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Abstract: Multiple station passenger flow prediction is crucial but challenging for intelligent trans-
portation systems. Recently, deep learning models have been widely applied in multi-station pas-
senger flow prediction. However, flows at the same station in different periods, or different stations
in the same period, always present different characteristics. These indicate that globally extracting
spatio-temporal features for multi-station passenger flow prediction may only be powerful enough
to achieve the excepted performance for some stations. Therefore, a novel two-step multi-station
passenger flow prediction model is proposed. First, an unsupervised clustering method for station
classification using pure passenger flow is proposed based on the Transformer encoder and K-Means.
Two novel evaluation metrics are introduced to verify the effectiveness of the classification results.
Then, based on the classification results, a passenger flow prediction model is proposed for every
type of station. Residual network (ResNet) and graph convolution network (GCN) are applied for
spatial feature extraction, and attention long short-term memory network (AttLSTM) is used for
temporal feature extraction. Integrating results for every type of station creates a prediction model
for all stations in the network. Experiments are conducted on two real-world ridership datasets. The
proposed model performs better than unclassified results in multi-station passenger flow prediction.

Keywords: station classification; multi-station passenger flow prediction; transformer encoder;
K-Means; GCN; attention LSTM

1. Introduction

With the rapid development of urban public transportation (UPT), passenger flow
prediction is very significant in meeting passengers’ travel needs, which is one of the
important issues in improving the UPT services.

Recently, the research on passenger flow prediction has been converted from a sin-
gle station to multiple stations because multi-station passenger flow prediction is more
applicable in UPT. Due to the complex spatial features and time-varying traffic patterns
of networks [1], passenger flow at a single station has been simultaneously affected by
the spatio-temporal features of historical passenger flow at the directly or indirectly con-
nected stations in the whole network [2]. Thus, a single station passenger flow prediction
model could not dynamically and effectively predict the spatio-temporal distribution and
congestion in the entire network, which limits the real-time passenger flow organization,
formulation, and adjustment of the operation management strategy [3]. To this end, more
and more researchers have devoted themselves to passenger flow prediction for multiple
stations. How to deeply capture the complex spatio-temporal features to make a more
accurate passenger flow prediction model for the whole network stations is becoming a
hotspot in recent studies.

In addition, many well-performing deep learning models continue to emerge, focusing
on capturing spatio-temporal correlation between stations by constructing spatio-temporal
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feature learners (STFL) in traffic inflow and outflow prediction [4]. Bogaerts et al. [5]
proposed a deep neural network that simultaneously extracted the spatial features using
graph convolution neural network (GCN) and the temporal features using long short-term
memory (LSTM) to make both short-term and long-term traffic flow predictions. Li et al. [6]
proposed a deep learning model combining convolutional LSTM (ConvLSTM) and stack
autoencoder (SAE) to predict the short-term passenger flow of URT for multiple stations.
ConvLSTM was used to extract spatio-temporal features of passenger flow based on thirteen
external factors related to passenger flow. Zhang et al. [7] proposed a deep learning-based
model named GCN-Transformer, which comprised the GCN for spatial features extracting
and the modified Transformer for temporal features extracting for short-term passenger
flow prediction of multiple stations.

The above models are all hybrid models which capture the spatio-temporal features
simultaneously to predict passenger flow at stations in the whole network. However, the
passenger flow at the same station in different periods presents different characteristics,
and various stations in the same period also have different passenger flow changes. We
illustrate the differences by using Figure 1 as an example.
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Figure 1. Inflow and outflow at the two stations in the Xiamen BRT. (a) Xianhou Station; (b) Dongzhai Station.

Figure 1a,b show one-week inbound and outbound passenger flow from 4 March 2019
to 8 March 2019 at Xianhou Station and Dongzhai Station in the Xiamen bus rapid transit
(BRT), respectively. Both stations had clear characteristics of inbound and outbound tidal
flows in their respective time intervals, but the difference was that the largest volume of
inflow and outflow between the two stations was nearly 16 times in the same period. Their
variability was also quite different.

These indicate that globally extracting the spatio-temporal features for multi-station
passenger flow prediction in the whole network may not be powerful enough to achieve
the expected performance for every station [8]. Making a more accurate multiple-station
passenger flow prediction model for every station is necessary and significant.

Furthermore, most existing studies on urban metro station classification were mainly
based on the features of land location [9], point of interest (POI) [10–12], population distribu-
tion [11], station location [11,13], length of road network [11], passenger flow [9,11,12,14,15],
and their combinations. These studies were mainly divided into two directions [16]. The
first was “place oriented,” which focused on land use function. And the other was “station
oriented,” which focused on station function. To our best knowledge, passenger flow is
used as one of the factors in many existing studies for station classification, not as the only
factor. There needs to be a study that uses passenger flow as the only feature for multi-
station classification based on the similarities of passenger flow among stations. Thus, the
existing research on station classification was much more applicable for urban planning and
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station layout planning, rather than for passenger flow prediction. Furthermore, the previ-
ous studies preferred to visualize the passenger flow in the same type of station [9,11,13,14]
to verify the effectiveness of station classification, which were not objectivity.

Considering the historical passenger flow is the most important influence factor in
passenger flow prediction. Some scholars have classified passenger flow in different time
intervals for passenger flow prediction. For example, Wang et. al [17] designed an adaptive
K-Means to cluster the time intervals with similar passenger flow at Shenzhen North
Railway Station. Passenger flow belonging to the same category had the same time interval
tag. Then, this tag combined with the historical passenger flow was used in the passenger
flow prediction task. Tan et al. [18] used K-Means to divide the 10-month passenger flow
into 16 categories, and then built 16 sub-prediction models at Chengdu East Railway Station.
Although the above studies have classified passenger flow classification to further improve
the accuracy of passenger flow prediction, they are only for a single station.

To sum up, there are few studies that applying station classification on multi-station
passenger flow prediction. Inspired by the fact that the same types of stations have more
similar passenger flow, classifying the stations based on the pure passenger flow and
then predicting the passenger flow for every type of station with similar flows may be a
more effective strategy to improve the prediction accuracy; therefore, we have proposed a
novel multi-station passenger flow prediction model that consists of a Transformer encoder,
K-Means, Residual Network (ResNet), graph convolution network (GCN), and attention
long short-term memory ((Transformer-K-Means)-(ResNet-GCN-AttLSTM)), which can
better extract the spatio-temporal features for the same types of stations with similar flows
in the whole network. This model uses a two-step strategy: classification and prediction,
to achieve a better performance for multi-station passenger flow prediction. To our best
knowledge, this is the first time to apply station classification before the downstream task of
passenger flow prediction. The main contributions of this paper are summarized as follows:

(1) We propose a novel unsupervised clustering method for station classification using
pure passenger flow data. First, this method applies a Transformer encoder to extract the
spatio-temporal features from the inflow and outflow data, and then it applies the extracted
spatio-temporal features to K-Means for station classification.

(2) Quantitatively, two novel evaluation metrics have been introduced to verify the
effectiveness of the results of station classification.

(3) Based on the results of station classification, a deep spatio-temporal network
framework, ResNet-GCN-AttLSTM, for passenger flow prediction at each type of station
has been proposed. By integrating the passenger flow prediction results of every type of
station, a novel passenger flow prediction model for all stations in the whole network is
constructed. We implement the proposed model on two real-world ridership datasets to
demonstrate its performance.

The remainder of the paper is organized as follows. Section 2 provides the proposed
methodology in detail. In Section 3, two real-world ridership datasets in the Beijing metro
and the Xiamen BRT are presented. The performances in station classification and passenger
flow prediction for multiple stations are provided extensively. Finally, conclusions are
drawn and future research directions are indicated in Section 4.

2. Methodology

In this section, we introduce the detailed steps for the construction and combination
of the proposed model ((Transformer-K-Means)-(ResNet-GCN-AttLSTM)). As shown in
Figure 2, it consists of two blocks: the classification block and the prediction block. The
classification block extracts the deep features from the inflow and outflow data based on
the Transformer encoder, then classifies the stations based on K-Means. A prediction block
is used to predict the inflow for each type of station, and then integrate them as the final
result for all stations in the whole network.
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As shown in Figure 1, the inflow and outflow at the different stations, even at the same
station, are very different. Inflow prediction is more significant for avoiding congestion
among stations. Thus, we use both the inflow and outflow data in the classification block
to predict the inflow in the prediction block.

2.1. Classification Block

A classification block is used to classify all the stations into several categories in the
whole network. Transformer Encoder is used for feature extraction from the inflow and
outflow data, and then the extracted feature based on Transformer Encoder will be sent to
K-Means for station classification.

2.1.1. Transformer Encoder

The Transformer is wholly based on the attention mechanism, which can simulta-
neously obtain global and weighted information. Moreover, its multi-head mechanism
can map input features from different perspectives. Undoubtedly, its expression ability
becomes stronger, which is able to better extract the deep features for time-series prob-
lems [16]. Inspired by its powerful ability, we apply Transformer for feature extraction to
achieve better clustering results for station classification with the pure passenger flow data
in this paper. Furthermore, Transformer is mainly composed of an encoder and a decoder.
Our research focuses on the task of passenger flow feature extraction rather than natural
language processing (NLP) tasks, so we only use the encoder.

To ensure the effectiveness of station classification, we use more than one week of
inflow and outflow data as the inputs. As shown in Figure 2, the inflow and outflow data
will be sent into the Transformer encoder, which can be expressed as a matrix XP

S_W,T shown
in Equation (1).

XP
S_W,T =



xP
1_1, t1

xP
1_1, t2

xP
1_2, t1

xP
1_2, t2

· · ·
xP

1_1, tM

xP
1_2, tM

...
...

. . .
...

xP
S_W, t1

xP
S_W, t2

· · · xP
S_W, tM


(1)
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IC = X In f low
S_W,T

∣∣∣∣∣∣XOut f low
S_W,T (2)

where S is the number of stations in the whole network, W is the number of weeks, and
M = DS× days is the number of time intervals during a week. Daily sample data (DS) are the
number of time intervals per day; days are the number of days during a week. T = {t1, t2, . . . , tM}
is a series of time intervals in a week. P ∈{Inflow, Outflow} refers to the inflow or outflow
patterns. X In f low

S_W,T ∈ R(S×W)×(DS×days), XOut f low
S_W,T ∈ R(S×W)×(DS×days) represent the inflow

data and outflow data, respectively. Inflow and outflow data will be concatenated by
column, which is the inputs in the Transformer encoder (IC ∈ R(S×W)×(2×DS×days)) shown
in Equation (2).

(1) Normalization

First, IC is standardized as (IC)SD based on Equation (3).

(IC)SD =
IC − (IC)mean

(IC)std
(3)

where (IC)mean is the mean value of IC; (IC)std is the standard deviation of IC.
(IC)SD ∈ R(S×W)×(2×DS×days) with two dimensions will be transformed to
(IC)SD_Day ∈ R(S×W)×days×(2×DS) and (IC)SD_Interval ∈ R(S×W)×DS×(2×days) with three
dimensions, respectively.

(2) Positional Encoding

After that, we follow the positional encoding in the original Transformer model [16]
to realize the position encoding of (IC)SD_Day and (IC)SD_Interval as PE

(
(IC)SD_Day

)
and

PE
(
(IC)SD_Interval

)
based on Equations (4) and (5), respectively.

PE(pos,2i) = sin(
pos

10000
2i

dmodel

) (i ∈ (0, 1/dmodel, pos ∈ (1, S×W)) (4)

PE(pos,2i+1) = cos(
pos

10000
2i

dmodel

) (i ∈ (0, 1/dmodel, pos ∈ (1, S×W)) (5)

where dmodel in Equations (4) and (5) is set as 2×DS, 2× days in (IC)SD_Day and (IC)SD_Interval,

respectively. PE
(
(IC)SD_Day

)
∈ R(S×W)×dmodel (dmodel = 2× DS), and

PE
(
(IC)SD_Interval

)
∈ R(S×W)×dmodel (dmodel = 2× days) are two dimensions, respectively.

(3) Multi-head Attention

Take PE
(
(IC)SD_Day

)
for example, PE

(
(IC)SD_Interval

)
has the same processing.

PE
(
(IC)SD_Day

)
and PE

(
(IC)SD_Interval

)
will be transformed to Qi, Ki, and Vi based

on Equations (6)–(8), respectively. We use a particular attention called “Scaled Dot-Product
Attention” [16]. The input consists of Qi and Ki with both dimensions dk and Vi with
dimension dv. The term dv is the dimension of output. Then, Qi, Ki, and Vi will be
input into the multi-head attention layer to calculate the attention scores (headi) based on
Equation (9) for every head. By concatenating the headi by column, Iatt_Day and Iatt_Interval
will be obtained as the outputs based on Equation (10), respectively.

Qi = PE
(
(IC)SD_Day

)
×Wq

i (6)

Ki = PE
(
(IC)SD_Day

)
×Wk

i (7)

Vi = PE
(
(IC)SD_Day

)
×Wv

i (8)
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headi = ∑N
i Attention

(
Qi, Ki, Vi

)
= softmax

(
Qi(Ki)T√

dKi

)
Vi (9)

Iatt_Day = (head1|| head2, . . . , ||headN)Wo (10)

where Wq
i∈ Rdmodel×dk , Wk

i∈ Rdmodel×dk , Wv
i∈ Rdmodel×dv , and Wo ∈ R(h×dv)×dmodel are

the trainable weights. The terms dk , and dv are the dimensions of Ki and Vi, respec-
tively. N represents the number of heads, i ∈ [1, N]. Iatt_Day ∈ R(S×W)×(2×DS) and
Iatt_Interval ∈ R(S×W)×(2×days) are the outputs of multi-head attention.

(4) Residual Connection and Layer Normalization

Iatt_Day and Iatt_Interval will be sent to a residual connection [19] as Oatt_Day and
Oatt_Interval based on Equations (11) and (12), respectively, and then followed by layer
normalization as

(
Oatt_Day

)
SD and (Oatt_Interval)SD based on Equation (3), respectively.

Oatt_Day= Iatt_Day+PE((IC)SD_Day ) (11)

Oatt_Interval= Iatt_Interval+ PE
(
(IC)SD_Interval

)
(12)

(5) Feed-Forward Network(
Oatt_Day

)
SD and (Oatt_Interval)SD will be sent to two feed-forward networks for full

connection for further feature extraction based on Equations (13) and (14), respectively.

OFFN_Day = f2( f1(
(
Oatt_Day

)
SD ×W1 + b1)×W2 + b2) (13)

OFFN_Interval = f2( f1((Oatt_Interval)SD ×W1
′ + b1

′)×W2
′ + b2

′) (14)

where W1, W1
′, W2 and W2

′ are the trainable weights, and b1, b1
′, b2 and b2

′ are the
trainable biases.

(6) The Output of the Transformer Encoder

OFFN_Day and OFFN_Interval will be sent for residual connection and layer normaliza-
tion again as

(
OFFN_Day

)
SD
′ ∈ R(S×W)×(2×days) and (OFFN_Interval)SD

′ ∈ R(S×W)×(2×DS)

based on Equations (3), (11) and (12), respectively.
(
OFFN_Day

)
SD
′ and (OFFN_Interval)SD

′ will
be concatenated by column as OTE shown in Equation (15). OTE ∈ R(S×W)×(2×days+2×DS) is
the final output in the Transformer encoder, which is the input sent into K-Means.

OTE =
(
OFFN_Day

)
SD
′
∣∣∣∣∣∣(OFFN_Interval )SD

′ (15)

2.1.2. K-Means

K-Means is one of the most famous clustering algorithms, and is extensively used in
unsupervised clustering tasks [11]. The key problem in K-Means is how to determine the
value of K. K is the number of clusters, which is also the number of station categories in
this paper.

Previous studies set K artificially [11], or used the elbow method [18]. To better
determine K effectively, two novel evaluation metrics named same category rate (SCR)
and average same category rate (ASCR) have been proposed. The ridership data used
in our model are more than one week, and different weekly passenger flow at the same
station may be similar. The clustering result is better if the same station of passenger
flow in different weekly periods can be clustered into the same category. Inspired by this
hypothesis, SCR and ASCR have been defined as Equations (16) and (17), respectively.

SCRi = 1− Ni
W

(16)
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ASCR =
∑N

i=1 SCRi

N
(17)

where Ni represents the number of categories for the ith station with W different periodic
weekly passenger flow data. W is the number of weeks, and N is the total number of
stations in the network. The same station with different weekly passenger flow data may
be classified into different categories. Thus, the larger the values are in SCR and ASCR, the
better the classification results are.

For example, if W = 5, five weekly passenger flow data have been used. If the ith
station with the different five weekly passenger flows has been clustered into two categories,
Ni = 2 and SCRi = 1 − 2/5 = 0.6. If the ith station with the different five weekly passenger
flows has been clustered into one category, Ni = 1 and SCRi = 1 − 1/5 = 0.8. The optimized
result is 0.8, which indicates that 5-week passenger flow at the same station has been
clustered in the same category, and the clustering result is quite good. Then, average all
SCRi as ASCR based on Equation (17). ASCR is the final evaluation result of all stations. It
will be used to determine the number of categories for all stations, which is described in
Section 3.4.1 in detail. The details of Algorithm 1 of K-Means for station classification are
demonstrated below [11,12].

C = {C1 ,C2, . . . , CK} is the final result for station classification, and K′ is the number
of categories. Notably, if the number of elements in

{
Cj
}

is 1 in Step 6, this means that
there is a separate category including only one station. This station will be deleted because
it is unsuitable for the later prediction block for multi-station passenger flow prediction.

Algorithm 1: K-Means for station classification.
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else if 𝑑௠௜௡ > 𝑑௜௝ { 𝑑௠௜௡ = 𝑑௜௝, 𝜆 = 𝑗.} 

           end 
Step 5:     𝑥௜ ∈ {𝐶ఒ} 
         end 
Step 6:   for j∈ [1, 𝐾] 

if (the number of elements in {𝐶௝} is 1) 
{delete the element from 𝑂்ா, K=K−1.} 
else 
{Calculate the new centroid of {𝐶௝}: 𝜇௝’.  

if 𝜇௝’=𝜇௝, Output the clustering result: 𝐶 = {𝐶ଵ,𝐶ଶ,…, 𝐶௄}. 
else  {𝜇௝= 𝜇௝’ go to Step 3.} 

            } 
          end 
Step 7:    Calculate 𝐴𝑆𝐶𝑅௄ based on Equations (16)-(17). 
       end 
Step 8: Choose the highest value (Max) from {𝐴𝑆𝐶𝑅௄} (K∈ [2, 𝑃]). 
Step 9: The corresponding K’ in Max is the desired K in K-Means. 

Output: The result of station classification is 𝐶 =  {𝐶ଵ,𝐶ଶ,…, 𝐶௄’}. 
All the stations are finally divided into the K’ categories. 
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2.2. Prediction Block

A prediction block is used to predict the inflow for every type of station.
XSi , T ∈ RSi×(M×W) is the input of the prediction block shown in Equation (18). By inte-
grating the predicted passenger flow for every type of station, the final result OP for all the
stations in the entire network will be obtained. The prediction block consists of three parts:
spatial feature extraction, temporal feature extraction, and prediction.

XSi , T =


x1, t1 x1, t2

x2, t1 x2, t2

· · · x1, tM×W
x2, tM×W

...
...

. . .
...

xSi , t1 xSi , t2 · · · xSi , tM×W

 (18)

where Si is the number of stations in the ith type of station, W is the number of weeks, and
M = DS× days is the number of time intervals during a week. T = {t1, t2, . . . , tM×W} is a
series of time intervals during a week.

2.2.1. Spatial Feature Extraction

(1) Inflow

As shown in Figure 2, to better capture the spatial features, we extract three data
modes from inflow data, namely real-time, daily, and weekly, from different periodicities
in different time periods. The three types of data are shown in Equations (19)–(21).

XR
Si ,T =



xR
1, t−n xR

1, t−n+1

xR
2, t−n xR

2, t−n+1

· · ·
xR

1, t−1

xR
2, t−1

...
...

. . .
...

xR
Si , t−n xR

Si , t−n+1 · · · xR
Si , t−1


(19)

XD
Si ,T =



xD
1, t−n−DS xD

1, t−n+1−DS

xD
2, t−n−DS xD

2, t−n+1−DS
· · ·

xD
1, t−1−DS

xD
2, t−1−DS

...
...

. . .
...

xD
Si , t−n−DS xD

Si , t−n+1−DS · · · xD
Si , t−1−DS


(20)

XW
Si ,T =



xW
1, t−n−M xW

1, t−n+1−M

xW
2, t−n−M xW

2, t−n+1−M
· · ·

xW
1, t−1−M

xW
2, t−1−M

...
...

. . .
...

xW
Si , t−n−M xW

Si , t−n+1−M · · · xW
Si , t−1−M


(21)

IIn f low = XR
Si ,T

∣∣∣∣∣∣XD
Si ,T

∣∣∣∣∣∣XW
Si ,T (22)

where XR
Si ,T

, XD
Si ,T

, and XW
Si ,T

represent the real-time, daily, and weekly inflow data, respec-
tively. We use n historical time steps data {t − n, t − n + 1, . . . , t − 1} to predict the t time
step inflow.

For example, t represents 9:00 am on Tuesday in the second week. XR
Si ,T

refers to a
series of inflow data of the first n time intervals before 9:00 am on Tuesday in the second
week to predict the inflow at 9:00 am on Tuesday in the second week. XD

Si ,T
refers to a

series of inflow data of the first n time intervals before 9:00 am on Monday in the second
week to predict the inflow at 9:00 am on Tuesday in the second week. XW

Si ,T
refers to a

series of inflow data of the first n time intervals before 9:00 am on Tuesday in the first week
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to predict the inflow at 9:00 am on Tuesday in the second week. Thus, T used in XR
Si ,T

,
XD

Si ,T
, and XW

Si ,T
is from the second week of training data. XR

Si ,T
, XD

Si ,T
, and XW

Si ,T
will be

concatenated by column as the input IIn f low based on Equation (22).
As we know, deeper models can extract richer features [20], but it often brings risks of

gradient disappearance and gradient explosion [7]. Therefore, some scholars proposed a
residual network with jump links to solve this problem [21]. Residual connection reduces
the complexity of the model to avoid overfitting, which is shown in Equation (23).

(OIn f low)RB = F
(
(IIn f low)RB

)
+ (IIn f low)RB (23)

where (IIn f low)RB and (OIn f low)RB refer to the input and output of the residual block,
respectively. F(·) refers to the processing of the residual block, which is shown in Figure 3.
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As shown in Figure 3, the input (IIn f low)RB will go through a series of processing: BN
represents batch normalization for data normalization, ReLU is an activation function, and
Conv denotes a convolutional layer. Figure 2 shows two same-shape residual blocks used
for inflow feature extraction. Then, the extracted features will be flattened and sent to a
feed-forward network for full connection to extract the features based on Equations (13)
and (14). OP_I is the final output of inflow processing.

(2) Outflow

The outflow processing is identical to the inflow processing. Hence, its final output
is given by OP_O. XR

Si ,T
, XD

Si ,T
, and XW

Si ,T
represent the real-time, daily, and weekly outflow

data, respectively.

(3) Physical Topology

The physical topology is used to capture the topological information among the
stations based on GCN for each type of station. Since the physical location of the stations is
fixed, it is easy to construct an adjacent matrix A ∈ RSi×Si , which is shown in Equations (24)
and (25). We only consider the passenger flow in the real-time pattern (XR

Si ,T
) because the

network topology does not change. The input of physical topology is defined as ITopology
shown in Equation (26).

A =
{

A|i,j|
}

(24)

A|i,j| =
{

1, station i and station j are adjacent
0, otherwise

(25)

ITopology = (D̂−
1
2 Â D̂−

1
2 )
(

XR
Si ,T

)
(26)

where D̂−
1
2 Â D̂−

1
2 is the symmetric normalized Laplacian. Â = A + I. Si refers to the

number of stations in the ith type of station. I is the identity matrix, and D̂ is the diagonal
node-degree matrix of Â.

Then, we apply ITopology to a series of processing: two same-shape residual blocks,
flattening, and full connection for further feature extraction. OP_Topo is the final output of
physical topology processing.
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(4) Spatial Feature Fusion

The extracted spatial features from inflow, outflow, and physical topology will be
weighted fused as OSF based on Equation (27).

OSF = W1 ◦OP_I + W2 ◦OP_O + W3 ◦OP_Topo (27)

where OP_I , OP_O, and OP_Topo are the outputs of inflow, outflow, and physical topology,
respectively. W1, W2, and W3 are the trainable weights, respectively. The term “◦” denotes
the Hadamard product.

2.2.2. Temporal Feature Extraction

OSF will be continuously sent to the attention LSTM and a fully connected network to
obtain the temporal features. Attention LSTM is effective in predicting traffic flow [22–24].
Traditional conventional attention LSTM is used to capture the weight scores of different
time intervals, usually by assigning heavier weight scores to adjacent time intervals and
lower ones to those further apart [21]. However, passenger flow prediction models are
affected by many factors, such as weather conditions [25], emergencies, passenger flow,
network topology, and so on. Thus, applying the traditional conventional attention LSTM
to assign weights for outputs in LSTM is insufficient. Therefore, based on previous work
by Wu et al. [26], we use a fully connected network to obtain weights that can be scored
according to the output of LSTM based on Equations (28) and (29).

α = f (W ◦Out + b) (28)

AttenLSTM = α ◦Out (29)

where Out ∈ RSi×Neu, Si refers to the number of stations in the ith category, and Neu
represents the number of neurons used in LSTM. W is the trainable weights, b is the
trainable bias, and f represents the activation function in the fully connected layer. The
term α is a trainable weight matrix whose shape is identical to Out. The term “◦” denotes
the Hadamard product. AttenLSTM is the output of attention LSTM.

AttenLSTM will be flattened and sent to a feed-forward network as OFFN_AttenLSTM
for full connection. OFFN_AttenLSTM is the output of temporal feature abstraction, which is
also the prediction result for the same type of station. Every type of station has the same
processing to construct its own prediction model and obtain the corresponding prediction
result. By integrating the predicted passenger flow for every type of station, the final result
for all the stations in the whole network will be obtained.

3. Experiments

In this section, we introduce the two used datasets, the model configuration, the
evaluation metrics, and the results of station classification and passenger flow prediction in
the two datasets in the proposed (Transformer-K-Means)-(ResNet-GCN-AttLSTM) in detail.

3.1. Data Description

Two real-world ridership datasets are used to validate the effectiveness of the proposed
(Transformer-K-Means)-(ResNet-GCN-AttLSTM): (1) the Beijing metro dataset, which is
shared in [27]; (2) the Xiamen BRT dataset, which is collected from the BRT system in
Xiamen, China. Because the Xiamen BRT adopts the closed viaduct mode, the mode of
stations in the Xiamen BRT is similar with the stations in metro systems. Thus, we use the
two datasets in our proposed model [28].

The details of these two datasets are summarized in Table 1. The dataset in the Beijing
metro is from 29 February to 1 April 2016, which contains five continuous weekly inbound
and outbound passenger flows. As of April 2016, there are a total of 17 lines covering
276 stations. The dataset in the Xiamen BRT is from 4 March to 5 April 2019, which contains
five continuous weekly inbound and outbound passenger flows. Tomb Sweeping Day is
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on 5 April 2019, and is one of China’s traditional holidays. As of April 2019, a total of eight
lines are covering 44 stations.

Table 1. Dataset Description.

Description Beijing Metro Xiamen BRT

Train Timespan

29/02/2016–04/03/2016
07/03/2016–11/03/2016
14/03/2016–18/03/2016
21/03/2016–25/03/2016

04/03/2019–08/03/2019
11/032019–15/03/2019

18/03/2019–22/03/2019
25/03/2019–29/03/2019

Test Timespan 28/03/2016–01/04/2016 01/04/2019–05/04/2019
Week Number 5 5
Day Number 25 25

Daily Service Hours 5:00 a.m.–11:00 p.m. 5:00 a.m.–11:00 p.m.
Time Interval 10 min 15 min 30 min 10 min 15 min 30 min

DS 108 72 36 108 72 36
Total DS 2700 1800 900 2700 1800 900

Line Number 17 8
Station Number 276 44

Consequently, station-level passenger flow in the Beijing metro is much more complex
than it in the Xiamen BRT. To avoid the influence of passenger flow at weekends, we only
choose the passenger flow on workdays for study. The total five weekly inflow and outflow
data are used in the classification block. The first four weekly data are for training, and
the last week’s data are for testing in the prediction block. The time intervals used in the
two datasets are 10 min, 15 min, and 30 min, respectively. The two datasets’ daily service
hours are from 5:00 a.m. to 11:00 p.m., with both containing 18 h. Thus, DS in different
time intervals is different, which is shown in Table 1.

As shown in Figure 4, the real-time, daily, and weekly inflow and outflow at 1st Wharf
Station in the Xiamen BRT and No. 1 Station in the Beijing metro during the five workdays
are quite different. Different weekly ridership at the same station is periodic and stable.
It verifies that using the three types of data modes (real-time, daily, weekly) for temporal
feature extraction is useful in our proposed model.
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Figure 4. Stations’ passenger flow in the Xiamen BRT and the Beijing metro. (a) Five weekly inflow
and outflow at 1st Wharf Station in the Xiamen BRT. (b) Five weekly inflow and outflow at No.1
Station in the Beijing metro.

Moreover, as shown in Figures 1 and 4, the inflow and outflow at the same station are
also different. For example, No. 1 Station in the Beijing metro has a larger inflow, while
there is a smaller outflow in Figure 4b. Xianhou Station in the Xiamen BRT has a smaller
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inbound flow, and a larger outbound flow in Figure 1a. The inflow and outflow at Dongzhai
Station in Figure 1b are quite similar to the flows at 1st Wharf Station in Figure 4a in the
Xiamen BRT. Consequently, before passenger flow prediction, it is significant to classify the
stations based on passenger flow similarity.

3.2. Model Configuration

Compared with outflow, inflow is more likely to cause congestion in UPT. Additionally,
the inflow is more regular than the outflow [4]. Thus, we choose the historical five ahead-of-
time interval inflow and outflow data as the inputs to predict the next one-time-step inflow
in our experiment. The parameters used in the classification and prediction blocks are
specified in Tables 2 and 3, respectively. Si is the number of stations used in the prediction
model in Table 3.

Table 2. Parameters used in the classification block.

Parameters Transformer Encoder K-Means

d_model 2 × DS, 2 × days
Number of heads 2

K 2–10
Optimizer Adam

Learning rate 0.00004

Table 3. Parameters used in the prediction block.

Parameters Inflow Outflow Physical
Topology

Attention
LSTM

Kernel Size 3 × 3 3 × 3 3 × 3
Residual Block 1 32 filters 32 filters 32 filters
Residual Block 2 64 filters 64 filters 64 filters

Batch Size 64 64 64 64
Activation Function Relu Relu Relu Linear

Number of Neurons in FC 1 Si Si Si
Number of Neurons in FC 2 Si

Number of Layers 1
Number of Neurons (Neu) 128

3.3. Evaluation Metrics

To evaluate the classification performance of the proposed model, we use ASCR as
an evaluation metric, which is shown in Equation (17). The passenger flow at the same
category of stations is also visualized to evaluate the performance, too.

The three common evaluation metrics, including mean square error (RMSE), mean
absolute error (MAE), and weighted mean absolute percentage error (WMAPE), are used
for evaluating the prediction performance. They are defined in Equations (30) and (32).
The smaller the metrics are, the better the results.

Mean squared error (MSE) is used as the loss function in Equation (33).

RMSE =

√
1
S ∑S

i=1(yi − ŷi)
2 (30)

MAE =
1
S ∑S

i=1|yi − ŷi| (31)

WMAPE(%) = ∑S
i=1

(
yi

∑S
i=1 yi

∣∣∣∣yi − ŷi
yi

∣∣∣∣
)

(32)

MSE =
1
S ∑S

i=1 (yi − ŷi)
2 (33)
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where yi is the real passenger flow, and ŷi is the predicted passenger flow. For unclassified
prediction, S is the total number of stations in the whole network. For classified prediction,
S is the number of stations in the same category.

To integrate the passenger flow prediction results for every type of station, RMSE,
MAE, and WMAPE are redefined as Equations (34) and (36).

RMSE =

√
1
S ∑K′

i=1 RMSE2
i × Si (34)

MAE =
1
S ∑K′

i=1 MAEi × Si (35)

WMAPE =
1

∑S
i=1 yi

∑K′

i=1(WMAPEi × (∑Si
i=1 yi)) (36)

where K′ is the number of categories for stations in the whole network, Si is the number of
the ith type of station, S is the total number of stations in the whole network, and yi is the
passenger number of the ith station.

3.4. Experiment Results

In this section, the results of station classification and passenger flow prediction in the
two datasets have been present and discussed in detail.

3.4.1. Classification Results

ASCR with different K in different time intervals in the Xiamen BRT and the Beijing
Metro are shown in Table 4. The numbers in bold refer the best results in different values
of K. Since the Xiamen BRT network is much simpler than the Beijing metro network, the
situations with the highest ASCR = 0.8 are more than those in the Beijing metro.

Table 4. ASCR with different K in the Xiamen BRT and the Beijing Metro.

K

ASCR

Xiamen BRT Beijing Metro

10 min 15 min 30 min 10 min 15 min 30 min

2 0.8 0.8 0.795 0.794 0.797 0.797
3 0.8 0.795 0.795 0.8 0.797 0.797
4 0.8 0.8 0.8 0.787 0.798 0.798
5 0.8 0.795 0.795 0.791 0.796 0.795
6 0.8 0.795 0.795 0.782 0.792 0.793
7 0.789 0.790 0.8 0.786 0.791 0.790
8 0.794 0.785 0.8 0.785 0.789 0.792
9 0.8 0.795 0.795 0.781 0.788 0.790

10 0.784 0.790 0.795 0.781 0.788 0.790

For 10 min, 15 min, and 30 min time intervals in the Xiamen BRT, we choose K = 4
as the final number of categories for station classification. Because of the fact that when
K is 4, the ASCR of all categories is 0.8, which is a more stable result. For 10 min, 15 min,
and 30 min time intervals in the Beijing Metro, we choose K = 3, 4, 4 as the classification
results, respectively. The classification results show that with more data, the number of
station categories will not be too large.

It is notable that only the station number is provided for the Beijing metro; we cannot
list the stations’ names. More information about the Beijing metro can be found in [27]. The
names of the stations in the Xiamen BRT are listed in Table 5 [29]. We only list the station
classification results for the Xiamen BRT in 15 min time interval as an example. The station
classification results are shown in Table 6, and the visualization of inflow from 3 April 2019
to 8 April 2019 in the four categories of stations is shown in Figure 5.
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Table 5. Names of stations in the Xiamen BRT.

No. Station Name No. Station Name No. Station Name No. Station Name

1 1st Wharf 12 Caitang 23 Dongzhai 34 Pantu

2 Kaihe Intersection 13 Jinshan 24 Tiancuo 35 Binhai Xincheng (Xike)
Junction

3 Sibei 14
Municipal

Administrative Service
Center

25 Xiamen North Railway
Station 36 Guanxun

4 Douxi Road 15 Shuangshi Middle
School 26 Institute of

Technovation 37 Light Industry and
Food Park

5 Ershi 16 Xianhou 27 Gaoqi Airport 38 Sikouzhen
6 Jinbang Park 17 Airport Terminal 4 28 Fenglin 39 Industrial Zone
7 Railway Station 18 Tan Kah Kee Stadium 29 Dong’an 40 3rd Hospital

8 Lianban 19 Chengyi University
College 30 Houtian 41 Chengnan

9 Longshanqiao 20 Huaqiao University 31 Dongting 42 Tong’an Junction
10 Wolong Xiaocheng 21 University Town 32 Meifeng 43 Hongwen

11 Dongfang
Shanzhuang 22 Chinese Academy of

Sciences 33 Caidian 44 Qianpu Junction
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Figure 5. Visualization of inflow in the four categories of stations in 15 min time interval in the
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Table 6. Station classification results in the Xiamen BRT in 15 min time interval.

Categories Station No. Number Passenger Flow Volume

1 21, 22, 23, 24, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 37, 38, 40 17 Small

2 1, 9, 11, 17, 19, 20, 36, 39, 41, 42 10 Medium
3 2, 3, 4, 5, 6, 8, 43 7 Medium
4 10, 12, 13, 15, 16, 18 6 Large

As shown in Figure 5, Railway Station (No. 7), Municipal Administrative Service
Center Station (No. 14), Xiamen North Railway Station (No. 25), and Qianpu Junction
Station (No. 44) have been divided into separate categories. Thus, the four stations have
been deleted in our model based on the following Algorithm 1: K-Means for station
classification. All four stations are importation stations because of their urban functions
and geographical position. Therefore, there are 40 stations in the Xiamen BRT that have
been used for classification and prediction, which are divided into four categories in
15 min time intervals. The max volume of inflow at the first category of stations is less than
300, which are defined as the small ridership stations. The max volume of inflow at the
second and third category of stations is less than 520, and these stations are defined as the
medium ridership stations. The max volume of inflow at the fourth category of stations is
less than 800, which are defined as large ridership stations. The weekly inflow in the four
categories of stations has regular periodicity, such as similar morning and evening peaks
and the same change curves.

Table 7 shows the deleted stations in the different time intervals in the Xiamen BRT.
The larger the time interval is, the less the deleted stations are. It verifies that the passenger
flow will be become more regular when the time interval increases. Station classification
may be a more necessary strategy for short-term passenger flow prediction.

Table 7. The deleted stations in the different time intervals in the Xiamen BRT.

No. Deleted Station
Time Interval

10 min 15 min 30 min

3 Sibei X
7 Railway Station X X X

14 Municipal Administrative Service Center X X
25 Xiamen North Railway Station X X X
44 Qianpu Junction X X X

“X” refers the deleted stations in different time intervals.

Moreover, the stations in the Beijing metro with 276 stations have not been deleted. It
verifies that station classification may be more significant for a larger dataset.
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The No. 34 station is Pantu Station, shown in Figure 5a. Since there are two schools
near the station, the inbound passenger flow increases sharply at noon and in the afternoon
during the peak periods of school and after school. However, during class hours, the
passenger flow at this station is the same as usual. The station classification in the proposed
model is based on the inflow and outflow at all time intervals during a week. Therefore, the
different changes of flows in several time intervals will not affect the classification results.
It verifies the effectiveness of the classification block in the proposed model based on the
Transformer encoder and K-Means.

3.4.2. Prediction Results in the Beijing Metro

The performance of prediction results in different time intervals in the Beijing metro is
summarized in Table 8. The numbers in bold refer the better results between prediction
with station classification, and prediction without station classification. The prediction
results of MAE, RMSE, and WMAPE with classification in 15 min and 30 min time intervals
are better than the prediction results without classification. Only RMSE in 10 min time
intervals presents a slightly worse performance. It may be affected by an emergency, which
causes the volume of inflow to suddenly decrease at some stations. This influence is more
obvious for the passenger flow in smaller time intervals. Take the inflow at No.1 Stations in
the Beijing metro, for example. Figure 6a,b illustrates the inflow and outflow in 10 min and
30 min time intervals, respectively. The inflow with a 10 min time interval clearly shows
that the flow suddenly drops to zero shown in the dashed circle in Figure 6a. When the
time interval increases to 30 min, the passenger flow is substantially reduced caused by the
passenger flow dropped sharply to zero in the 10 min time interval, which is shown in the
dashed circle in Figure 6b. Because RMSE is more affected by such outliers, poor RMSE
results occur, especially in the scenario of 10 min time interval.

Table 8. Prediction results in the Beijing Metro.

Time Interval Prediction Mode
Metrics

MAE RMSE WMAPE

10 min
Prediction (with classification) 17.2781 29.6929 9.668%
Prediction (w/o classification) 17.6344 29.6219 9.911%

15 min
Prediction (with classification) 22.1919 37.9693 8.269%
Prediction (w/o classification) 23.0008 38.7386 8.589%

30 min
Prediction (with classification) 32.5245 58.1694 6.120%
Prediction (w/o classification) 34.1360 60.1340 6.428%Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 21 
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In summary, classification can still improve the prediction results for a suddenly decreasing
flow. In most scenarios, the larger the time interval is, the better the improvement effects.

3.4.3. Prediction Results in the Xiamen BRT

The testing dataset includes Tomb Sweeping Day on 5 April 2019 in the Xiamen BRT,
which is Friday in the fifth week. As shown in Figure 7, the inflow and outflow on the
holiday included in the three-dotted red boxes are quite different from that on normal days.
The inflow in the morning and evening peaks is slightly less than that on normal days, and
the inflow in other hours is slightly more than that in normal times. The outflow on that
day and even the day before is much more than usual. It is mainly because there is a ferry
terminal near 1st Wharf Station, and a famous place of interest, Gulangyu island, is on
the opposite side. Therefore, people who travel to it will choose a more convenient public
transport, i.e., the BRT, which causes a sharp increase in outbound flow.
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The performance of prediction results in different time intervals in the Xiamen BRT is
summarized in Table 9. The numbers in bold refer the better results between prediction
with station classification, and prediction without station classification. The prediction
results of MAE, RMSE, and WMAPE with classification in 10 min and 15 min time intervals
are better than the prediction results without classification. Only MAE and WMAPE in
30 min time interval presents a slightly poorer performance. This is mainly because there
is less abnormal flow included on this holiday in 10 min and 15 min time intervals, so a
classified prediction can show a better performance. Under the 30 min time granularity,
more irregular flow data are included, and the irregular flow cannot be well extracted
through classification, which leads to an unsatisfactory prediction performance. In the end,
in the most scenarios, classification can still improve the prediction result for suddenly
increasing flows on holiday. The smaller the time interval is, the better the improvement
effects are in the most scenarios.

Table 9. Prediction results in the Xiamen BRT.

Time Interval Prediction Mode
Metrics

MAE RMSE WMAPE

10 min
Prediction (with classification) 9.2998 15.6633 18.58%
Prediction (w/o classification) 9.3990 16.0151 18.80%

15 min
Prediction (with classification) 12.7193 22.2835 16.29%
Prediction (w/o classification) 12.7559 22.3270 16.33%

30 min
Prediction (with classification) 23.0463 46.2256 14.26%
Prediction (w/o classification) 22.6983 47.2300 14.03%

4. Conclusions

As far as we know, most existing studies mainly focused on spatio-temporal fea-
ture extraction to construct a multi-station passenger flow prediction model by using
different deep learning models. Different from the previous studies, we have proposed a
novel two-step strategy, namely classification followed by prediction, to develop a better
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performance model for multi-station passenger flow prediction. Two different complex real-
world ridership datasets have been used to demonstrate the effectiveness of the proposed
model. Compared with the unclassified results, the proposed model (Transformer-K-
Means)-(ResNet-GCN-AttLSTM) with station classification presents a better performance
in multi-station passenger flow prediction. As far as we know, this is the first time station
classification has been added into multi-station passenger flow prediction, which presents
good performance.

Improvements can be made in future work. One issue is in developing a more
advanced multi-station passenger flow prediction model by better extracting the complex
spatio-temporal features, such as using the fractal-wavelet modeling [30–35]. Another
one is in combining the classification block with more state-of-the-art models to verify the
effectiveness of station classification in multi-station passenger flow prediction.
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