (PLA) [28–31], and thermoplastic polyurethane
(TPU) [32–35], and as a medium, SolidWorks was used for the simulation. The main me-
chanical properties for the materials used in the study are represented in Table 2 [36–38],
which are essential elements for the correctness of the results obtained by Finite Element
Method FEM analysis. The main steps for performing the numerical simulation can be
highlighted are the application of the material, the definition of the fixed geometries, the
application of the loads, and their division into finite elements—the meshing. The following
measurement parameters were used in this study:

- Mesh type: Solid Mesh
- Element Size: 1.43838 mm
- Tolerance: 0.0719189 mm
- Mesh Quality: High
- Total Nodes: 15,490
- Total Elements: 8368
- Maximum Aspect Ratio: 13,989
- % of elements with Aspect Ratio < 3: 96.5
- % of elements with Aspect Ratio > 10: 0.0956
- % of distorted elements (Jacobian): 0

Table 2. Properties of materials used in the study.

Property ABS PLA TPU

Density 1.02 g/cm3 1.252 g/cm3 1.18 g/cm3

Young Modulus 1.18 GPa 1.59 GPa 0.396 GPa
Poisson ratio 0.35 0.36 0.3897
Yield strength 45 MPa 70 MPa 65.85 MPa

Figure 2 shows some simulation steps and the results obtained for TPU when applying
a force of 35 N, also observing the way in which the structure is deformed.
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Figure 2. Some steps of FEM simulation of the TPU compliant mechanism at 35 N applied force:
(a)-geometry model designing; (b)-fixing geometry, applying force and meshing; (c)-displacement
results (undeformed model); (d)-displacement results (deformed model); (e)-Von Mises stress results;
(f)-strain results (the arrows represent the mode of action of the force).

Figure 3 shows the results obtained for the mechanical characteristics of interest:
the equivalent Von Mises stresses and the maximum opening or distance/displacement
obtained between the two fastening elements. The Von Mises stresses obtained for all three
investigated materials are presented in Figure 3a,c,e, and it can be observed that for the
ABS material the value of Von Mises stress at 35 N exceeds the yield strength of the material.
To obtain the results of the maximum opening of the compliant mechanism as a result
of applying the request, it was set from SW to only display the results of the entities of
interest, as shown in Figure 3b,d,f, the total distance obtained by summing the resulting
displacements of the two clamping elements.

Figure 4 shows the comparative results of the displacements at the same applied
force (35 N) for the three materials used in the study, clearly observing the much higher
degree of deformation of the compliant mechanism of TPU, especially due to its mechanical
properties being much more suitable for this application. Therefore, for the same applied
force of 35 N, a maximum aperture of 27.86 mm is obtained for TPU (which corresponds to
the real displacement range for the application of the compliant mechanism), a much higher
value compared to those obtained for ABS and PLA—9.74 mm and 7.17 mm, respectively.
Table 3 shows the simulation results obtained for the three materials studied in a certain
force range (5–35 N) for the equivalent Von Mises stresses and the maximum openings
of the compliant mechanism. It can be seen from the table, that at applied forces greater
than 25 N, for ABS, the Von Mises stresses exceed the material yield limit, which indicates
possible plastic deformation in some areas where this value is exceeded; an undesirable
aspect for the application of the compliant mechanism.
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Figure 3. Comparison of obtained mechanical characteristics results for three investigated materials
(35 N applied force in all cases): (a)-TPU mechanism Von Mises stress results; (b)-TPU mechanism dis-
placement results between gripping elements; (c)-ABS mechanism Von Mises stress results; (d)-ABS
mechanism displacement results between gripping elements; (e)-PLA mechanism Von Mises stress
results; (f)-PLA mechanism displacement results between gripping elements.

Figure 5 shows the comparative results of the displacements of the fastening elements
obtained according to the force for all three studied materials, where the much higher
values for TPU of the displacements at the same applied force compared to acrylonitrile
butadiene styrene and polylactic acid are clearly highlighted, to conclude that this material
seems to be the most suitable candidate for the realization of the fastening systems applied
in the field of clinical optometry discussed in this paper. This is due to its special mechanical
properties that are manifested by increased elasticity and other important properties that
recommend it for this application in the field of optometry. Between PLA and ABS, the
former proved to have more suitable properties after simulation tests.
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Table 3. Obtained results for Von Mises stress and displacement between gripping elements.

F (N)

TPU (σy = 65.85 MPa) ABS (σy = 45 MPa) PLA (σy = 70 MPa)

ymax [mm] σmax
[MPa] ymax [mm] σmax

[MPa] ymax [mm] σmax
[MPa]

5 4.03 8.4 1.35 8.35 1.03 8.3

10 8.16 17.16 2.72 16.84 2.01 16.72

15 12.32 26.11 4.11 25.47 3.03 25.25

20 16.42 35.07 5.51 34.21 4.05 33.87

25 20.4 43.87 6.91 43.05 5.09 42.58

30 24.23 52.45 8.32 51.96 6.12 51.36

35 27.86 60.68 9.74 60.93 7.17 60.21
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Figure 6 shows the simulation results (35 N applied force) for a constructive variant
consisting of four fastening elements, which can be used to fasten circular glasses. In
this case, a maximum opening between the outer fasteners of 29.16 mm is obtained at an
applied force of 35 N. In both constructive cases (with three and four gripping elements),
following the FEM analysis, the most suitable material for the given application is TPU,
where the closest displacement compared to the desired displacement is obtained according
to theoretical considerations.
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Figure 6. Obtained results for compliant mechanism with four gripping elements.

3. Physically Developed Prototype of Mechanism

The mechanism was manufactured using FDM technology from PLA, ABS, and TPU
(Figure 7). When using each material, the particularities of each thermoplastic used were
considered. No special problems were encountered in the realization of the three variants,
but noticeable differences were observed between the times necessary to print the mecha-
nisms. Thus, the TPU material is the most expensive in terms of time, being necessary to
use it at very low speeds (10–20 mm/s-Figure 8), compared to PLA/ABS (30–35 mm/s),
the results being similar in terms of aesthetics.
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Figure 8. Working parameters used for compliant mechanism.

As expected from the point of view of the use of the materials presented, the differ-
ences between the three are obvious. For the following conclusions, a series of tests were
performed with the help of human users. Their automatic testing was performed in the
next part of the paper.

The PLA material variants used give way after several uses, but are the easiest to
obtain and, from an aesthetic point of view, they correspond to the requirements. The
approximate weight obtained is 4 g.

The ABS material presents, as expected, problems in terms of realization, it being
necessary to add a layer of sacrifice. The results are similar to those obtained for PLA:
although appropriate from an aesthetic point of view and with a very wide range of colours,
the pieces made do not correspond, in terms of elasticity, to the requirements and give way
after several uses.

Thermoplastic polyurethane (TPU)—from the variants used and commercially avail-
able, the NinjaTek Armadillo variant was chosen, which was also used for the simulations
presented above [38]. Although it presents a series of challenges in terms of use in the FDM
process, this material is mechanically the most suitable, obtaining the desired displacements
for the forces that can be exerted during use by a human user.

Among the materials used, the best results were obtained for TPU, with the disad-
vantage of having less pleasant surfaces from an aesthetic point of view, and with some
difficulties in printing the parts. This contradicts some of the conditions imposed at the
beginning of the work—the possibility of realizing these mechanisms without a specialized
training, with the help of common 3D printers. This material is also biocompatible, as
stated by the manufacturer.

4. Testing of Manufactured Device

In order to test and validate the structures made by FDM technology, but also to
compare the results obtained by simulation with the results of the experimental model, a
physical system was developed that simulated the functioning of the proposed mechanisms
for the given application. The experimental stand proposed in the paper presents the
possibility of fixing the tested part in a support that allows its displacement, especially
on the X axis and the rotation around the Z axis of the compliant mechanism. The testing
rig was specially made for the tests and is not part of any patent or technical solution. Its
purpose was to determine if the mechanism could be used for a reasonable number of times,
less than a couple hundred, without it breaking or losing its mechanical characteristics, and
testing was continuously performed.

However, the part was not fixed on any axis; the assembly was made with high
tolerances. At each of the moving ends of the mechanism, end-of-travel sensors were
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mounted, as shown, for clarity, as mechanical microswitches in the diagram in Figure 9,
but optical sensors in the stand were made. Actuation was conducted with the help of two
linear pneumatic motors with double action (Figure 10), dimensioned so as to produce a
force of, at most, 35 N at the working pressure (3 bar). The two motors were mounted in
opposition on the same Y axis of the system, in the direction of the red arrows in Figure 9.
The movement of the two motors simultaneously occurred, according to the proposed
control algorithm.
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Figure 10. Pneumatic actuation schematics.

The control and monitoring of the system was conducted with the help of an electronic
system based on an ESP microcontroller, together with the signal adaptation electronics
necessary for the interface with the distributors and limit switches used.

Figure 11 shows a schematic diagram of the algorithm implemented for control.
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Figure 11. Control algorithm schematics.

Figure 12a shows the complete scheme of the system made for testing the parts.
A simple PC-level application was developed to control the application. This opens a
bidirectional TCP port and allows for the initiation of commands and the reception of data
from the limit switches mounted on the construction. The advance and withdrawal strokes
along with the signals from the end-of-travel sensors were counted at the controller level
and transmitted to the PC.
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 Figure 12. (a)—Control schematics; (b)—Real system.

Figure 12b shows an overview of the test stand made for testing this solution and
obtained preliminary results to confirm those obtained by the simulation. It contains the
elements presented above and works according to those described.

As expected, the system poorly performs for both ABS and PLA, with minimal elastic-
ity of the parts, and they fail after only a few uses. TPU parts, however, perform generally
better, as tested, with no obvious issues to the mechanism after a few tries.

5. Conclusions

This paper presents the the right choice of materials, a finite element analysis simula-
tion, technologies, and the realization and testing of mechanisms to be used in the field of
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optometry. Following the research, the chosen thermoplastic polyurethane (TPU) material
proved to be the most suitable, both in terms of elastic properties, biocompatibility, the
possibility of recycling materials, and all criteria stated at the beginning of the paper. From
a scientific standpoint, the model is set to serve as part of a low-cost, low-maintenance
system with a reasonable error parameter needed for custom-built lenses for users with
specific needs. This is set to lower the cost of such procedures, which is currently high, and
is also expected to assist in giving better medical care to a larger array of individuals.

In the future, we want to test this mechanism in a complete set, but also perform tests
with as many patients as possible, so that the possible problems related to the use and
implementation of the mechanism described in this paper can be determined and solved.
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