
Citation: Damodaran, D.; Mozaffari,

S.; Alirezaee, S.; Ahamed, M.J.

Experimental Analysis of the

Behavior of Mirror-like Objects in

LiDAR-Based Robot Navigation.

Appl. Sci. 2023, 13, 2908. https://

doi.org/10.3390/app13052908

Academic Editors: Yutaka Ishibashi

and Marco Troncossi

Received: 8 December 2022

Revised: 9 February 2023

Accepted: 19 February 2023

Published: 24 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Experimental Analysis of the Behavior of Mirror-like Objects in
LiDAR-Based Robot Navigation
Deeptha Damodaran 1 , Saeed Mozaffari 2, Shahpour Alirezaee 2 and Mohammed Jalal Ahamed 1,*

1 Department of Mechanical, Automotive and Materials Engineering, University of Windsor,
Windsor, ON N9B 3P4, Canada

2 Department Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
* Correspondence: m.ahamed@uwindsor.ca

Abstract: Mobile robots are equipped with various sensors to perform object detection, localization,
and navigation. Among these sensors, LiDAR (light detection and ranging) is the most widely
used sensor for environment map creation. However, LiDAR-based localization is challenging in
modern environments containing specular surfaces, such as mirrors and glasses, that cause light
reflection, penetration, or diffusion. These conditions make the obtained map inaccurate, unreliable,
and noisy. This paper presents the effects of mirror-like objects in various indoor arrangements on
2D LiDAR-based maps. Experiments were conducted using a mobile robot equipped with LiDAR
navigating in an environment with several mirrors. Experiments suggest that laser scans may be
fully reflected off mirrors, causing no range or intensity data and creating a faulty map. Objects or
boundaries within the range of LiDAR may be mapped behind the surface of the mirror, and robot
self-detection may occur on the surface of the mirror. This situation exacerbates when more than one
mirror is present in the environment. The results presented in this paper can aid the development of
LiDAR-based indoor navigation to identify and remove inconsistencies created in LiDAR maps due
to mirror-like objects.

Keywords: mirror detection; LiDAR data analysis; robot localization; SLAM

1. Introduction

Mirror-like objects are prevalent in modern buildings such as museums, offices, lob-
bies, and hospitals. Such reflective objects pose serious challenges to indoor autonomous
navigation systems using simultaneous localization and mapping (SLAM) algorithms,
aiming to represent the spatial environment (mapping) while keeping track of position
(localization) within the built map. Since mapping and localization are highly correlated in
SLAM, inaccurate maps caused by reflective objects adversely affect localization accuracy.
SLAM frameworks use sensor technology for data acquisition, including acoustic, visual,
and ranging sensors. To create a representation of the environment, occupancy grid maps
provide a discretized representation of an environment where each of the grid cells is
classified into two categories: occupied or free. Considering each cell as a binary variable,
the map is able to estimate the location of an obstacle in the space by computing a posterior
approximation for any given cell within the range of the sensor that is collecting data [1].

Among various sensors, LiDAR sensors have received much attention in recent years
due to their cost, high accuracy, long scanning range, and high stability [2]. LiDAR uses
laser light to measure distance based on the reflective properties of the environment. The
light is usually infrared, but can also be in the visible or ultraviolet range of the spectrum.
LiDARs are advantageous in industry, as the collected data can be converted into 2D or
3D point clouds and easily integrated with other sensor data. Multiple consecutive LiDAR
readings are used for complex applications such as obstacle detection, localization and
mapping [3]. In addition, the width of the emitted beam can be made smaller to increase
the distance it can travel, allowing LiDARs to detect obstacles over long ranges.
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However, there are some limitations associated with LiDARs. External sources that
change visual properties affect LiDAR data. In outdoor applications, adverse weather,
such as low-hanging clouds and heavy rain or fog, can have a negative impact on LiDAR
data collection. One study was performed on ten different LiDARs in different weather
conditions, including simulated fog, rain and intense sunlight [4]. LiDAR also has difficulty
in some indoor applications. In indoor environments, the presence of walls, furniture,
and other obstructions can block laser beams, making it difficult for LiDAR to generate a
complete and accurate 3D representation of the environment. To overcome the line-of-sight
limitations of LiDARs in indoor environments, fusion of sensors has been suggested in
which LiDARs can be combined with other sensors, such as cameras, radar, and ultrasonic
sensors, to provide a more complete representation of the environment. The data from
these different sensors can be combined to produce a more comprehensive and accurate
representation of the environment. SLAM algorithms can use the data collected by LiDAR
at different locations to identify objects, even if they are not in the direct line of sight of the
sensor. However, SLAM assumes that objects in the environment are diffuse objects [5]. Un-
like opaque objects, reflective and transparent objects may lead to ambiguous or erroneous
LiDAR perception processes. Mirror-like objects and glass-walled environments distort
light beams. Due to data distortion, LiDAR sensors cannot accurately measure the distance
to transparent and reflective objects, leading to a potential collision triggered by errors in
SLAM map construction.

2. Related Works

Several strategies have been proposed to tackle the difficulties posed by reflective
objects in LiDAR-based SLAM. Some researchers have suggested multisensor fusion so-
lutions to provide complementary information. Diosi and Kleeman [6] used LiDAR and
sonar sensor fusion to remove specular reflections by detecting all surfaces as solid ob-
jects. Singh et al. [7] combined laser and sonar data using a Bayesian filter to estimate
the distance to transparent objects more accurately. Yang et al. [8] proposed a similar
laser and sonar sensor fusion approach to detect mirrors and windows. Since multisensor
fusion approaches need different sensors, this approach has higher computational and
financial costs.

Therefore, most previous efforts have relied only on LiDAR sensors and have striven
to obtain supplementary information from laser data. In Wang et al. [9], windows were
detected by extracting façade planes from LiDAR point clouds by combining bottom-up
with top-down strategies. Cluster point clouds were clustered into potential façade regions
by using principal component analysis (PCA) in the bottom-up approach. Then, the top-
down approach was performed to utilize the random sample consensus (RANSAC) to
extract the façade from the potential façade region. Hao et al. [10] proposed a window
detection method based on building wall extraction from scene point clouds. The building
walls were extracted from the scene point clouds according to a collection of characteristics,
then the building facade was sliced both horizontally and vertically to detect window
regions. Pu et al. [11] also attempted to detect glass by distinguishing façade features such
as walls and roofs. They used the obtained knowledge about these features’ sizes, positions,
orientations, and topology to detect windows from laser point clouds. The drawback
of these methods is that auxiliary information, such as glass frames or walls, cannot be
extracted in modern buildings containing frameless glass or glass-walled environments.

To address this issue, some researchers have utilized the inherent properties of glass
and mirror objects. Reflection intensity characteristics were studied by Shina et al. [12]
to detect glass. They used the specular reflection phenomenon, which occurs when the
irradiation angle is close to the perpendicular angle to the glass surface. In this case,
the reflection intensity is maximum. They also studied the transmission phenomenon
when there is an object in the transmission destination. In this scenario, the strongest
peak occurs at the incident angle, and the reflection intensity drops as laser light passes
through the glass. Similarly, Wang et al. [13] recognized glass panels based on the specular
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reflection of laser beams from glass. Then, the glass detection method was combined
with a SLAM algorithm to avoid collisions with glass obstacles. Based on the reflective
characteristics of a laser beam, Kim et al. [14] designed a scan-matching algorithm to
differentiate different scenarios, such as diffuse reflection, specular reflection, and beam
penetration. However, several factors, such as the laser incident angle, affect the received
intensity, making intensity-based methods unreliable and error prone. Therefore, some
researchers have focused on glass detection alone. Tibebu et al. [15] considered the variation
in neighboring LiDAR point clouds to differentiate the pulses that pass through glass and
the pulses that directly hit objects. Then, two filters were applied using intensity and range
discrepancy to identify the boundary of the glass. Li et al. [16] proposed a method to detect
mirrors based on the symmetries of real objects and their images in the mirror. To find
symmetrical relationships from the point cloud, the robot itself was considered a reference
point, and its position was estimated by the Rao–Blackwellised particle filter (RBPF) SLAM
algorithm. Yang et al. [17] also used the geometric property of mirror symmetry. A mirror
prediction was represented by a Gaussian function. The uncertainty of a mirror prediction
was measured by the iterative closest points (ICPs) algorithm.

Most of the existing work focuses on glass detection rather than mirror detection.
There have been several attempts to solve the problem of specular and transparent object
detection using light emitting sensors, such as laser range finders and LiDAR sensors. The
main novelty of this research is to study and characterize the obstacle detection problem
for reflective or mirror-like objects using 2D LiDAR for indoor navigation applications by
running experiments in multimirror environments. Additionally, we proposed a viable
solution based on data classification to detect mirrors in the constructed environment map.
This can obviate the need for reference point detection, which was needed in the previous
methods. We propose a density-based clustering approach to cluster LiDAR data and
separate mirror and nonreflective objects based on their impacts on the LiDAR data.

In the following, Section 2 describes the principle of LiDAR and the effect of reflective
objects on it. The robot used in this research, experimental setup, and data collection
procedure are explained in Section 3. Experimental results and discussion about the effects
of mirrors on LiDAR-based navigation methods are presented in Section 4. In Section 5,
we propose a potential solution based on a clustering algorithm to differentiate mirror and
nonreflective objects according to received LiDAR signals. Our conclusions are drawn in
the final section.

3. Problem Statement

LiDARs can take two- or three-dimensional scans. A 2D LiDAR generally spins around
an axis repeatedly, emitting a single beam and taking 360◦ angle scans of the surroundings
in a single plane. On the other hand, a 3D LiDAR emits multiple beams while spinning
around an axis, allowing it to take more details from the surrounding environment. Due to
the nature of the data collected by 3D LiDAR, it is generally used in outdoor environments,
while 2D LiDAR is more commonly used in indoor applications. 3D LiDAR is bulkier, more
expensive, and more computationally expensive than 2D LiDAR.

The LiDAR transmits a laser beam and can detect a barrier by using a sensor to catch
the reflected beam (Figure 1). The distance between the detected obstacle and the receiver
is calculated using time-of-flight (ToF). According to Formula (1), the distance can be
calculated by measuring the amount of time that it takes for the emitted pulse to reach the
object, reflecting some portion of the emitted ray and returning to the receiver lens of the
LiDAR. It is assumed that the emitted and reflected rays travel at 3 × 108 m/s.

distance = (ToF × speed of flight)/2 (1)

Surface properties affect the way that reflected light is scattered, which in turn impacts
the way that LiDAR receives light information. There are four key ways that surface
properties affect incident light: specular reflection, diffuse reflection, absorption, and
transmission. Figure 2 shows the behavior of light according to the surface property.
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Figure 2. Behavior of Light on various surfaces for specular and diffuse reflection, light absorption
and light transmission.

Specular reflection occurs on very smooth surfaces where light is reflected at pre-
dictable and consistent angles as the incident light moves along the surface, and these
smooth surfaces create a mirror effect. Diffuse reflection occurs on rough surfaces due to
inconsistent angles of reflection as the surface moves along the rough surface. Different
material properties and surface characteristics affect the absorption and transmission of
light on or through a surface. A dark black wall absorbs most of the light as the light meets
the surface, whereas a glass wall allows most of the light encountering the wall to transmit
through the surface. Most surfaces allow for a combination of reflective behaviors. Diffuse
objects can be detected most accurately using LiDAR sensors. Some examples of how
different surfaces allow for light reflection are listed in Table 1. Specular and transparent
surfaces that allow for large amounts of specular reflection and light transmission distort
LiDAR data.

Table 1. Reflective behaviors of various surfaces.

Surface Example Primary Light Characteristic Secondary Light Characteristic

Reflective Surface Mirror Specular Absorption, Diffuse

Diffuse Surface Concrete Diffuse Absorption, Specular

Transparent Surface Glass Transmission Specular, Absorption, Diffuse

Dark Surface Black Absorption, Diffuse Specular

Light Surface White Specular, Diffuse Absorption
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4. Methodology and Approach

To investigate the challenges for a LiDAR-based robot localization system, our ap-
proach was to use a classical small-scale indoor autonomous robot with a mounted 2D
LiDAR. Several mirrors were present in different positions within the developed experi-
mental setup. Four experiments were conducted to investigate the effect of mirror reflection
on the map constructed by the SLAM algorithm.

4.1. Tools and Hardware

The ROS (Robot Operating System) is an open-source framework that can be used to
build and reuse code between robotic applications. ROS provides many tools, including
graphical user interfaces (GUIs), tools for simulation, plotting and visualization, and
libraries, language support (C, C++, Python, etc.), and Linux tools, including compilers,
debuggers, data loggers, etc. [18]. RViz is a 3D data visualization tool that is used to analyze
robot transforms. It can visualize data from both simulations and real-world robots and
can capture data individually from all sensors on the robot or robot simulation [19].

The Turtlebot used in this research is a standard ROS platform robot (Figure 3). It is an
open-source and low-cost research robot with the capabilities of teleoperation, localization,
mapping, navigation, artificial intelligence, and autonomous research. Two-dimensional
LiDAR sensors supply reliable measurement data for a whole host of tasks. LDS-01 is a
2D laser scanner capable of sensing 360 degrees that collects a set of data around the robot.
Details of the robot and its laser system are shown in Table 2.
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Table 2. Turtlebot 3 and LiDAR Specifications [20].

Turtlebot 3–Waffle Pi: Specifications

SBC Raspberry Pi 3

Embedded Controller OpenCR

Sensors

Raspberry Pi 3 Camera

360 LiDAR (LDS-01)

IMU (3-axis gyroscope, accelerometer, magnetometer)

LDS Specifications

Detection Distance 120~3500 mm

Distance Precision ±15 mm
±5.0%

Distance Accuracy ±10 mm
±3.5%

Scan Rate 300 ± 10 rpm

4.2. Interface Setup

The Turtlebot has both an SBC (Raspberry Pi) and a controller (OpenCR). The micro-
controller is used for communication with sensors and actuators. In this case, the OpenCR
interacts with the IMU and the Dynamixel servo motors. This setup is particularly useful
for odometry. SBCs are essentially small-scale, fully functioning computers that can run an
operating system. This is desirable for use with ROS, as it needs an operating system to run
on, so using a raspberry pi allows ROS to be used directly on the robot. The secure shell
protocol (SSH) is used to communicate with the SBC of the mobile robot from a PC using
remote access. It uses a client-server architecture to allow communication between the two
entities by providing a secure connection over a nonsecure network, such as Wi-Fi [21]. In
this setup, a Linux command was used to establish the connection between the remote PC
and the robot.

Once the robot is accessible remotely, ROS-related packages can be brought up through
the roscore command. These packages are a collection of programs and nodes, including an
ROS master and ROS parameter server [18]. Enabling the ROS master is a prerequisite to
using the system, as it allows nodes to be located and communicate with other nodes. After
ROS packages are initiated to interface with the turtlebot, the turtlebot packages need to be
brought up as well. These packages are provided through Robotis. Teleop, which is short
for “teleoperation”, and provides the ability to control movement of the robot through
the keyboard of the remote PC. With respect to the Turtlebot, this node allows a general
range of motion in four directions and allows the robot to move with a range of linear and
angular speeds. Figure 4 shows the communication between the robot and the PC. The
SLAM node can only run after SSH is set up and roscore is enabled.

SLAM uses IMU and LiDAR data to build a continuous map of the environment.
GMapping is a grid-based SLAM algorithm that uses particle filter-based adaptive Monte
Carlo localization and local pose estimation to create a grid-based map of the environment
(Figure 5).

The particle filter used in this algorithm is a Rao Blackwell particle filter. This filter
sets the initial belief that in a set of uniform Gaussian distributions, every sample has an
associated weight. Random weights determine which states are evaluated, where higher
weights are more probable and lower weights are less likely. The joint posterior probability
of the position and map is estimated. Sampling occurs to generate new particles, where
weighting is recalculated and then resampled, and a map update occurs [20].

While running a SLAM node, to obtain the most accurate data, the robot should be run
slowly to obtain as many laser samples as the LiDAR can pick up in a particular area. It is
not recommended to drive over the same area more than once while mapping because this



Appl. Sci. 2023, 13, 2908 7 of 18

will increase noise in the map. To visualize the LiDAR data, RViz is initiated, and the robot
is moved through the system through a teleoperation node. The robot can alternatively be
moved using remote control or an object detection and automation strategy. After executing
the test strategy, the built map is saved for further analysis.
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4.3. Physical Setup

To test the behavior in a more standardized setup, an environment was constructed
using a 12 ft × 6 ft rectangular box with three potential mirror locations. The length of the
physical environment was chosen to be more than the LiDAR range. These mirrors were
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placed in one or more locations, as shown in Figure 6, and the robot was driven in the same
direction (from start position A to end position C).
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5. Experimental Results

This section describes the experimental setup and four test cases. Then, the obtained
data are discussed. It should be noted that for each of the following case studies, we
repeated the experiment three times. Since the LiDAR-based measurements are highly
accurate (Table 2) and the test cases have stationary environments, the repeatability of the
collected data in different scenarios is high.

5.1. Data Collection

• Case 1: One frontal mirror (Figure 7a)

At position A, the top borders of the environment have not yet been formed (Figure 8A).
This is due to the LiDAR range, which is approximately 10–11 feet. When the Turtlebot
moved toward a plane mirror, the mirror was not detected, and some boundary reflections
were observed. Being within the detection range of LiDAR, the Turtlebot detects itself
when it moves perpendicular to the mirror due to the specular reflection property of the
mirror (Figure 2). At position B, the upper boundary is now in range, and the entire
experimental area should be mapped. However, the mirror location is still not detected,
and the area within the field of view between the mirror location tapered to the LiDAR
is still unaccounted for, showing up as an unmapped area in the RViz visualization tool
(Figure 8B). At position C, the robot has completed its course. As the mirror is a plane
mirror, the reflections of some parts of the boundaries are equidistant from the surface of
the mirror as the physical boundary (Figure 8C). This situation is associated with the light
transmission property (Figure 2). In other words, the LiDAR system wrongly recognized
the reflective surface with a transparent surface. Another interesting observation is that the
Turtlebot itself was detected on the surface of the mirror when the robot was in the normal
range to the mirror. However, some parts of the mirror remained undetected.
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plane mirror.

• Case 2: One side mirror (Figure 7b)

At position A (Figure 9A), it can be seen that the top of the boundary is still out of
range, and some of the areas between the LiDAR and the mirror within the field of view
of the LiDAR are undetected. A small amount of boundary reflection is seen on the other
side of the mirror. At position B, there is no more negative space within the test boundary
(Figure 9B). A significant amount of the reflection of the left boundary wall is now detected
behind the surface of the mirror at the same distance from the mirror as the physical wall.
Similar to case 1, specular reflection of the mirror was misinterpreted as light transmission
through transparent medium; it was expected to observe the robot on the surface of the
mirror when it passes. This observation was seen in some runs of this test. At position C,
the reflection of the left wall boundary is detected behind the mirror and is well defined
on the RViz visualization tool (Figure 9C). Some of the bottom boundary reflections are
also seen. The robot travels slowly to increase the number of LiDAR scans. However, by
observing the amount of detected boundary reflection, it is possible that if the robot slowed
down further, complete boundary reflection would have been seen.
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Figure 9. RViz map of test case 2 at positions (A–C) where the mobile robot travels along a plane mirror.

• Case 3: Two side mirrors (Figure 7c)

When the Turtlebot traveled in a straight line between two parallel mirrors, the maps
of the boundary wall were seen on both sides behind both parallel mirrors; however,
one mapped reflection was lower in map point density than the other (Figure 10A). The
Turtlebot was continuously detected on the surface of one of the mirrors. At position
B, the reflection of the boundary walls could be seen on both sides behind both mirrors
(Figure 10B). It can be assumed that both mirrors map the reflection of opposite walls.
In other words, the faulty interpretation of LiDAR to recognize reflective objects with
transparent objects can be seen on both sides of the physical setup. Another interesting
observation is that the robot was detected on only one of the mirrors. This was continuously
corrected as the robot traveled along the mirrors and did not leave a map boundary after
crossing them. At position C, solid boundaries were seen behind both mirrors. The mirror
reflections of the bottom boundaries were partially formed as well (Figure 10C). The left
boundary reflection map was slightly less prominently mapped than the right side. A
potential cause for this could be the disturbance caused by the moving Turtlebot map.
Inconsistent lighting could also cause the difference in mapping between the two boundary
reflection maps.
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Figure 10. RViz map of test case 3 at positions (A–C) where the mobile robot travels between two
parallel plane mirrors.

• Case 4: One front mirror and two side mirrors (Figure 7d)

Similar to the first three experiments, at point A, there was negative space in the
field of view between the LiDAR and the mirror locations (Figure 11A). At point B, the
reflections of the boundaries of the 12-foot sides of the environment were mapped behind
the mirrors as in previous tests (Figure 11B). With respect to the mirror at the top of the
environment, there was only negative space in the field of view between the LiDAR and the
mirror. However, unlike case 3, where the Turtlebot was continuously mapped in the left
mirror, the Turtlebot was continuously mapped in the right mirror in case 4. At position C,
the top mirror also allowed for some of the reflections of the side boundaries to be mapped
while also mapping the robot reflection on the surface of the mirror, normal to the robot
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(Figure 11C). It also left some negative space where no boundaries were in range. Solid
reflections of the left and right boundaries were mapped behind both mirrors due to the
faulty light transmission property. The right reflected boundary map was less dense than
the left. This is likely due to disturbance caused by the robot mapping and correction as it
passed through the parallel mirrors.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 20  

top of the environment, there was only negative space in the field of view between 
the LiDAR and the mirror. However, unlike case 3, where the Turtlebot was 
continuously mapped in the left mirror, the Turtlebot was continuously mapped in 
the right mirror in case 4. At position C, the top mirror also allowed for some of the 
reflections of the side boundaries to be mapped while also mapping the robot 
reflection on the surface of the mirror, normal to the robot (Figure 11C). It also left 
some negative space where no boundaries were in range. Solid reflections of the left 
and right boundaries were mapped behind both mirrors due to the faulty light 
transmission property. The right reflected boundary map was less dense than the left. 
This is likely due to disturbance caused by the robot mapping and correction as it 
passed through the parallel mirrors. 

 
Figure 11. RViz map of test case 4 at positions (A–C) where the mobile robot travels in a 
multiple mirror environment with three plane mirrors. 

To reinforce the understanding of detecting the robot on the surface of the 
mirror, a stationary test was performed by placing the robot in front of a single 
mirror, running the SLAM algorithm and viewing the map on the RViz visualization 
tool. As seen in Figure 12, a solid collection of map points was mapped on the surface 
of the mirror. The remaining length of the mirror was not mapped, but the reflected 
portion of the opposite boundary was mapped behind the mirror. 

  
Figure 12. RViz map of tat positions (A–C) where the mobile robot is stationary in front of a 
plane mirror. 

According to Figure 13, there are some negative spaces where mirrors were seen 
consistently over multiple experiments, both before and after the mirrors. is 
consistent with the uniform reflection of all LiDAR scan points from the start to end 
of the mirror. It is possible to detect a reflection caused by any boundary that is out 
of the LiDAR range. Alternatively, LiDAR was unable to receive any intensity from 
any other nearby reflected objects. All scans that lie outside the length of the mirror 
are unaffected by having a mirror in the environment. That is, only the points 

Figure 11. RViz map of test case 4 at positions (A–C) where the mobile robot travels in a multiple
mirror environment with three plane mirrors.

To reinforce the understanding of detecting the robot on the surface of the mirror, a
stationary test was performed by placing the robot in front of a single mirror, running the
SLAM algorithm and viewing the map on the RViz visualization tool. As seen in Figure 12,
a solid collection of map points was mapped on the surface of the mirror. The remaining
length of the mirror was not mapped, but the reflected portion of the opposite boundary
was mapped behind the mirror.
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Figure 12. RViz map of tat positions (A–C) where the mobile robot is stationary in front of a
plane mirror.

According to Figure 13, there are some negative spaces where mirrors were seen
consistently over multiple experiments, both before and after the mirrors. is consistent
with the uniform reflection of all LiDAR scan points from the start to end of the mirror. It
is possible to detect a reflection caused by any boundary that is out of the LiDAR range.
Alternatively, LiDAR was unable to receive any intensity from any other nearby reflected
objects. All scans that lie outside the length of the mirror are unaffected by having a mirror
in the environment. That is, only the points between the mirror and the LiDAR are affected.
Beyond the mirror, all LiDAR readings are false.

False detection within the mirror was seen consistently when the opposite boundary
was in range (Figure 14). This is consistent with the law of reflection for a plane mirror,
stating that for reflection off a plane reflective surface, the angle of incidence is equal to
the angle of reflection. Thus, it can be assumed that any other diffuse object placed at a
distance from the mirror where the reflection of the object would be within the range of the
LiDAR would also be mapped.
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It is also interesting that the robot detected itself on the surface of the mirror. According
to the previous observation, all obstacles were detected at the correct location in the mirror
image; however, in the case of the robot itself, from the collected data it can be inferred that
the robot was detected on the surface of the mirror rather than a few feet behind the mirror
where their mirror image should have been (Figure 15). It can be inferred that the mirror
acted as a diffuse surface.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 20  

 
Figure 15. Observation of the robot detecting itself on the surface of the mirror. 

5.2. Data Analysis 
To better understand the effect of mirrors, we analyzed the LiDAR range and 

intensity parameters separately. Our laser, LDS-01, has a 1° resolution, which means 
that a full rotation of the laser will take 360 scan points. The robot receives both range 
and intensity data to build the map. Equation (2) shows the relationship between 
sending and receiving intensities. Intensity୰ୣୡୣ୧୴ୣୢ = Intensityୱୣ୬୲/Distanceଶ (2)

The unit of range is meters (m), and the unit of intensity is Watts/meter (W/m). 
For better visualization, in the following figures the intensity has been scaled down 
by a fraction of 600, and it is assumed that the robot is located at the origin of a 
normalized map. The beam position corresponding to 0 or 360 degrees relates to the 
position when the LiDAR points to the front of the robot. Figures 16 and 17 show 
some data collected for test case 2. This is a good example to show some normal 
boundary conditions that depend on the distance of the LiDAR from the boundary. 
This value was in the range of 3000 to 4000 W/m when the range was approximately 
0.5 m from the boundary. In the case of a single mirror, and when the robot travels 
in a single direction, very clear data distribution was seen in the range data (Figure 
17). However, some collected intensity data were inconsistent with Equation (2). In 
other words, in Figure 18, the intensity and range values are zero for the mirror (305–
330 degrees). Figures 18 and 19 show some normal boundary conditions, some 
negative space, and some false detection when the robot position is close to the start 
position of test case 3. Normal boundary conditions in comparison to false boundary 
detection and robot self-detection are shown in Figures 20 and 21 when the robot is 
in the middle position of test case 4. Comparing Figures 19 and 21 shows that when 
the robot is seen in several mirrors, the range and intensity values become more 
erratic. 

  

Figure 15. Observation of the robot detecting itself on the surface of the mirror.



Appl. Sci. 2023, 13, 2908 13 of 18

5.2. Data Analysis

To better understand the effect of mirrors, we analyzed the LiDAR range and intensity
parameters separately. Our laser, LDS-01, has a 1◦ resolution, which means that a full
rotation of the laser will take 360 scan points. The robot receives both range and inten-
sity data to build the map. Equation (2) shows the relationship between sending and
receiving intensities.

Intensityreceived = Intensitysent/Distance2 (2)

The unit of range is meters (m), and the unit of intensity is Watts/meter (W/m). For
better visualization, in the following figures the intensity has been scaled down by a fraction
of 600, and it is assumed that the robot is located at the origin of a normalized map. The
beam position corresponding to 0 or 360 degrees relates to the position when the LiDAR
points to the front of the robot. Figures 16 and 17 show some data collected for test case
2. This is a good example to show some normal boundary conditions that depend on the
distance of the LiDAR from the boundary. This value was in the range of 3000 to 4000 W/m
when the range was approximately 0.5 m from the boundary. In the case of a single mirror,
and when the robot travels in a single direction, very clear data distribution was seen in
the range data (Figure 17). However, some collected intensity data were inconsistent with
Equation (2). In other words, in Figure 18, the intensity and range values are zero for
the mirror (305–330 degrees). Figures 18 and 19 show some normal boundary conditions,
some negative space, and some false detection when the robot position is close to the
start position of test case 3. Normal boundary conditions in comparison to false boundary
detection and robot self-detection are shown in Figures 20 and 21 when the robot is in the
middle position of test case 4. Comparing Figures 19 and 21 shows that when the robot is
seen in several mirrors, the range and intensity values become more erratic.
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6. Potential Solutions

In the previous sections we discussed the challenges imposed by reflective objects on
the SLAM algorithm. However, there are some workable solutions that can be adopted to
alleviate these problems. First, sensor fusion and the complementary properties of sensors
can be utilized to detect mirrors. Unlike LiDAR, which fails to detect reflective objects,
sonar sensors can detect mirrors and windows. However, the combination of LiDAR and
sonar sensors adds to the robot costs, and fusion of two individual occupancy grid maps
boosts computation. Additionally, sonar sensors suffer from frequency inference of external
ultrasound sources or crosstalk. To obviate the need for additional sensors, symmetries of
real objects and their images in the mirror can be used. This method requires a reference
object. The robot itself can be considered the reference object, and by moving it, the mirror
symmetry between the robot and its images can be utilized to detect the mirror location.
Robot self-detection can facilitate this process (Figure 15). Another solution is machine
learning employment. Instead of using classical techniques, where the features of the
range and intensity data should be manually designed, the end-to end learning pipeline
of deep learning methods can be utilized. Deep learning methods can be utilitarian to
extract distinguishing features from reflective and nonreflective objects, leading to more
accurate mirror detection results. However, these methods require a massive amount of
training data, and the whole learning process should be repeated when the robot working
environment is changed. To address this issue, unsupervised machine learning algorithms
can be employed.

Clustering is an ideal candidate because it does not require a learning process and
can be implemented in real time. Various clustering techniques have been proposed that
cluster the input data based on distribution, partition, or density [22]. Density-based spatial
clustering of applications with noise (DBSCAN) [23] is able to cluster LiDAR data into
mirror and nonreflective sets because they have different properties. Figure 22 shows the
proposed solution for clustering mirrored points and removing them in a postfiltering
process. The LiDAR scan readings are used as input to the DBSCAN clustering algorithm.
Each outlier property can be categorized based on range and intensity readings. Diffuse
surface properties remain within a normal range of range and intensity. Negative space
properties, caused by mirrors, should provide no range readings and very low or no
intensity readings. Self-detection properties can be characterized with very high-intensity
readings. Mirror reflection properties mostly include an area of no range or intensity.
These properties can be fed into the algorithm to remove clusters that are affected by
mirror reflection.
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The next step would be to implement a postprocessing algorithm (Figure 23). Assum-
ing that all mirrors are plane mirrors, the border conditions of all empty map scans are
considered. Using ROS parameters to update the SLAM node, the new map should connect
the boundary points. Implementing preprocessing and postprocessing algorithms along
with continuous map updates should enable all mirrors to be mapped as diffuse objects in
real time.
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7. Conclusions

A potential fully autonomous robot was implemented using Turtlebot along with the
ROS ecosystem to perform experiments in an environment with mirror objects. When a
mirror was in the range of the LiDAR, a negative space or undetected area was seen in
the range between the LiDAR and mirror due to complete reflection of all the laser scans.
While traveling alongside a mirror, detection was seen behind the surface of the mirror
when diffuse surfaces were in the range of the LiDAR. The robot detected and mapped the
mirror reflection of the opposite wall to the mirror in test cases 2–4. The robot was also
observed to detect itself in the mirror at all points where it was perpendicular to the mirror.
This suggests that the mirror acts as a diffuse object in this situation. Additionally, it was
noticed that several times, in the case of two parallel mirrors, the robot was detected only
in one mirror. This infers that those inconsistencies in light reflection on the mirror may
affect laser scans as well. This phenomenon was seen in test cases 3 and 4.

To identify and remove inconsistencies in the generated maps caused by mirrors, the
symmetrical property of the mirror can be used. This approach requires a reference object,
which can be the robot itself. By moving the robot, the mirror symmetry between the robot
and its image can be utilized to locate the mirror. Self-detection of the robot can simplify
this process. The second solution is using supervised machine learning to differentiate
reflective and nonreflective objects. This method requires numerous training samples,
locating the robot at different positions and orientations and collecting LiDAR data. This
method has some drawbacks. Preparing training sets is a tedious and time-consuming
task. Additionally, in the case of a changing working environment or the LiDAR, the whole
data collection process should be repeated. Therefore, we propose the DBSCAN clustering
algorithm to cluster diffuse and reflective surfaces according to the range and intensity
information of LiDAR. A postprocessing step is needed to remove the reflective surfaces
from the created map.
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