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Abstract: According to the Fire-eye’s M-Trends Annual Threat Report 2022, there are many advanced
persistent threat (APT) attacks that are currently in use, and such continuous and specialized APT
attacks cause serious damages attacks. As APT attacks continue to be active, there is a need for
countermeasures to detect new and existing malicious codes. An APT attack is a type of intelligent
attack that analyzes the target and exploits its vulnerabilities. It attempts to achieve a specific purpose,
and is persistent in continuously attacking and threatening the system. With this background, this
paper analyzes attack scenarios based on attack cases by malicious code, and surveys and analyzes
attack techniques used in attack cases. Based on the results of the analysis, we classify and analyze
malicious code detection techniques into security management systems, pattern-based detection,
heuristic-based detection, reputation-based detection, behavior-based detection, virtualization-based
detection, anomaly detection, data analysis-based detection (big data-based, machine learning-based),
and others. This paper is expected to serve as a useful reference for detecting and preventing
malicious codes. Specifically, this article is a surveyed review article.

Keywords: malicious code; detection technique; attack scenario; attack technique; APT attack

1. Introduction

The APT (Advanced Persistent Threat) attack refers to a specific designation of security
threat created by the U.S. Air Force Command in 2006 to facilitate smooth communication
with government agencies. It is a type of global hacking attack [1,2] in which a specific
company or organization is targeted; it is a threat to certain protected targets that takes
the form of a stealthy and continuous attack. In contrast to conventional cyber hacking
attacks, an APT attack is characterized by an intelligent and continuous threat. The National
Institute of Standards and Technology (NIST) has defined an APT attack as “a cyberattack
that uses a considerable amount of expertise and resources, and creates opportunities with
various attack methods to achieve specific goals [3]”. Unlike traditional cyber threats,
which can be remotely controlled and executed, such as bots or system malware that are
intended to destroy systems and leak information, an APT attack takes a long time to detect,
because the target is clear and is continuously attacked at various times [4,5]. In particular,
the IoT or Unmanned Aerial Vehicle (UAV) environment, which is a small environment
that uses embedded systems, is not safe from security threats launched by attackers, and
there is a need for methods that can be used to detect such attacks.

In this type of attack, the attacker finds weaknesses through social engineering tech-
niques, which they use to construct elaborate plans to fulfil the final purpose of the APT
attack, and then stealthily penetrate the system based on the identified vulnerabilities.
To increase its success rate, this type of attack explores the target system and constantly
attempts to infect it with malicious codes through zero-day vulnerabilities and rootkit
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techniques. It also combines attack techniques such as DBD (Drive-By-Download), SQL in-
jection, malware and spyware, phishing, spam, spear phishing, watering holes, and manual
attacks, if the victim does not recognize the attacks [5–7]. An APT attack is defined as an
intelligent (Advanced) analysis of vulnerabilities that satisfies the conditions of Persistent
attacks, which involve multiple continuous attacks to achieve a specific purpose and to
Threaten protected targets [4,5,8].

The Fire-eye’s M-Trends Annual Threat Report 2022 classifies the factors of a recent
APT attack as outside and inside, and these are listed in Table 1.

Table 1. Ransomware Threat Report.

Infection Notice 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Outside 94% 63% 67% 69% 53% 47% 38% 41% 53% 41% 47%

Inside 6% 37% 33% 31% 47% 53% 62% 59% 47% 59% 53%

The table above presents the APT attack detection ratio for solutions installed by APT
defense solution vendors. Here, ‘outside’ of the infection notification indicates that the APT
attack has been notified from the outside, while ‘inside’ of the infection notification means
that the APT attack has been detected from the inside. Examining this trend, 94% of APT
attacks were notified from the outside in 2011, but this value significantly decreased to 53%
in 2019. In other words, although the rate of attacks being detected internally has increased
through defense technology and the introduction of solutions against APT attacks, 50% of
APT attacks are still notified of infection from the outside, which is still substantial [9].

Therefore, we analyze attack scenarios based on the above cases of malicious codes
and survey, and we analyze the specific techniques used in these attacks. Based on the
results of this analysis, we classify malicious code detection methods into security man-
agement systems, pattern-based detection methods, heuristic-based detection methods,
reputation-based detection methods, behavior-based detection methods, virtualization-
based detection methods, anomaly detection methods, big data-based detection methods,
and other methods. The rest of this paper is organized as follows: The “Attack cases by
malicious codes” section describes attack cases caused by existing malicious codes such
as APT, and the “Malicious code attack scenario” section describes attack scenarios that
involve penetrating into the system with malicious codes. The “Attack techniques used by
malicious code” section explains the attack techniques that are employed when using mali-
cious codes. Finally, the “Classification and analysis of malicious code detection methods”
section describes the classification and analysis of the methods used to detect and thwart
malicious codes.

The contributions of this study are as follows:

• This paper presents attack scenarios according to malicious codes based on APT attack
cases. Moreover, according to the results of the scenarios, methods to detect malicious
codes were classified and analyzed into security management systems, pattern-based
detection methods, heuristic-based detection methods, reputation-based detection
methods, behavior-based detection methods, virtualization-based detection methods,
abnormal detection methods, big data-based detection methods, and other methods.

• Moreover, this article is distinct from survey articles comparing existing malicious
code detection methods as follows: 1. We focus on the latest malware detection
technologies. 2. We classify and analyze overall malicious code detection technologies,
without being limited to a specific method. 3. Scenarios were presented based on
actual attack cases, and malware detection methods were classified based on the
presented scenarios.

• Finally, through the classification and analysis results of malicious code detection
methods, we expect this article to be helpful in developing effective malicious code
detection technologies against various attacks in the future.
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2. Attack Cases by Malicious Codes

Known APT attack cases rely on using several types of malicious code. In South
Korea, there have been many major hacking attempts, such as the IceFog, H company, N
company, S company, 3.20 cyber terror, and 6.25 hacking incidents [10–16]. IceFog was an
APT attack that was detected in 2011 and which targeted research institutes, the defense
industry, and mobile service companies, from which it stole information. This information
included basic system information such as folder lists, adapter lists, IP configurations, and
network information, along with sensitive information such as Windows address book
(WAB) files, documents, user account credentials, etc. Spear phishing emails were used,
which induced recipients to connect to malicious codes or malicious websites by clicking
the links in the emails. Then, the malicious code sent in the emails infected the target
systems by exploiting vulnerabilities in programs such as Microsoft Office. After infecting
a system, the characteristics of the system were examined and investigated. If the system
was a virtual machine or a fake system, the malicious code did not perform any malicious
behaviors. However, if it was an actual system, the target information was captured [10].

In April 2011, N company suffered an APT attack, which resulted in the deletion of a
large amount of data and paralysis of the target network. The attacker inserted malicious
code into the target system by distributing free download coupons from websites engaged
in malicious behaviors. After inserting 81 additional malicious codes into the laptop of the
subcontractor who maintained the server, the attacker stole sensitive information that could
be used to access the internal network, such as the administrator password. Malicious
codes for eavesdropping and receiving attack commands via remote control were also
installed in the same manner, and the server inside the N company was destroyed by
the installed malicious code after receiving commands transmitted from the outside. The
attacker deleted files with 31 specific extensions, then destroyed the hard disk. Many hard
disks were attacked, and ultimately, 275 internal servers, 45 of 98 web servers, 180 internal
servers, and 48 of 49 test servers were destroyed in this attack [11,12].

A malicious attack in July 2011 resulted in the leakage of the personal data of 35 million
individuals from S company. The leaked information included the ID, encrypted password,
personal number, name, date of birth, sex, e-mail address, telephone number, and address
of the individuals. The attacker hacked a public software update server to install malicious
code, then collected internal information related to the database manager of any insider
who downloaded this malicious code. After that, the attacker used this information to steal
data stored in the database from a remote location [11–13].

The 3.20 cyber terror attack in March 2013 caused paralysis of the target network
by erasing data from major broadcasters and financial institutions. In this attack, the
attacker hacked the web server and infected it with malicious code. Next, the malicious
code was distributed to the PCs connected to this web server. Then, the attacker stole the
administrator account of the antivirus software distribution server. In total, 89 malicious
codes were placed on PCs, antivirus software distribution servers, and ATMs, and the hard
disks of these machines were destroyed after files in a specific folder were deleted. The
attacker damaged 48,862 hard disks in total, thus resulting in network paralysis. More
importantly, anti-virus software and security solutions were running on these systems, and
measures such as deployment of United Threat Management (UTM) have been taken to
prevent intrusions from the outside. Here, UTM means a comprehensive management tool
that includes various security tools such as Intrusion Detection System (IDS), Intrusion
Prevention System (IPS), firewall, etc. [17]. Nevertheless, these solutions did not effectively
defend against this attack. This is because these types of defense systems can effectively
prevent intrusion by known malicious codes, but unknown attacks are difficult to defend
against. The vulnerabilities that were exploited in the 3.20 cyber terror attack include the
acquisition of administrator authentication authority, the absence of non-repudiation and
integrity check in distribution of general software files, and the lack of a protection function
in the agent itself. These vulnerabilities prevented the detection and treatment of malicious
code. Therefore, the attacker was able to remotely connect to the system, which allowed for
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remote control and communication of the infected system. Then, after additional malicious
code was injected through the dropper and downloader function, the system and MBR were
destroyed [11–13]. In addition, the private information of about 1.75 million customers was
leaked from H company in April 2011 in the 6.25 hacking incident, and there were also
attacks on the opening ceremony of the 2018 PyeongChang Olympics [11,13–16,18].

International attack cases include Red October, eBay, Night Dragon, GhostNet, Oper-
ation Aurora, Duku, Stuxnet, RSA, Flame, TARGET, etc. [10–13]. Red October is an APT
attack that has been active since 2007; in this attack, malicious code has attacked govern-
mental, research, energy, and nuclear organizations in several countries. The attacker sent
an e-mail containing malicious code that exploited vulnerabilities in Microsoft Office and
Excel to penetrate the target system, and the malicious code infected the victim’s system.
The infected system leaked sensitive information such as stored information, deleted infor-
mation, and network equipment setting information that was stolen through modules. It
leaked data from mobile devices such as smart phones as well as PCs [10].

Night Dragon was an APT attack that occurred from 2009 to 2011. In Night Dragon,
Chinese servers leaked information about gas and oil production systems, oil exploration
documents, and industrial control systems in Kazakhstan, Taiwan, Greece, and the United
States. The attacker used social engineering techniques, Windows vulnerabilities, the
Active Directory, and Remote Administration Tools (RATs), and they attempted to infect
malicious code after uploading that malicious code through an SQL injection attack on
a web server. After obtaining the account information to access the system, the attacker
tried to access and collect sensitive information such as the account information of users
in the system [10]. Another attack, the Operation Aurora APT attack, was discovered in
January 2010. It took over software source code and critical data for telecommunications
companies. In addition to social engineering techniques, the attacker used spy phishing to
link to a malicious Web site using MS-10-002, a zero-day vulnerability in Internet Explorer.
When the victim accessed the web site, the attacker gained access to the internal system
through malicious JavaScript files, through which they could steal the source code and
important data [10,12]. The Stuxnet APT attack was discovered in June 2010. It aimed to
destroy the system of a nuclear power plant. The attacker remotely manipulated the remote
monitoring and control system in the power plant. To this end, the attacker exploited
Windows shell LNK, Windows server service, Windows print spooler, and shared network
service vulnerabilities. Moreover, this attack used a rootkit to hide itself and propagated
malicious code in a self-replicating manner. In a more concerning APT attack, a USB storage
device was used as an attack tool to physically penetrate into a separate network [10,11,13].
Duku, another APT attack that was similar to Stuxnet, was discovered in September 2011,
but its purpose was to spy on users instead of destroying the system. The attacker collected
authentication information such as passwords by key logging in the penetrated system,
and they spied on the target by additionally accessing other systems by using the stolen
information. This attack was difficult to detect because it penetrated the system using
a legally signed certificate [10]. Flame was the first APT attack discovered in 2012; it
took information from the Windows system used by the target organization. The attacker
stole confidential information such as keyboard inputs, information displayed on the
screen through screen capture, e-mails, Bluetooth device information, and conversation
information recorded by a microphone [10]. There have been many additional attacks that
have stolen important information, such as TARGET [11], the large-scale cyber-spying case
GhostNet [13], RAN hacking [11], and eBay hacking [13]. WannaCry, one of the most known
ransomware attacks, is a representative APT attack that was revealed in May 2017. It was
distributed through large-scale cyber-attacks, ultimately infecting about 120,000 computers
in about 100 countries around the world. The attacker produced ransomware using an NSA
program through social engineering techniques and caused massive damage worldwide
by exploiting the vulnerability of Eternal Blue, Microsoft’s Windows operating system’s
SMB vulnerability [19–21].
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3. Malicious Code Attack Scenario

APT attack scenarios can be classified into six stages: preliminary investigation, pen-
etration, latency, internal search, internal activity, and purpose achievement. This attack
scenario is illustrated in Figure 1.
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In the preliminary investigation step, the attacker prepares for the future attack phases;
this may include information gathering and analysis in addition to other types of attack
preparation. The information gathering and analysis process involves collecting infor-
mation such as the homepage of the attack target, Social Networking Service (SNS) [12],
internal organizational structure, employee name and contact information, type of software,
partner companies, frequently accessed web sites and Storage as a Service (StaaS), etc.
Using the collected information, it is necessary to use an attack preparation process to
collect vulnerability information for future penetration, and the attacker acquires a base
for attack through this process. In the attack preparation process, to collect vulnerability
information, the attacker obtains information related to the people who have access to the
secure information necessary for the attack by investigating intrusive ports using technical
port scan or non-technical social engineering techniques. Once vulnerability information is
gathered and the target information is determined, the attacker creates a dedicated injection
tool and writes malicious code that exploits the vulnerabilities of the target. The attacker
also manipulates frequently accessed web sites and web hardware to upload the attack tool
and malicious code. Then, when the attacked internal employee accesses the manipulated
web sites, the uploaded malicious code is downloaded and successfully penetrates the
system. Moreover, an external attacker can procure a C & C (Command & Control) server
for communication with the internal network, and they can prepare for attacks through
spear phishing and USB infection for future penetration. The preliminary investigation
step is not itself an attack, because it mostly involves information gathering. It is therefore
difficult to effectively detect attacks at this stage [10–13,22].

In the penetration step, the attacker infects the victim’s system with malicious code
generated by the attacker based on the information collected in the previous preliminary
investigation step. Next, the internal network is penetrated into, thereby practically per-
forming the attack, and the target system is infected with malicious code, mainly by using
social engineering techniques. The attacker mainly targets the administrator of the internal
organization, the main system, the security officer, and the network manager based on the
information collected in the previous step, as these people have the authority to access secu-
rity information. To infect the systems of these victims, the preparation for the penetration
in the previous step is completed by uploading specially designed malicious code, such as
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is the case in a zero-day attack, which involves bypassing anti-virus software, collecting
information, and communicating with the C&C server. This step infects malicious code
into the internal system through a spear phishing attack that send e-mails to the selected
victims, and by opening up access to manipulated web sites. The attacker sends items
such as personal information, social issues, personal card bills, and shopping mall delivery
information to the e-mail to get the victims to read the e-mail and/or execute the attachment
file. In this way, the target system is infected with malicious code through the drive-by
download technique and watering hole attachment technique by executing the attached
malicious code or inducing a connection to the manipulated web site and update server.
Therefore, a defender is limited in their ability to detect such an attack in this step because
the attacker uses social engineering techniques and zero-day vulnerabilities. In fact, it was
possible to penetrate the internal network by neutralizing the internal security system in
the case of the S company and 3.20 cyber terror attacks, which are typical APT attack cases
in South Korea [10–13,22–24].

In the latency step, the malicious code that penetrated the system in the penetration
step is hidden from detection. Because of this, the malicious code is not detected by the
security system, so continuous and additional penetration is possible. To this end, the
rootkit technique, which is a general technique that malware uses to conceal itself, is
utilized. It is also possible to pretend to be a normal user by acting on legitimate accounts,
protocols, and time zones [10,11,13,25].

In the internal search step, the attacker prepares for the next attack step by collecting
information inside the system, such as information on the internal system and infrastructure.
A backdoor for communication with an external attacker is also installed in this step. Using
this backdoor, the attacker infects the system with additional malicious codes and collects
information from the system and network through scanning. The attacker then prepares
for internal activities by identifying vulnerabilities based on this information. Regarding
the malicious code penetration in the previous step, the intent of penetration is often
strong and does not include a function for internal search, such that the attack is not
detected by the security system. Therefore, the attacker installs a backdoor into the infected
system for internal search, and the malware attempts to communicate with the external
attacker through this backdoor. In this process, the backdoor utilizes technologies such as
cryptography to avoid being detected by the security system, as the sent data is encrypted.
Upon completion of the backdoor installation, communication with the attacker becomes
possible. Therefore, the preparation for the internal search is completed, and a scanning
tool and vulnerability analysis tool are installed for this purpose. Scanning tools are tools
that collect information about internal systems and infrastructures. These tools can collect
confidential information through legal commands from the internal system so that they
are not detected by the security system. From the attacker’s perspective, it is possible to
collect internal information in a stealthier manner, because this attack attempts to acquire
information from previously infected systems. It also collects information about the systems
that are authorized to prepare for future attacks, and it analyzes the vulnerabilities to take
control of the target system and other systems. Through these processes, it is possible to
propagate malicious code to vulnerable and privileged systems, and the attacker continues
to perform the above steps to achieve their final goal [10,11,13,22–24].

The internal activity step is the final preparation step. In this step, the attacker
penetrates the target system through acquisition of authority, propagation of malicious code,
and the downloading of additional malicious code. In the previous and current steps, all of
the information and vulnerabilities are collected based on the privileges of the malicious
code installed by the attacker, and the privilege to penetrate the target system is obtained
through these acts. Spy phishing, password cracking, and communication path hijacking
attacks are performed by internal employees to gain authority [13]. In these processes,
additional malicious code is required for each attack, so various malicious codes for each
action are additionally downloaded, and malicious codes are propagated to vulnerable
internal systems and networks to gain additional authority. In this way, it is possible for
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malicious code to infect partial systems or entire systems within the network. Therefore,
the attacker prepares for the final attack by obtaining the authority of the database and the
target system. Moreover, in this process, the infected system is continuously monitored
and manipulated to avoid detection by the security system [10,11,13,21,22,24].

In the purpose achievement step, the attacker actually achieves their desired goal,
mainly by destroying the system or leaking confidential information. In other words,
the attacker achieves the final goal by sending specific commands or setting a time for
execution. For example, the attacker can bypass the defense system using techniques
such as encryption, file compression, and file partitioning to disguise their activities as
normal traffic. There is the potential for detection by the defense system during information
transmission in the case of information leakage. In the case of system destruction, the
purpose is achieved by interfering with the normal use of the infected system or destroying
the equipment by manipulating the file system or deleting the hard disk [10–13,21–25].

4. Attack Techniques Used by Malicious Code

APT attack techniques can be categorized into those pertinent to the preliminary
investigation step, penetration step, latency step, internal search step, and internal activity
step. The following Table 2 lists the techniques that are used at each stage.

Table 2. Attack techniques using malicious codes.

Attack Step Attack Techniques

Preliminary investigation

Preparation of manipulated websites
SQL injection
Web vulnerability
Malware and Spyware
Malware and Spyware
Zero-day vulnerability

Penetration

Mail (phishing, spam, spear phishing)
DBD (Drive-By-Download)
Watering hole
Manual attack

Latency
Mail (phishing, spam, spear phishing)
DBD (Drive-By-Download)
Watering hole

Internal search
Backdoor
Network monitoring and analysis
System monitoring

Internal activity

Keylogger
IRC
Interception of password hash values of victim accounts
Eavesdropping on conversations recorded by microphone
Information exposure and leakage

The preliminary step involves preparing for penetration. Commonly, an attacker
makes a manipulated web site and prepares it for penetration. To manipulate a web site,
the attacker uses attack techniques that exploit SQL injection and Web vulnerabilities. SQL
injection is a code injection attack technique that manipulates a database by causing a
malicious SQL query to be executed. Some attackers have attempted to change the target’s
homepage screen [11–13,26]. An example of an attack that exploits Web vulnerabilities is
one wherein an environment is built in which malicious code is penetrated by vulnerable
Web sites that are frequently visited by victims. When accessing the manipulated website,
a malicious code is downloaded to the victim’s system [13]. To achieve such an attack, mali-
cious codes must be inserted into the prepared website; these codes include malware [11,27],
spyware [11,26], and code that exploits zero-day vulnerabilities [10,13,26,28]. In the latter,
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the attacker attempts to exploit a zero-day vulnerability that has been discovered in systems,
protocols, operating systems, and applications, but has not been addressed. It does not take
much time to write new malicious code that utilizes zero-day vulnerabilities, so target sys-
tems often cannot defend against such an attack because the new malicious code cannot be
detected by anti-virus systems that look for existing malware signatures. In fact, at the end
of March 2014, Microsoft published a Security Advisory (MS Security Advisory 2953095)
detailing vulnerabilities in RTF files in MS-WORD 2010, and also provided examples of RTF
files that utilized this vulnerability and were attached to many spam emails [10,13,26,28].

The penetration step is a practical step in which an attacker penetrates into the target
system by downloading from a website or malicious code prepared in advance. Attackers
may attempt to attack via email, such as in phishing, spam, spear phishing, drive-by-
download, watering hole, and manual attacks. Penetration by email is an attack technique
that consists of inviting users to connect to a malicious server and executing a file when
they click a malicious web site address or path, or when they click a malicious file attach-
ment; this type of attack is mainly done through phishing or spam emails [11,13,26,29,30].
However, attackers have developed more reliable attack techniques since some phishing
and spam emails can now be detected by filters. For example, spear phishing has emerged.
Spear phishing, unlike traditional phishing and spam email, involves sending emails to a
victim that appear to have originated from a person associated with the victim, or another
trusted source such as the government or a business. The attack proceeds when the victim
opens an attachment or clicks on a corrupted website address. Spear phishing is a serious
problem because the malicious emails are made to resemble normal emails, thus causing
unsuspecting users to click on links and files [10,11,13]. Drive-by download is a method of
attacking a vulnerable web site and infecting through simple access of the web site. It is
characterized by the difficulty of recognizing lard spreads and infections, and it is one of
the most threatening attack techniques. In this technique, malicious code is inserted into the
website using an iframe and JavaScript, and it occasionally includes a waypoint to hide the
final distribution site. The attacker infects the target system through the downloading and
execution of malicious code that includes obfuscated JavaScript files, which are difficult
to detect. An attack using iframe attempts to attach an iframe to the main html file, then
proceeds as a drive-by download attack; the iframe is hidden by setting the width and
height to zero so the user does not see it [11–13,26,28,29]. A watering hole is a type of
drive-by-download attack that is characterized by attacking a specific target. This attack is
very dangerous because it attempts to exploit unknown vulnerabilities in general [13,29].
As described above, the attacker penetrates a victim’s system in an automated manner, but
they sometimes perform a more sophisticated manual attack. The attacker operates on the
basis of information collected in the preliminary investigation step, and they write and use
an automated tool or specific commands to propagate the malicious code [13]. There are
also IP clocking attacks [12], Layer-1 attacks [12], etc.

The infection paths in the penetration step include malicious code infection through
visits to internal websites, malicious code infection through regular website visits, email
attacks with specific goals inside the target organization, malicious code infection through
the media, and management system attacks. Through these paths, the malicious code
prepared in the above process is installed on and penetrates the victim’s system [13].

In the latency step, the malicious code that is placed on the victim’s system in the
penetration step is hidden to avoid being detected by the security system. In this step,
the malicious code makes use of attack techniques such as rootkit, encryption, memory
patch, steganography, code obfuscation, execution compression, and anti-VM (Virtual
Machine) [13,26,28]. A rootkit hides malicious code so that it cannot be detected by the
security system; it mainly tries to block and conceal access by manipulating the legal
operations in the user and kernel modes. For example, the malicious code hooks API
functions such as IoCompleteRequest() to block access to programs and files, and it hides
its own process by changing the process structure (EPROCESS) [13,26,28]. Encryption is a
technique in which an attacker encrypts a program that has successfully penetrated the
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target system so that it is not detected by the security system, or encrypts the contents
to hide packets that are transmitted to the network. Since the encrypted program cannot
execute malicious behaviors until the program has been decrypted, it can remain hidden
and go undetected by the security program. The encrypted packets can pass through the
security system and be securely transmitted to the victim’s system because they cannot be
checked until the packets are decrypted. Moreover, malicious actions can be performed,
such as specific attacks and information gathering through communication with the out-
side [13,28]. A memory patch is a technique for inserting hidden code in an area that loads
into the memory in order to conceal a program that an attacker has successfully installed
on the target system. The memory patch mainly relies on code injection and DLL injection
techniques. This technique does not exist as a real file, but because the code is loaded
into memory, defenders directly explore and detect memory areas. Because of this, there
are cases in which detection is difficult or impossible. For example, code-concealment
techniques such as memory patches were used in Regin, a malicious code with the aim
of leaking information [28]. Other concealment techniques include steganography [10] to
hide communication, code obfuscation to hide execution code [13], execution compression
techniques such as packing to prevent analysis, and anti-debugging [28]. Further, some
techniques only operate when certain conditions are met [28].

In the internal search step, the internal system and the network that have been pen-
etrated for the final purpose are searched, and techniques such as backdoor, network
monitoring and analysis, and system monitoring are utilized. The backdoor allows the
attacker to communicate with the victim’s system from the outside. It is mainly used to
install additional malicious codes or for the purposes of commands delivery and informa-
tion leakage [13]. The network monitoring and analysis step involves the gathering and
analysis of information on the network to penetrate into the victim’s system; this is mainly
performed using the port scan technique. In a port scan, information about the ports of
the internal network is collected. If successful, the port scan bypasses security functions
such as access control because it performs scanning on the authorized system. Therefore,
this attack technique is very effective because it is not detected by the security system and
is generally allowed to communicate internally [12,13,29]. To perform such an internal
search, the above malicious codes are additionally installed, thereby collecting system
and user information. The collected information includes system connection information,
service usage information, pattern information, etc. Using the collected information, the
attacker can approach and penetrate the victim’s system, then proceed to the internal
activity stage [13].

In the internal activity step, the attacker becomes active in the internal system and
network to penetrate the final target system. This is carried out using attack techniques
including keylogger, IRC (Internet Relay Chat), information exposure and leakage, inter-
ception of password hash values of victim accounts, and eavesdropping on conversations
through the microphone. A Keylogger records information that is input using a keyboard.
Here, the attacker achieves their goal by taking information input from the keyboard or
information stored in the database [13]. This is because access to systems and databases
is mostly based on ID-password pairs. IRC [16] is a protocol for real-time chat that also
provides functions such as conversation and file transfer. However, these functions can be
exploited by attackers, who can then execute malicious actions such as information retrieval
by sending specific commands or downloading additional malicious codes based on the
data collected through internal search [29]. The method used for information exposure and
leakage is similar to that used to collect information about internal systems and networks
in the internal search step. The difference from the previous step is that more information is
gathered and used to penetrate the victim’s system, and the attacker achieves their goal by
stealing important information such as authorized certificates, system account information
and configuration information [29]. The attackers can also achieve their goal by collecting
information to penetrate the final target system, such as intercepting the password hash
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value of victim accounts and eavesdropping on conversations recording using microphones,
as in the case of EMC/RSA [13].

5. Classification and Analysis of Malicious Code Detection Methods

The available methods for detecting malicious code can be largely categorized into se-
curity control systems, pattern-based detection methods, heuristic-based detection methods,
reputation-based detection methods, behavior-based detection methods, virtualization-
based detection methods, anomalous symptom detection methods, and data analysis-based
detection methods. Table 3 provides detailed information on the techniques that are utilized
by each of these detection methods.

Table 3. Classification of malicious code detection methods.

Detection Methods Detection Techniques

Security control system

Firewall and web firewall

Anti-virus

Intrusion detection system

Intrusion prevention system

Network forensic

APT dedicated solution
Network-based

Host-based

Log analysis system
EMS

SIEM

Honeypot
(client honeypot)

Low interaction client honeypot

High interaction client honeypot

Prevention of internal information leakage

Secure USB

Spam mail protection system

Pattern-based detection

Signature-based

String signature

Instruction frequency signature

CFG signature

Byte sequence signature

Misuse detection

Signature analysis

Expert system

State transition analysis

Petri Net

Malicious URL/IP detection

Heuristic-based detection

Static heuristic

Dynamic heuristic

Negative heuristic

Genetic algorithm
Wildcard comparison

Mismatching

Reputation-based detection
Reputation-based detection

Behavior-based detection
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Table 3. Cont.

Detection Methods Detection Techniques

Behavior-based detection

Static analysis

Dynamic analysis

Hybrid analysis

System-based

Network-based

Integrity check technique

Behavior monitoring
and blocking

Spear phishing email surveillance

Frequency of occurrence of opcode sequence

Common behavior graph exhibiting malicious code
execution behavior

Framework based on machine learning methods

Association with registry and process information

API call behavior detection

Entropy-based detection

Visualization

Tree map-based

Grayscale binary content

Function call graph

Control flow graph

Behavior dependent graph

Traffic characteristic

Anormal behavior detection

System call sequence state-based detection

Fuzzy logic and genetic algorithm

Emulator

Virtualization-based detection
Sandbox

Profiling

Anomalous symptom
detection

Data mining

Statistical method

Real-time monitoring

Data analysis-based detection

Big data-based detection

Intelligence on threats

Behavior profiling

Data and user monitoring

Application monitoring

Analysis and interpretation

Machine learning-based
detection

Supervised learning

Artificial neural
network (ANN)

Deep neural network (DNN)

Convolutional neural
network (CNN)

Support vector
machine (SVM)

Unsupervised learning K-means clustering algorithm
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Table 3. Cont.

Detection Methods Detection Techniques

Reinforcement learning

Q-learning

Deep Q-Network

Generative adversarial
network (GAN)

Other detection methods
Packer detection and unpacking

Malware-clustering technique

5.1. Detection Techniques in Security Control Systems

Security control systems can be categorized into firewall and web firewall, anti-virus,
intrusion detection system, intrusion prevention system, network forensic, APT dedicated
solution, log analysis system, honeypot, prevention of internal information leakage, secure
USB, and spam mail protection system.

The firewall technique controls malicious traffic by determining whether to allow
or block traffic input and output to and from the network based on predefined policies
and rules. The available traffic permission and block methods include the black list-based
technique that defines policies and rules for malicious traffic as well as the white list-based
technique that defines policies and rules for normal traffic. The black list-based technique
blocks traffic that has occurred in the past or abnormal addresses and ports, and the white
list-based technique allows only traffic that is input and output from the normal addresses
and ports. Therefore, with properly defined policies and rules, this technique has the
advantage of blocking attacks from inside and outside. However, it does not prevent
attacks that do not have defined rules. If the wrong rules are set, then normal traffic will be
blocked, and if many rules are defined to prevent various attacks, then the traffic processing
performance will be degraded and loss will occur. Although the web firewall technique is
similar to the firewall technique, it differs in that traffic is targeted to a web service, HTTP,
HTTPS, FTP, etc., and the protection target is only web servers [11,13].

Anti-virus software is software that protects systems from malware. The software
analyzes malicious codes and defines characteristic parts of the codes, for example, a hash
value of a specific string or file called a signature. If a particular string is found in the
malicious code or has the same hash value, then that code is identified as malicious and its
execution is blocked. Malicious programs are detected through comparisons of strings or
hash values, which is advantageous in that inspection time is past. Nevertheless, there is a
possibility of both false positive and false negative results. For example, in some cases, the
same string and the same hash value are defined in a normal program, and it takes a lot of
time to update the signature. In a case where an unknown new malicious code appears,
there is no signature. Moreover, a variant in which the malicious code is changed will not be
detected because the string or hash value has changed. Therefore, to overcome the problems
of signature-based detection methods, software is currently being developed using heuristic-
based detection methods and behavior-based detection methods [10,13,31,32].

An IDS (Intrusion Detection System) detects intrusions in real time. This technique
involves analyzing the principle and type of attacks and generating signatures, which is a
characteristic for detecting the signature [33–35]. If the same signature is detected, then the
attack is identified as an intrusion. However, this system involves certain disadvantages.
For example, the system cannot obtain signatures for unknown attacks, multi-level packing
and encryption make it difficult to detect signatures, it is difficult to detect obfuscated
malicious code, and there is a need for periodic detection pattern management. An IDS may
be classified as a network-based system or a host-based system depending on which system
the detection is performed. Network-based systems detect signatures based on network
traffic, and they provide network traffic monitoring and usage information capabilities,
multi-level attack investigation capabilities, management capabilities for rapid response to
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external attacks, availability and clustering capabilities, and intrusion detection capabilities.
Host-based systems detect intrusions by detecting the signature of the file on the host or
analyzing the behavior information of the running system. They also perform resource
information file analysis, accurate detection and analysis, real-time log analysis, and the
detection of attack attempts at the internal user and user levels. Misuse detection and
abnormal detection are classified in terms of the analytical methods they involve. Misuse
detection is a method of detecting malicious code by defining rules of known behavior and
signatures, such as in signature-based detection techniques. Abnormal behavior detection
is a method of detecting malicious behavior when a behavior is not included in a benign
model after defining a model of benign behavior in a network and host. Data mining and
statistical methods can be used to define models of benign behavior [11,13,22,29].

An IPS (Intrusion Prevention System) is very similar to an intrusion detection system.
However, unlike IDS, this technique blocks IP addresses and ports to prevent intrusion
as much as possible. Therefore, the advantages and disadvantages of IDS are directly
inherited by IPS. Currently, multi-segment technology is widely used to divide one piece of
equipment into several pieces of equipment, and various techniques to prevent intrusion
are actively being developed [11].

The purpose of network forensic techniques is not to detect and prevent intrusions,
but to provide additional information for the forensic analysis of intrusions. This technique
collects and stores all traffic input and output data from and to the network, analyzes the
stored traffic when an intrusion occurs, and obtains information such as the download
path and the secondary traffic after infection. Therefore, the results of the analysis are
used to prevent intrusion in a more precise manner. Recently, due to the development of
smartphone technology and the diversity of instant messaging (IM) software, defenders
use packet sniffing techniques based on rule-based extraction methods to identify the IP
addresses of cyber attackers [29,36–38].

An APT dedicated solution is similar to an existing security solution, but is APT-
specific. This is an evolutionary solution that detects APT attacks that go undetected by
existing security solutions using behavior-based analysis. It can be divided into host-based
solutions and network-based solutions. A host-based solution has the advantage of detect-
ing APT attacks by searching the host files and monitoring them in real time. However, it
has a disadvantage in that it cannot detect unknown attacks. A network-based solution de-
tects intrusions without affecting the real system by detecting and blocking malicious traffic
by virtualizing inbound and outbound traffic to the network. This solution is advantageous
in that it can easily conduct analyses by storing the detection and replay packets more
accurately than existing security solutions by analyzing the secondary action. Nevertheless,
since there is no distinction between clients in the organization, there are disadvantages
in that it does not detect the spread of malware through correlation analysis, and it does
not detect the spread through backdoor portals after penetration via USB. Researchers
have recently studied many detection methods to predict the signs of APT attacks by
analyzing the network traffic with network flow and combining it with clustering methods
to overcome the shortcomings of these network-based solutions, and a combination of
machine learning and deep learning models is used for higher detection rates [11,29,39,40].

The log analysis system responds to threats by analyzing logs of events in the system,
detecting undesirable behaviors, and either informing the administrator about them or
directly blocking them. These systems have the advantage of being more practical, because
events that occur in the system result in various types of data, and various real-world
situations can be derived from these. They include ESM (Enterprise Security Management),
and SIEM (Security Information Event Management), which is an integrated security
management system. It collects and manages logs generated by various security solutions
and effectively manages and monitors these logs using analytical techniques such as
correlation analysis, in-depth analysis, and association analysis. Thus, ESM makes it
possible to detect and counteract various intrusions. SIEM is a combination of SIM and
SEM; it manages and analyzes logs in a manner similar to ESM. However, unlike EMS,
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ESM takes a lot of time to process a large number of logs, as it must analyze short logs
based on events and then process data based on a DBMS (Database Management System).
SIEM was developed to overcome this issue of a prolonged processing time. It can analyze
logs of data collected over a long period of time, as it uses big data processing technology,
and it can do so quickly by using indexing-based processing [29].

The number of drive-by-download attacks, which are used to infect systems, has
recently been increasing due to an increase in the rate at which web sites are accessed.
Thus, there is a need for early detection and prevention of this type of attack. Various
studies have attempted to develop such a method, including honeypots, which are widely
used. A honeypot is a virtual system that analyzes and detects threats. It detects and
blocks malicious codes by analyzing the behavior of the file that is transmitted from the
web browser and communicating with the web server in the virtual system. Honeypots
are classified as server-side honeypots and client-side honeypots depending on location.
The server-side honeypot is a honeypot that waits for attacks by external attackers, while
the client-side honeypot visits web sites through a crawler, collects web page codes and
downloaded files, induces infection, and analyzes malicious behavior based on the collected
information. Honeypots can also be classified into low-interaction client honeypots and
high-interaction client honeypots. The former can operate in simple script form, so it does
not require building a system, and it has the advantage of detecting known malicious
behavior quickly. One such low-interaction client honey pot is Monkey-spider, which
was developed by Mannheim University in Germany, which uses a Heritrix crawler to
visit suspected URLs and detects malicious code by analyzing the source code of the
downloaded website. However, low-interaction honeypots have a disadvantage in that
they cannot analyze drive-by-download attacks. A high-interaction client honeypot can be
used to build real-word systems to detect traffic on files that are downloaded after visiting
a web site, monitor the movement of network traffic on path changes and the registry
and file systems of a virtual environment, and monitor resource changes such as memory
information. This type of honeypot has a disadvantage in that it takes time, because it
performs analyses in greater detail than a low-interaction client honeypot. However, it can
detect attacks that exploit vulnerabilities in application programs, because the system is
implemented alone. For this reason, it is advantageous for the detection and prevention of
unknown attacks. Therefore, defenders tend to prefer high-interaction client honeypots
such as HoneyMonkey, Capture-HPC, etc. HoneyMonkey is a honeypot provided by
Microsoft Corporation that visits suspicious URLs using Internet Explorer, monitors actions
such as file and registry changes that occur during the execution of the generated file, and
prevents the system from being infected by preventing the downloaded malicious program
from running. Capture-HPC is a honeypot that uses VMWare, a virtual environment
machine, to detect unusual changes by monitoring the state of the system by visiting
suspicious URLs. In recent years, with the developments associated with the emergence
of the Fourth Industrial Revolution, the use of Honeypot, which was previously limited
to use with web pages, has also been used as a technology for cloud security. Moreover,
research aiming to design smart agents for cybersecurity by incorporating machine learning
technology is actively progressing [13,40–50].

The internal information leakage prevention technique prevents sensitive information
stored in systems in the network from being leaked to the outside. This is performed by
logging, searching for, and blocking important and confidential information by analyz-
ing packets transmitted to the outside via services such as web mail, web hard, and P2P.
However, the detection rate is low, and excessive detection occurs because it is difficult
to define important information, so this technique is not used often for actual filtering
purposes. Instead, it is used for post-tracking purposes through file archiving. Typical
examples include SCM (Secure Content Management), OCC (Outbound Content Compli-
ance), ILD (Information Leakage Detection and Prevention), and CMF (Content Monitoring
and Filtering). SCM is an integrated content security solution that provides four security
functions: anti-virus, anti-spyware, web filtering, and message security. OCC can provide



Appl. Sci. 2023, 13, 2894 15 of 32

the monitoring, encryption, filtering, and blocking of contents that are leaked to the outside
through IM (Instant Messaging), P2P, and FTP. ILD&P minimizes the illegal leakage of
sensitive information that is protected by legal measures such as HIPPA, GLBA, SOX,
the Japanese personal information protection law, and other technical measures; its aim
is to prevent the leakage of confidential information through IM and P2P. CMF detects
and blocks the leakage of confidential information by analyzing traffic that is delivered to
the inside and outside based on predefined rules and policies. These techniques control
the leakage of sensitive information by modulating the access, transmission permission,
contents, and formation of the data. However, it is difficult to detect the leakage of such in-
formation when the information is leaked using a benign service, or when it is compressed
and encrypted so that the information is not visible [11,13,51].

Secure USB is a technique for preventing an insider attacker from leaking internal
confidential information using a USB storage device. This protects internal information
from being leaked to the outside by monitoring the registered USB storage devices in the
internal network, using user authentication and encryption functions to prevent informa-
tion leakage due to theft or loss, and using erase functions to prevent device disassembly.
However, it has a limitation in that it cannot directly and intelligently detect certain dangers
such as the presence of confidential information [11,52–54].

Systems are also protected through anti-spam filters and other similar functions. The
main functions of a security control system are collecting information on security events
such as network intrusion and system/network intrusion, and then reporting them in
an integrated manner. Currently, security control systems utilize techniques that enable
immediate response to the cyber threats that occur every moment through the risk classifi-
cation of security events recorded by the security manager, normalization and rule-based
event collection, and integrated policy management. However, since only the detected
information is collected and analyzed by the interlocking security equipment, the detection
capacity of a security control system depends on the strength of the equipment it uses.
Moreover, due to the large number of security events that can accumulate in real time, there
is not enough time to analyze the authenticity of each attack despite the fact that experts are
in control. One false detection makes it more difficult to analyze the association between
attacks over a long period of time. A security control system is an open and enterprise-wide
integrated management platform based on multiple vendors that collects security events
from each device by collaborating with security devices such as firewalls, web firewalls,
and IDS, and it displays threat information according to predetermined patterns [26].

5.2. Pattern-Based Detection Method

Pattern-based detection methods have emerged because of the need to quickly inspect
and analyze malicious codes coming from the outside. These methods detect and block a
malicious code that matches patterns when the characteristics of known malicious codes are
defined as specific patterns. They can be classified into signature-based detection, misuse
detection, and malicious URL and IP detection according to the defined pattern.

The signature-based detection method detects malicious codes that match the characteris-
tics of previously analyzed malicious codes with specific signatures. Depending on the type of
signature, this method can be categorized into string signature, command frequency signature,
control flow graph (CFG) signature, byte sequence signature, opcode occurrence frequency,
and sequence signature techniques. The string signature uses ASCII code and Unicode as
signatures in a file, and it defines a specific signature based on a string stored in the DLL file
name, API name, data section, and text section. The command frequency signature uses the
frequency of occurrence of commands found in existing malicious codes as a signature and
defines the statistical distribution of the commands as a signature. However, its utility is limited
by the amount of experimental data that are available. The control flow graph (CFG) signature
represents the execution flow and structure of the code appearing in the code section of a file
as a CFG graph and also uses it as a signature. A block is used to divide the sequence of the
assembly code in the code section based on the branch instruction, and the technique recognizes
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a graph that appears as a vertex. The byte sequence signature generates sequences of bytes
stored in a file and defines it as a signature. The N-gram technique is mainly used for this
purpose. This technique defines the length of a byte sequence as N and then slides N sequences
of each file for comparison. The opcode occurrence frequency and sequence signature are
weighted based on the occurrence frequency of opcode in a suspicious file; an opcode with
no significance and low weight by noise is removed, and malicious code is detected by using
the cosine similarity based on the opcode sequence represented by the vector and frequency.
As detailed above, these signature-based detection methods are advantageous in that they can
quickly analyze and detect malicious codes by matching suspicious codes with similar portions
of defined signatures. To elaborate, these methods are able to detect malicious codes very
effectively, along with 50% of unknown malicious codes. Moreover, malicious codes which
have been circulated in small quantities or with a special purpose are 20% detectable by Gartner,
because more than 90% of the files that come into the network are conventional benign files and
malicious code [12,13,22,28,55–62]. However, the signature method cannot detect unknown new
malicious code due to the absence of a signature. This is because the signature method generates
signatures based on the characteristics of the analysis results of the malicious code. Moreover,
this method requires a lot of time to analyze malicious codes, along with more time to define
and update the signature. Moreover, malicious codes that use zero-day vulnerabilities cannot
be detected, and they are therefore difficult to respond to quickly [12,13,22,26,28,55–61,63–65].

Misuse detection is a method of detecting patterns corresponding to malicious code
and malicious behavior that have already been detected, and this is accomplished by
defining behavior rules and signatures as policies. This technique includes the signature
analysis, expert system, state transition analysis, and Petri Net methods, and it has the
advantages of a high detection rate and a fast detection speed, because malicious code is
detected based on defined rules. However, as with the signature-based detection method,
it is impossible to detect new and variant malicious codes without defined patterns and
zero-day malicious codes that occur before rules are defined [22,26,63–65].

An attacker can spread malicious codes by penetrating vulnerable web servers and
web sites, or by inducing a waypoint to spread malicious codes. Due to the active-X
vulnerability in web browsers and vulnerabilities in JAVA and Adobe Flash, users can be
infected with malicious codes through drive-by-download attacks when they access web
servers and websites while remaining completely unaware of the infection. The infected
system is used to conduct malicious actions such as theft of personal information, or used
as a waypoint for the next attack. In particular, the attacker can hide code that accesses a
web site such that it is not detected by a security program. These techniques manipulate
the hidden attribute provided by a tag such as an iframe in the HTML code of the web page
source file to prevent the user from recognizing the connection to the derived site. They
also utilize encoding and code obfuscation techniques to block the intuitive awareness of
string signatures in URLs and JavaScript code. In response, various measures have been
taken to prevent access to malicious web servers and websites, and malicious URL and
IP detection methods have been proposed. These methods compare the URL with the IP
address of the currently connected site based on a directory of known malicious URL and
IP addresses, and if they are found to match, the method identifies it as a harmful site, a
phishing site, or an unnecessary site, and thus blocks the connection [12,13,29,66,67].

5.3. Heuristic-Based Detection Method

The pattern-based detection method has the advantage of enabling fast detection
because it only compares defined signatures. However, there is a problem in that it cannot
detect new malicious code or variant malicious code without signatures. The heuristic-
based detection method for detecting variant malicious codes and new malicious codes
was developed to solve this problem. This method identifies specific behaviors of malicious
code, and it aids in the detection of variant malicious codes because it judges actions
without comparing signatures. The method used to identify specific behaviors involves
collecting commands related to file, registry, network communication, and resource usage,
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then determining the behavior of these commands as a heuristic signature and comparing
existing and variant malicious codes with known malicious codes. Through this comparison
of similarities, the heuristic detection method detects malicious code with simple changes,
such as modifications of several bytes. However, as it is difficult to define the criteria for the
comparison, benign programs are often identified as malicious code. The heuristic detection
method can be classified into static heuristic, dynamic heuristic, negative heuristic, and
generic algorithm methods [10,13,28,68–73].

The static heuristic detection method compares the heuristic signature of a file with a
previously defined heuristic signature based on information in the file without having to
execute the file [8,11,45,46]. The dynamic heuristic detection method defines and compares
various information and behaviors that occur when a file is executed; this method is also
referred to as run-time heuristic detection because files are detected as they are executed.
The files are executed in a virtualized area or an area separate from the operating system to
protect the system from infection during the detection process [10,13,70–72].

The negative heuristic detection method provides a way to define the heuristic sig-
nature of a benign file and allow for signature matching; this differs from the existing
heuristic detection method of detecting and blocking malicious behavior. Since this is a
whitelist-based detection method, it has the advantage of being able to detect new and vari-
ant malicious codes. However, it has a disadvantage in that malicious codes are detected as
benign programs [28,74].

The generic algorithm-based method detects variants that are similar to malicious
code that is already known. The degree of similarity is compared using a genetic algorithm
based on instructions written in the code segment of a program; an opcode instruction com-
parison method is mainly used. This method can be classified as a wildcard or mismatch
comparison method based on the means of comparison. The wildcard comparison method
compares the degree of similarity by processing the wildcard portions of the opcode of a
specific area while ignoring the portions that are changed. In this way, if malicious codes
are slightly transformed or modified, it is possible to detect variant malicious codes because
they have a high degree of similarity. Moreover, it is also advantageous in that there is
no need for an update because an existing signature is used to compare the degree of
similarity. However, when an obfuscation technique is used to prevent analysis of the
instructions, a malicious code cannot be detected because the files do not appear similar,
and the method cannot be used to detect a new (non-similar) malicious code. In recent
years, Android malware detection methods applying genetic algorithms have mainly been
studied, and Yildiz verified a malware detection rate of about 98% with a combination of
genetic algorithms and support vector machines [10,28,75–78].

5.4. Reputation-Based Detection Method

To address the issues inherent to the signature-based detection method (i.e., the
inability to detect variant and new malicious codes), user information such as suspicious
files, behavior patterns, and characteristics was collected, and a reputation-based detection
method that compares these data to an existing signature database was developed. The
main goal of this method is to detect new malicious code. It uses feedback from a large
number of users to determine the reliability of new files. The reputation information is
defined in terms of the number of users and producers, etc., and the accuracy and reliability
are determined according to whether or not reputation information is successfully obtained
and analyzed. During the detection process, when a new file is found in the system, this
method creates a unique value for the file using a hash function and transmits it to the server
to inquire whether it is malicious. If it is malicious, a neutralization code is returned. When
the eigenvalue of the new file is not retained, maliciousness is determined by behavior
analysis, dynamic analysis, and malicious URL analysis of the transferred file, and the
above process is executed based on the obtained result. It is therefore possible to detect
malicious code quickly when a unique value is defined and stored. Therefore, when a new
malicious code appears, it is identified instantly, and its reliability is judged according to
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its reputation, thus providing an improved detection method. However, this method has
some problems. For example, an agent program must be installed in the system to collect
reputation information; the method cannot be applied to detection technology that analyzes
network traffic because the detection is carried out by considering files. Further, this method
must be combined with other existing detection methods, such as signature-based and
heuristic-based detection methods, to determine whether or not certain information is
malicious because the method relies solely on reputation information. Further, due to the
increasing number of applications and web browser plugins, this method cannot cope with
various dynamic threats such as combinations of different types of vulnerability and the first
emergence of an unknown malicious code. This reputation-based detection method can be
classified into reputation-based detection and behavior-based detection methods [12,13,79].

The behavior-based detection method detects malicious behavior based on detailed
information such as stack and context when a real action is performed instead of a single
action. To overcome the problems of both false negatives and false positives, this method is
often combined with the reputation-based method. This method detects malicious code
that exploits vulnerabilities in document files such as HWP and PDF, as well as executable
files, because detection is based on behavior. It also detects malicious codes that utilize
web browser vulnerabilities, system patch files such as ws2help.dll, autorun commands
that are propagated via USB, droppers, and other malicious codes that damage target
systems. Further, when an unidentified process is found to be writing to the MBR area,
writing to the root of the disk drive, or causing serious problems to the system such as by
writing a host file, this method provides a function to confirm that the user is performing a
requested behavior [12].

The reputation-based detection method defines the reputation information of a file
based on the date of first discovery, the number of users, and the number of suspicious
actions. When new files and processes are executed, this information is used to verify the
reputation scores, and the user is warned about files and processes with low reputation
scores. On the other hand, files and processes with high reputation scores are considered
to be trusted and thus allowed to execute. In some cases, reputation scores are computed
based on suspicious behavior. Some examples of suspicious behaviors include when
an executed process deletes its own file or when processes are executed in an abnormal
address range [12].

5.5. Behavior-Based Detection Method

The signature-based, heuristic-based, and reputation-based detection methods aim for
malicious code detection. However, to apply these methods, information such as required
signatures must be analyzed by malicious code analysts. There are also limitations to the
ability of these methods to collect or analyze malicious code when the number of malicious
codes increases, and when the speed at which malicious code is manufactured is much faster
than the speed of analysis. It is also hard to analyze malicious codes realistically, because
certain techniques are used to disturb the analysis of malicious code. Therefore, researchers
have begun to analyze malicious behavior rather than analyzing the malicious file itself.
The behavior-based detection method is a technique for detecting malicious behavior that
occurs at the moment a file is executed. It represents an improvement upon the heuristic-
based detection method. Malicious behavior occurs not only in executable files, but also in
document files such as PDF, DOC, and HWP. The method determines the characteristics of
malicious behavior according to files, registries, networks, and processes. Some examples
of suspicious behavior include: when a DLL file and an .exe file are generated in a specific
folder, such as a temporary folder that is not generated by a benign file; when a registry
is registered for a specific service or a registry key value is altered to register startup
programs; when a connection to a specific network is attempted; and when an executable
file is executed to generate itself or an uncommon program such as a system program is
executed. Thus, the detection of malicious activity can overcome the limitations of existing
signature-based, heuristic-based, and reputation-based detection methods to detect new
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malicious code. Moreover, this method can use behavior to detect code variants and aid
in deriving the necessary information that must be applied to existing detection methods.
This is because an analyst can identify features such as the information and purpose of
a malicious code, as well as its operation process in the system and propagation path.
However, false negative and false positive results may be obtained as a result of irregular
behavior from benign users, the use of avoidance techniques to disrupt the analysis, and
the difficulty of detecting and responding at the kernel level.

This method can be classified into static, dynamic, and hybrid analysis methods
according to the specific type of analysis that is applied. Static analysis is used to analyze
behavior via reverse engineering using a disassembler and decompiler without the need
for actual execution of the file, and to analyze the overall structure and flow of the code
by examining the consistency of the code’s component and call relationships. For such an
analysis, when using a Windows operating system, a PE (Portable Executable) structure—
which is an executable file format—is used to extract the elements of each section, and then
the results are derived. To derive the information of the calling functions, the defender
analyzes the flow of the operation and determines malicious behavior by tracking the
control flow of blocks, which are API (Application Programming Interface) information
analysis included in the IAT (Import Address Table); extracting strings; and dividing the
code into smaller units. This method does not affect the analytical system, because it
does not directly execute the file, and it is possible to analyze the structure and operation
flow without being affected by the condition that the malicious code executes. However,
there are problems with this method. For example, automation is troublesome because
much of the analysis is manual, and it is therefore time- and labor-intensive; further, the
analysis is difficult when a file is encrypted and packed. Dynamic analysis is a method
of analyzing the characteristics that appear when a file is actually executed. This method
involves detecting malicious behaviors by analyzing processes and files, registry creation
and modification, network activities, and API call flow in an emulator and virtual machine
in such a way as to not affect the actual system. When the emulator and the virtual machine
are utilized, it is necessary to construct the environment and to prepare for API hooking in
order to analyze the API call flow. Through API hooking, the situation can be monitored by
collecting all of the information about API calling, and behaviors can be analyzed during
execution by tracking the file, registry, process, network connection, etc. Therefore, this
method is advantageous in that it is logically separated and does not affect the actual
system, which can quickly be recovered to its pre-infection state even if the malicious code
is executed, and the behavior can be accurately analyzed because the code is being executed
at the time of analysis. However, analysis is difficult when malicious code is executed in a
specific environment and under certain conditions, and only a part of the analysis can be
performed, rather than analyzing all execution processes.

To solve the problems of static and dynamic analysis methods, a hybrid analysis
method has emerged that solves the shortcomings of each analysis method and leverages
the advantages of each one. The authors of [80] developed a framework for the detection
of malicious code using both static and dynamic analysis methods. In addition, [81] uses
both static and dynamic analysis methods, but only static analysis is performed in the test
process whereas only dynamic analysis is used in the training process. By applying both
the static and dynamic analysis methods as needed, the effectiveness of malicious code
detection is increased [80–82].

Moreover, this method is classified into system-based and network-based detection
methods according to the analytical targets of the behavior. The system-based detection
method detects malicious behaviors based on the CPU, memory usage, and registry value
and device ID that are generated when the program is executed. The network-based
detection method analyzes network traffic and detects malicious behaviors stemming from
network connections and transmitted packets. Specifically, the system-based detection
method can be classified into the integrity check technique and behavior monitoring and
blocking method based on the precise method of detecting malicious behaviors. There are
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also other methods that use API call behavior detection, visualization, behavior-dependent
graphs, traffic characteristics, abnormal behavior detection, system call sequence state-
based detection, and fuzzy logic and genetic algorithms [10,13,26,28,30,83–94].

As advancements continue to be made in malware analysis methods, malware creators
use various obfuscation techniques, such as compression and encryption techniques, to hide
specific signatures or malicious segments. Entropy-based malicious code analysis methods
have been introduced to detect obfuscated malicious codes. Obfuscated malware, such as
compressed and encrypted malware, has higher entropy than conventional malware. It is
therefore possible to detect malicious codes due to the presence of high-entropy files. Re-
cently, to improve the entropy-based malicious code analysis method, more reliable results
were derived by introducing different entropy criteria and various entropy measurement
methods for each file format, and the methods were verified to be models with optimal per-
formance by applying various machine learning models [95,96]. However, entropy-based
malicious code detection methods have several limitations. First, false positive detection
of an actual encrypted file as a malicious code may occur. Second, the entropy of the
plaintext for each file format is higher than that of the encrypted file. Third, it is difficult to
calculate the entropy of files that have large sizes. Fourth, ciphertexts to which encoding
methods such as Base64 are applied are limited in terms of detection, as the characteristics
of ciphertexts disappear and entropy decreases. Fifth, false positives are to be found in
compressed files in which features similar to those of ciphertexts appear. Finally, the appli-
cation of partial encryption reduces entropy, which makes detection difficult, and there is a
problem in that measuring the entropy of a pure file must precede each file format [97,98].
To address these problems, [99] proposed a method for the automatic quantification of
entropy in files, [95,100] introduced a method for detecting entropy by dividing a file into
multiple zones and a method for analyzing only the header of the file [95,96,99–103].

The integrity check technique checks the reliability of the data and executable files in
a system. This method uses a hash function such as MD5 (Message Digest 5) to generate
unique values for the executable files and folders of an uninfected system, then analyzes the
behavior of malicious code by detecting changes in the values of existing files and folders
or newly created files and folders by periodically comparing the eigenvalues. Therefore,
when the eigenvalue of a file or folder is changed or not defined, the system and executed
file are suspected of performing malicious actions. As a result, unknown new malicious
codes can be detected. However, if the system is already infected, it is difficult to cope with
and recover from the infection [10,28,83].

The behavior monitoring and blocking method monitors all activities that occur in a
system, and blocks executable files by tracking the subject of the action when malicious
actions occur. If a malicious action is detected, information about the file is displayed to
the user, who can then decide whether or not to block the malicious action. In the case of a
file executed by the user, the execution of the file is allowed to continue. Malicious code
is detected and prevented by blocking the execution of files that are not executed by the
user. In this method, malicious behaviors are determined based on API call processes and
access objects, and studies have been conducted to compare the behavior graphs that are
generated based on this information. The behavior monitoring and blocking method can be
subdivided into the following categories: spear phishing email surveillance, frequency of
occurrence of opcode sequence, common behavior graph showing malicious code execution
behavior, framework based on machine learning methods, and association with registry and
process information. Dewan proposed a spear phishing email surveillance method. This
method combines the information contained in a social service profile with the information
of an e-mail, including its title, contents, and attachments, to determine whether the e-mail
is malicious, as e-mails represent one of the main paths through which malicious codes
infect systems. This method detects spear phishing e-mails using various machine learning
algorithms. Experimental results have shown that this method does not detect actual spear
phishing e-mails, but it seems that such attempts are very helpful in detecting malicious
codes. The frequency of occurrence of the opcode sequence method was proposed by Igor
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Santos. This method detects malicious codes by comparing the frequency of occurrence
of opcodes based on the relevance and frequency of opcodes in a code sequence, which
is based on how often a sequence appears. The common behavior graph showing the
malicious code execution behavior method was proposed by Park. This method creates a
KOBG (Kernel Object Behavior Graph), which is a behavior graph that represents kernel
objects and attributes them the nature of malicious codes that invoke system calls for attack.
Then, malicious behaviors are detected by comparing the graph generated from malicious
codes with a weighted behavior graph. The framework based on the machine learning
method was proposed by Nir Nissimet. This method uses static analysis to represent
malicious and benign executables. An association with registry and process information
was proposed by Kim. This method analyzes the behavior patterns by examining the
time, calling process, function, and registry key based on the characteristics of the registry
and process information that is accessed by the malicious codes to perform malicious
behaviors [10,28,71,76,86,89,90,104,105]. The API call behavior detection method generates
threat indicators that are used to calculate a risk index; malicious behaviors are detected
by analyzing the behavior of programs and files based on the threat indicators, which
serve as indicators of correlation analysis. These threat indicators can be classified into risk,
warning, and safety stages. Programs are installed and executed in the safety stage, but
they are blocked in the dangerous stage [11].

Visualizations can be classified into tree map-based, grayscale of binary content,
function call graph, control flow graph, and behavior-dependent graph visualizations.
Trinius proposed tree map-based visualization, which identifies malicious behavior and
classifies malicious targets into processes, files, and registers. When the same behavior is
detected by comparing tree maps, malicious code is detected [13,106]. The grayscale-based
visualization of binary content was proposed by Nataraj. Binary contents that appear in
malicious code are visualized as grayscale images, and malicious code is determined based
on the degree of visual similarity [107–109]. A function call graph (FCG) is a graphical
representation of functions contained within a program, which is a directional graph on
which the edge indicates a function call. In addition, Hanssen and Chan recently proposed a
malware detection method that extracts vectors from function-call graphs based on function
clustering. A control flow graph (CFG) was proposed by Eskandari. This method detects
variant malware using a control flow graph [13,110].

The behavior-dependent graph was proposed by Fredrikson. This method detects
malicious codes by comparing existing behavior-dependent graphs with the behavior graph
extracted from an incoming file. In another study, the traffic characteristic method was
proposed by Xuzian. This method defines the behaviors of traffic generated by malicious
codes by detecting different parts of the traffic characteristics between benign traffic and
malicious traffic [13,111]. The abnormal behavior detection method generates a model of
benign behavior, then determines malicious behaviors when observing actions that have
not been included in the model. Data mining and statistical methods are used to generate
models of benign behaviors [22,112,113]. The system call sequence state-based detection
method analyzes benign behavior and abnormal behavior by examining the patterns of the
correlation of states based on a sequence of system calls. This method defines a sequence of
system calls that are called during a specific time period as a state, and it detects malicious
codes based on patterns that indicate transitions of the classified state transitions. These
can be divided into eight categories (file system, kernel, memory management, and so
on) [22,114]. The use of fuzzy logic and genetic algorithms was proposed by Kaur. This
method detects abnormal behaviors by defining the actions of a benign user by applying
fuzzy logic to system log files. It is possible to generate new user behavior rules by applying
a genetic algorithm to optimize user behaviors [22,115].

5.6. Virtualization-Based Detection Method

The behavior-based detection method detects malicious behaviors involving target
files, such as executable files and document files. However, the system can be infected
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in this process because it involves executing the file on the actual system. To solve this
problem, it is necessary to create an environment that is separate from the system in which
malicious behaviors can be analyzed in a safe space. A virtualization-based detection
method has emerged to accomplish this. This method is closely related to the dynamic
heuristic detection method. The virtualization-based detection method tracks malicious
behaviors by monitoring the behavioral changes that occur when a file is executed in the
same manner as the behavior-based detection method. The main difference is that it runs
in an environment that is physically and logically isolated from the actual system. In this
way, it is possible to protect the system from actions caused by untrusted programs, and
the system is neither infected by malicious codes nor propagates such codes to the outside.
Therefore, the characteristics of this method are very similar to those of the behavior-based
detection method. However, the two differ because the former method makes it possible to
construct a virtual space in an actual system to obtain execution and control information
and to examine executable files. Moreover, a study was conducted in parallel with static
analysis to achieve more reliable detection. Specifically, the tint analysis method, which
analyzes the flow and purpose of data used in the process of execution by inserting the code
to be analyzed in the middle of the execution code, was used instead of simply analyzing
the code flow and behavior. This method is classified into an emulator and a sandbox
method depending on how the virtual environment is constructed [10,13,28,85,86,116–121].

The emulator, which is an alternate launcher, is used to indirectly execute a file via
virtual hardware based on a virtual environment and a virtual hardware image; this is also
referred to as code emulation or CPU emulation. This method is advantageous in that the
actual system is not affected, and the method can effectively detect unknown malicious
codes due to the above characteristics [10,86]. This method analyzes the behavior that
occurs when the file is executed based on the emulation controller that controls the virtual
environment supporting the CPU and memory in the system.

The emulator creates a virtual space, but the sandbox collects information by running
the file on the real system and detects malicious behaviors by monitoring information
related to the activities of a process, a file, and a network. This method leaves the system
vulnerable to infection by malicious codes because it involves executing the file in the actual
system. Nevertheless, the system is not practically compromised by infection because
the calling process is controlled by a specific tool. Representative products and systems
include CWSandbox, Norman Sandbox, and Anubis. CWSandbox injects VMMonitor.dll,
a monitoring module, into the thread of the file to be executed, then traces all of the
procedures that are executed in the module and passes this information to CWSandbox.
Accordingly, CWSandbox prevents the system from being infected by transmitting a benign
return value to the operating system if the code is benign. Any malicious code that is
detected is instead filtered. Despite these advantages, attackers have created new malicious
codes to prevent detection in a virtualized environment, while sandbox services based on
free and open-source software, such as CWSandbox, Zerowine, and Cuckoo Sandbox, have
become more generalized. Hence, the defender cannot cope with this problem. Moreover,
malicious codes are not detected when techniques for bypassing detection of malicious
code are used; examples of such techniques include the human interaction technique, which
only operates when performing specific actions; the anti-debugging technique, which does
not perform malicious actions when the tool that analyzes malicious code is executed;
and the anti-virtual machine technique, which does not perform malicious actions when
executed in a virtual environment. Detection can also be bypassed if the malicious code is
packed, if the malicious code has a built-in latency period that makes it wait until it has
passed through the sandbox, and if the malicious code has a time trigger that causes it to
run only on certain dates and times [10,13,85,118–121].

The machine learning-based malicious code analysis method is similar to the big data-
based detection method. It detects malicious codes based on features that appear in a large
amount of data. The biggest difference between the two methods is that the former learns
a model. Machine learning-based malware detection methods have emerged to address
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the fundamental problems associated with traditional malware detection methods, such
as security systems, pattern-based detection, heuristic-based detection, reputation-based
detection, behavior-based detection, virtualization-based detection, anomaly detection, and
big data-based detection. The known problems with existing methods include the inability
to detect unknown new and variant malware and difficulty in detecting and counteracting
zero-day attacks in pattern-based detection; high false positive and false negative rates
caused by difficulty defining similarity criteria in heuristic-based detection; the need to
install an additional program to obtain reputation, the difficulty of detection using network
traffic analysis, and the requirement for fundamental combinations with other detection
methods due to high false positive and false negative rates in reputation-based detection;
the need to spend a lot of time and effort on manual analysis of malicious code and difficulty
analyzing malicious code that is encrypted or packed in static analysis; difficulty with
malicious code running in specific environments and conditions in dynamic analysis; the
need for additional resources to reduce the false positive and false negative rates and
unsuitability for use with unstructured data in anomaly detection; and dependence on the
validity and size of the data in big data-based detection. In attempts to overcome these
limitations, various malicious code detection methods based on machine learning have
been researched. Machine learning can be classified into supervised learning, unsupervised
learning, and reinforcement learning according to the learning method, and various models
are used for learning [73]. Supervised learning is used to infer a function from training data
that is used in regression analysis to predict the functional relationship between different
data classes. Unsupervised learning differs from supervised learning, where the target
value of the input value is not given. Reinforcement learning is a method of choosing the
action or sequence of actions that provides the most reward among various options.

Various machine learning models have emerged, as described above, and they can
be used in conjunction with existing malicious code detection methods, such as security
control system, pattern-based malicious code detection, and heuristic-based detection.
The recent trend in malware detection and prevention research is not to propose new
detection methods, but rather to apply machine learning algorithms to existing malware
detection methods. Hence, future research examining malicious code detection is expected
to produce more effective methods of detecting and preventing malware using machine
learning models [9,122–127].

5.7. Anomalous Symptom Detection Method

Existing pattern-based, heuristic-based, reputation-based, behavior-based, and
virtualization-based detection methods can detect and prevent malicious codes. How-
ever, existing methods cannot adequately defend against penetrating attacks that utilize
unknown attack techniques, such as APT attacks, as these methods require a lot of time
to collect various types of information. To solve these problems, a method for detecting
anomalous symptoms in the system has been proposed. This method uses correlation
analysis to detect anomalous symptoms by collecting and integrating logs of activity in
the system. In particular, this requires detection techniques at a stage where the system is
infected by malicious code, the detection of unknown new malicious code, and techniques
to determine whether traffic is benign or abnormal. To achieve this, techniques for analyz-
ing network behavior and state have emerged, as have intelligent security technologies.
The technique for analyzing network behavior is a method of detecting malicious behav-
ior based on the behavior of a large-capacity and real-time network of various systems,
protocols, and users. The technique for analyzing network state is a method of analyzing
malicious behavior based on the system of the presently connected or requesting network
and its state changes. Modern intelligent security technology analyzes threats in real time
by integrating these types of information and methods. Therefore, certain information
must be collected before this method can be used. The characteristics of this information
are defined by applying statistical techniques to data, such as a profiling technique for the
extraction of meaningful information and a data mining technique for the extraction of
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statistical rule patterns from a large amount of data. Nevertheless, despite these advantages,
it is technically difficult to collect large-capacity and high-speed traffic from a network or
to analyze the correlations in this traffic, because the system is exposed to threats if the
security system is not capable of real-time processing [13].

5.8. Data Analysis-Based Detection

Data analysis-based detection detects malicious codes based on features that appear
in a large amount of data. This type of detection can be sub-classified into a big data-based
detection method and a machine learning-based detection method according to the data
analysis method.

To detect anomalous behaviors, big data technology is used to detect malicious ac-
tivities based on massive amounts of network traffic and logs. As a result, big data
technology, which is capable of collecting and analyzing a large number of logs, has been
combined with security technologies in earnest. Big data technology prevents and predicts
threats based on logs and traffic. Some programs that have been used for this purpose
include Hadoop, Map Reduce, and R as an open-source option. This method differs from
the anomalous symptom detection method, as it allows for not only effective and quick
analysis through the reprocessing of logs, but also intuitive determination of the results
through visualization. Detection methods using big data can be classified into real-time
monitoring, intelligence on threats, behavior profiling, data and user monitoring, appli-
cation monitoring, and analysis and interpretation methods. The real-time monitoring
technique involves tracking attacks on system components and monitoring user activities
in application programs. The intelligence on threats technique intelligently detects various
threats and attack patterns to accurately recognize even small amounts of malicious traffic
that has been disguised as benign traffic. Behavior profiling is used to detect anomalous
symptoms by defining association rules based on well-defined abnormal conditions. The
data and user monitoring technique detects when sensitive information and privileged
user profiles are being accessed by monitoring user activity and data. The application
monitoring technique monitors the activity of abnormal applications. The analysis and
interpretation technique determines abnormal behaviors from the characteristics of infor-
mation collected from various sources using machine learning, data mining, and network
mining techniques [23,29,128–130].

5.9. Other Detection Methods

Other detection methods (i.e., additional measures to detect malicious codes) include
the packer detection and unpacking techniques as well as the malware-clustering technique.
The packer detection and unpacking techniques detect and unpack a packer to neutralize a
packing technique that modifies or encrypts code to prevent malicious code from being
analyzed. The malware-clustering technique analyzes the correlation between a large
number of malicious codes to detect variant malicious codes, and it collects information
using information calls for malicious actions. Recently, Mi-Jung Choi [131] proposed an
all-in-one framework that includes packer detection, unpacking technology, and malicious
code detection all together [13,131].

5.10. Analysis of Advantages and Disadvantages of Malicious Code Detection Methods

Based on the results of the above analysis, we compare and analyze the advantages
and disadvantages of different malicious code detection methods; the results are presented
in Table 4. The O, ∆, and X symbols indicate whether malicious code types—such as
analyzed malicious code, new malicious code, and variable malicious code and packing
or encryption—can be detected by each malicious code detection method (the O symbol
means it is detectable, X is not detectable, and ∆ is detectable, but depending on the data,
the detection accuracy is relatively low or difficult).
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Table 4. Advantages and disadvantages of various malicious code detection methods. (O: detectable, X: Undetectable, ∆: Dependent).

Methods Information for
Detection

Malicious Code Types Detection Characteristics

ProblemsAnalyzed
Malicious

Code

New
Malicious

Code

Variant
Malicious

Code
Packing or
Encryption

Detection
Speed

Detection
Rate

False Negative
and False
Positive

Pattern
Signature

(string, command,
sequence, graph)

O X X X Fast

Analyzed malicious
code: High

New malicious code: Low
Variant malicious code: Low

Low Update rules and policies
required pre-analysis

Heuristic
Behavior

(file, registry, network
communication,
resource usage)

O X O X Fast

Analyzed malicious
code: High

New malicious code: Low
Variant malicious code: High

High
Need for definition of
similarity comparison
Require pre-analysis

Reputation

Reputation
(date of first discovery,

number of users,
number of

suspicious actions)

O ∆ ∆ X Fast

Analyzed malicious
code: High

New malicious code: Low
Variant malicious code:

Medium

High

Need for agent installation of
reputation collection

Not applicable to
network traffic

Behavior

Behavior
(system, network, call
flow and correlation)

O O O ∆ Late

Analyzed malicious
code: High

New malicious code: High
Variant malicious code: High

High Difficult to detect applied
anti-debugging and

anti-virtual
machine techniques

Difficult to detect APT attack;
high cost and time spent

transforming data

Visual information (tree
map, binary contents,

FCG, CFG, BDG)
O O O ∆ Late

Analyzed malicious
code: High

New malicious code: High
Variant malicious code: High

Medium

Anomalous
symptom

Log
(correlation) O O O X Late

Analyzed malicious
code: High

New malicious code: High
Variant malicious code: High

Medium

Exposed to threats when
real-time processing

is disabled
Difficult to analyze and

detect in high-speed traffic

Big data Traffic and Log
(probability, statistics) ∆ ∆ ∆ ∆ Late

Analyzed malicious
code: Medium

New malicious code: Medium
Variant malicious

code: Medium

Medium Requires a lot of time for
learning data

Performance difference
according to the quantity

and quality of training data
Machine learning

All information
(signature, behavior,

visual data, reputation,
log, traffic)

O O O O Fast

Analyzed malicious
code: High

New malicious code: High
Variant malicious code: High

Low
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We find that most detection methods cannot detect packed or encrypted malicious
code. The behavior-based detection method requires unpacking and decryption. All
detection methods detect known malicious codes. However, the pattern-based detection
method cannot detect new malicious codes and variant malicious codes, because it is based
on patterns that have already been found in known malicious codes. The heuristic-based
detection method also has a limitation in that it cannot detect new malicious codes, as is
the case with the pattern-based detection method. The reputation-based detection method
and the big data-based detection method (two data analysis-based methods) cannot detect
new malicious codes and variant malicious codes either. This is because the reputation-
based detection method identifies malicious code based on the reputation collected from
users. For this reason, if incorrect reputation information is included, then this method
will not be able to detect new malicious codes. The big data-based detection method and
machine learning-based detection method (two data analysis-based methods) rely on the
data used for learning. For this reason, detection is difficult when there is insufficient
data or when features cannot be extracted to detect new malicious codes. In terms of
detection rate, the pattern-based detection method, heuristic-based detection method,
and reputation-based detection method are all fast, because they simply compare specific
patterns. Meanwhile, the conventional behavior-based, visualization-based, anomalous
symptom, big data-based, and machine learning-based detection methods are slower. This
is because the behavior-based detection method and anomalous symptom detection method
require time to determine malicious behavior, while the big data-based detection method
requires time for learning. The various detection methods differ in terms of detection
rate and false negative and false positive rates because of the different characteristics of
each method. In particular, among the detection methods based on data analysis, the
machine learning-based detection method has more severe deviations in detection rate
due to false positive and false negative results depending on the quantity and quality of
training data, and it requires a large amount of information and time for initial learning.
However, when the initial learning is completed, this method has a very fast detection
speed and detects known, new, and variant malicious codes, and it can be applied to detect
all kinds of malicious codes, such as through pattern, behavior, visualization, reputation,
and anomalous symptom analysis.

6. Conclusions

In this paper, we analyzed attack scenarios based on attack cases to detect penetrating
malicious codes via network and system, and we surveyed and analyzed attack techniques
used in real attack scenarios. Based on the results, we classified malicious code detection
techniques into security control system, pattern-based, heuristic-based, reputation-based,
behavior-based, virtualization-based, and anomalous symptom detection methods, and we
classified big data-based and machine learning-based detection methods into data analysis-
based methods. Each malicious code detection method has its own pros and cons, as well
as unique limitations. The defender should employ a proper combination that considers
the system and the network to which each method is applied based on the characteristics
and environment of the system. The malicious code detection method classification and
analysis in this paper is expected to provide a basis for further research into the detection
and prevention of malicious codes.
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