Use of Spatio-Structural Parameters of the Multiscan Video Signal for Improving Accuracy of Control over Object Geometric Parameters
Abstract
:1. Introduction
2. Features of the Multiscan Operation during the Determination of the Geometric Parameters of Objects
3. Results and Discussion
3.1. The Mechanism of the Formation of the Multiscan Video Signal on the Basis of Its Impulse Response
3.2. Results of the Use of Spatio-Structural Parameters of the Multiscan Video Signal for Improving the Accuracy of the Measurements of the Geometric Parameters of Objects
- the signal mass is an integral over the entire signal observation interval (in this case, it is necessary to take into account that the mass function is unipolar); the physical analogue of the signal mass is the total mass of a linear object with a certain specified mass distribution over its length, which is described by the density of its redistribution f(t);
- the signal centroid corresponds to the “centre of gravity” of the indicated linear object;
- the signal dissipation characterizes the degree of the dispersion of the masses around the “centre of gravity” of the indicated linear object; the smaller the dissipation value is, the larger the part of masses around the “centre of gravity” is localized; and vice versa, the larger the dissipation value is, the more dispersal character of the mass distribution is.
- LZ profile “dissipation”:
- LZ profile “extent”:
- LZ profile “brightness”:
- LZ profile “centroid”:
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Božek, P.; Lozkin, A.; Gorbushin, A. Geometrical Method for Increasing Precision of Machine Building Parts. In Proceedings of the International Conference on Manufacturing Engineering and Materials, ICMEM 2016, Nový Smokovec, Slovakia, 6–10 June 2016; Volume 149, pp. 576–580. [Google Scholar] [CrossRef] [Green Version]
- Vopat, T.; Peterka, J.; Kovac, M.; Buransky, I. The Wear Measurement Process of Ball Nose End Mill in the Copy Milling Operations. In Proceedings of the 24th DAAAM International Symposium on Intelligent Manufacturing and Automation, 2013, Zadar, Croatia, 23–26 October 2013; Volume 69, pp. 1038–1047. [Google Scholar] [CrossRef] [Green Version]
- Buranský, I.; Morovič, L.; Peterka, J. Application of Reverse Engineering for Redesigning and Manufacturing of a Printer Spare Part. Adv. Mater. Res. 2013, 690–693, 2708–2712. [Google Scholar] [CrossRef]
- Abbasi, A.R.; Mahmoudi, M.R. Application of Statistical Control Charts to Discriminate Transformer Winding Defects. Electr. Power Syst. Res. 2021, 191, 106890. [Google Scholar] [CrossRef]
- Alies, M.Y.; Shelkovnikov, Y.K.; Sága, M.; Vaško, M.; Kuric, I.; Shelkovnikov, E.Y.; Korshunov, A.I.; Meteleva, A.A. Method and Device Based on Multiscan for Measuring the Geometric Parameters of Objects. Processes 2020, 9, 24. [Google Scholar] [CrossRef]
- Saha, O.; Dasgupta, P. Experience Learning From Basic Patterns for Efficient Robot Navigation in Indoor Environments. J. Intell. Robot. Syst. 2018, 92, 545–564. [Google Scholar] [CrossRef]
- Sahawneh, L.R.; Wikle, J.K.; Roberts, A.K.; Spencer, J.C.; McLain, T.W.; Warnick, K.F.; Beard, R.W. Ground-Based Sense-and-Avoid System for Small Unmanned Aircraft. J. Aerosp. Inf. Syst. 2018, 15, 501–517. [Google Scholar] [CrossRef]
- Guk, E.; Podlaskin, B. Novel Principle of Optical Signal Sensing Based on the Creation of Signal Statistical Estimates. In Proceedings of the IEEE Sensors, Limerick, Ireland, 28–31 October 2011; pp. 436–439. [Google Scholar] [CrossRef]
- Podlaskin, B.; Guk, E.; Sukharev, A. Registration Technique for Detection of Optical Signal Position under Intense Background Illumination. In Proceedings of the 2014 3rd Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 15–19 June 2014; IEEE: Piscataway, NJ, USA; pp. 232–235. [Google Scholar] [CrossRef]
- Podlaskin, B.; Guk, E. New Optical Sensor with Continuous Field of View for Real-Time Signal Processing. In Proceedings of the 2012 Mediterranean Conference on Embedded Computing (MECO), Bar, Montenegro, 19–21 June 2012; pp. 104–107. [Google Scholar]
- Lipanov, A.M.; Shelkovnikov, Y.K. The Use of a Television Scanistor in Dual Use Devices. Izv. RARAN 2005, 2, 71. (In Russian) [Google Scholar]
- Shelkovnikov, Y.K.; Lipanov, A.M. Theoretical Basics and Manufacturing Technology of Television Scanistor Structures; Ural Branch of the Russian Academy of Sciences: Yekaterinburg, Russia, 2005. [Google Scholar]
- Lipanov, A.M.; Shelkovnikov, Y.K. Manufacturing Technology of Epitaxial Scanistor Sensors. Izv. RARAN 2005, 43, 75–79. (In Russian) [Google Scholar]
- Horton, J.W.; Mazza, R.V.; Dym, H. The Scanistor—A Solid-State Image Scanner. Proc. IEEE 1964, 52, 1513–1528. [Google Scholar] [CrossRef]
- Podlaskin, B.G.; Guk, E.G. The Multiscan Position-Sensitive Photodetector. Meas. Tech. 2005, 48, 779–783. [Google Scholar] [CrossRef]
- Mahmoudi, M.R.; Nematollahi, A.R.; Soltani, A.R. On the Detection and Estimation of the Simple Harmonizable Processes. Iran. J. Sci. Technology. Trans. A Sci. 2015, 39, 239–242. [Google Scholar]
- Lipanov, A.M.; Shelkovnikov, Y.K.; Osipov, N.I. Application of Discrete-Continuous Multi-Scan Structure in Optoelectronic Measuring Devices. Sensors Syst. 2003, 2, 46–49. (In Russian) [Google Scholar]
- Podlaskin, B.G.; Guk, E.G.; Obolenskov, A.G.; Sukharev, A.A. Suppression of the Effect of High-Power Background Illumination on the Precision of Determination of the Optical Signal Coordinates. Tech. Phys. 2015, 60, 1384–1387. [Google Scholar] [CrossRef]
- Lipanov, A.M.; Shelkovnikov, Y.K.; Osipov, N.I. The Analysis of Multiscan Operation with Amplitude-Modulated Optical Signals. Sensors Syst. 2003, 10, 12–16. (In Russian) [Google Scholar]
- Shelkovnikov, Y.K. Improving the Stability and Linearity of a Coordinate Characteristic of Scanistor Information and Measuring Systems. Intell. Syst. Prod. 2011, 17, 251–255. (In Russian) [Google Scholar]
- Podlaskin, B.G. Spatial Filtering of Temporal Noise with the Hadamard Transformation Applied to a Photodetector Array. Tech. Phys. 2007, 52, 672–675. [Google Scholar] [CrossRef]
- Podlaskin, B.G.; Guk, E.G.; Nosenko, E.V. Multiskan-Based Double Synthetic Aperture for Locating the Illuminance Boundary of a Weak Optical Signal. Tech. Phys. 2002, 47, 726–730. [Google Scholar] [CrossRef]
- Shelkovnikov, Y.K.; Osipov, N.I.; Kiznertsev, S.R.; Meteleva, A.A. Influence of the Photoresistive Effect of Multiscan Resistive Dividers on Accuracy of Measurements of Geometrical Parameters of Objects. Intell. Syst. Manuf. 2018, 16, 57–64. [Google Scholar] [CrossRef]
- Shelkovnikov, Y.K.; Osipov, N.I.; Kiznertcev, S.R.; Meteleva, A.A. Analysis of Influence of Kinetics of the TV Multicast Photocurrent on the Error of Measuring the Coordinates and Sizes of Light Zones. Vestn. IzhGTU Im. M.T. Kalashnikova 2019, 22, 89–99. [Google Scholar] [CrossRef]
- Podlaskin, B.G.; Guk, E.G. Analog Processor Based on the Multiscan Photoreceiver for the Aperture Correction of the Median of a Dis-Torted Optical Signal. Zhurnal tekhnicheskoy Fiz. 2006, 76, 93–98. (In Russian) [Google Scholar]
- Abbasi, A.R.; Mahmoudi, M.R.; Arefi, M.M. Transformer Winding Faults Detection Based on Time Series Analysis. IEEE Trans. Instrum. Meas. 2021, 70, 3516210. [Google Scholar] [CrossRef]
- Bailey, D.; Wright, E. Practical Fiber Optics; Newnes: London, UK, 2003; ISBN 9780080473871. [Google Scholar]
- Koltsov, P.P. Estimation of Image Blurring. Comput. Opt. 2011, 35, 95–102. (In Russian) [Google Scholar]
- Murynov, A.I. Estimation of the Geometric and Topological Parameters of Image Details Based on the Method of Centroid Filtration. Chem. Phys. Mesoscopy 2002, 4, 161–177. (In Russian) [Google Scholar]
- Arkhipov, I.O. Modeling and Analysis of Linear Low-Sized Structural Elements of Graphics Images on the Basis of Usage of Spatially Chromatic Parameters. Vestn. IzhGTU Im. M.T. Kalashnikova 2014, 2, 149–152. (In Russian) [Google Scholar]
- Arkhipov, I.O.; Shelkovnikov, Y.K.; Meteleva, A.A. The Use of the Spatial-Structural Model of a Video Signal from the Television Scanistor in Tasks of Monitoring the Geometric Parameters of Small Objects. In Proceedings of the Journal of Physics: Conference Series, Samara, Russia, 26–29 May 2020; Volume 1745, pp. 638–644. [Google Scholar] [CrossRef]
- Černecký, J.; Božek, P.; Pivarčiová, E. A New System For Measuring The Deflection Of The Beam With The Support Of Digital Holographic Interferometry. J. Electr. Eng. 2015, 66, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Božek, P.; Pivarciova, E. Registration of Holographic Images Based on Integral Transformation. Comput. Inform. 2012, 31, 1369–1383. [Google Scholar]
- Karrach, L.; Pivarčiová, E.; Božek, P. Identification of QR Code Perspective Distortion Based on Edge Directions and Edge Projections Analysis. J. Imaging 2020, 6, 67. [Google Scholar] [CrossRef]
- Nikitin, Y.; Božek, P.; Peterka, J. Logical–Linguistic Model of Diagnostics of Electric Drives with Sensors Support. Sensors 2020, 20, 4429. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tlach, V.; Alies, M.Y.; Kuric, I.; Sága, M.; Shelkovnikov, Y.K.; Arkhipov, I.O.; Korshunov, A.I.; Meteleva, A.A. Use of Spatio-Structural Parameters of the Multiscan Video Signal for Improving Accuracy of Control over Object Geometric Parameters. Appl. Sci. 2023, 13, 2994. https://doi.org/10.3390/app13052994
Tlach V, Alies MY, Kuric I, Sága M, Shelkovnikov YK, Arkhipov IO, Korshunov AI, Meteleva AA. Use of Spatio-Structural Parameters of the Multiscan Video Signal for Improving Accuracy of Control over Object Geometric Parameters. Applied Sciences. 2023; 13(5):2994. https://doi.org/10.3390/app13052994
Chicago/Turabian StyleTlach, Vladimír, Michael Yurievich Alies, Ivan Kuric, Milan Sága, Yuriy Konstantinovich Shelkovnikov, Igor Olegovic Arkhipov, Aleksandr Ivanovich Korshunov, and Anastasia Alekseevna Meteleva. 2023. "Use of Spatio-Structural Parameters of the Multiscan Video Signal for Improving Accuracy of Control over Object Geometric Parameters" Applied Sciences 13, no. 5: 2994. https://doi.org/10.3390/app13052994
APA StyleTlach, V., Alies, M. Y., Kuric, I., Sága, M., Shelkovnikov, Y. K., Arkhipov, I. O., Korshunov, A. I., & Meteleva, A. A. (2023). Use of Spatio-Structural Parameters of the Multiscan Video Signal for Improving Accuracy of Control over Object Geometric Parameters. Applied Sciences, 13(5), 2994. https://doi.org/10.3390/app13052994