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Abstract: Rose oil production is believed to be dependent on only a few genotypes of the famous rose
Rosa damascena. The aim of this study was to develop a novel GC-MS fingerprint based on the need to
expand the genetic resources of oil-bearing rose for industrial cultivation in the Taif region (Saudi
Arabia). Gas chromatography-mass spectrometry (GC-MS) is a widely used analytical technique
for determining the volatile composition of distilled rose oil from flower data. Because biosample
availability, prohibitive costs, and ethical concerns limit observations in agricultural research, we
aimed to enhance the quality of analysis by combining real observations with samples generated
in silico. This study proposes a novel artificial intelligence model based on generative adversarial
neural networks (GANs) to classify Taif rose cultivars using raw GC-MS data. We employed a variant
of the GAN known as conditional stacked GANs (cSGANs) to predict Taif rose’s oil content and other
latent characteristics without the need to conduct laboratory tests. A hierarchical stack of conditional
GANs is used in this algorithm to generate images. A cluster model was developed based on the
dataset provided, to quantify the diversity that should be implemented in the proposed model. The
networks were trained using the cross-entropy and minimax loss functions. The accuracy of the
proposed model was assessed by measuring losses as a function of the number of epochs. The results
prove the ability of the proposed model to perfectly generate new real samples of different classes
based on the GC-MS fingerprint.

Keywords: conditional generative adversarial network; Taif rose; gas chromatography-mass spec-
trophotometry; StackGAN

1. Introduction

Rosa x damascena Herrm is one of the most famous representatives of the genus Rosa
L. It is a hybrid rose derived from Rosa gallica and Rosa moschata. Additionally, it is
known as the Damask rose, the Bulgarian rose, the Turkish rose, the Taif rose, the Arab
rose, and the Castile rose [1]. It has been cultivated in 18,000 different varieties [2,3].
Because of its high ornamental value and valuable essential oil, the Damask rose is widely
cultivated in many countries. The essential oil of R. damascena has been used in perfumery,
cosmetics, aromatherapy, and various medicinal applications since ancient times. Some
authors believe that rose oil production depends only on a few genotypes of the famous rose
R. damascena. According to the current global market for rose oil, Bulgaria, Turkey, Iran, and
India are leading suppliers, alongside Saudi Arabia (SA). The Taif region of SA is a major
producer and relies on only one genotype. There has been increasing concern regarding
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the need to increase the genetic resources of oil-bearing roses for industrial cultivation [4].
Saudi Arabia has developed R. damascena exclusively through clonal selection, thereby
preserving its traditional odor and composition by avoiding crossbreeding. Over the past
decade, molecular breeding has proven to be a highly effective method for improving
oil roses [5]. According to international standards [6] governing the composition of oil
roses, when hybridizing R. damascena between or within varieties, desired traits must be
introduced without altering the volatiles of the flowers. Therefore, it is crucial that a high-
throughput method be used to determine the relative composition of rose oils collected from
various breeding lines, as well as accessions of segregated and natural rose populations.

Gas chromatography–mass spectrometry (GC-MS)—an instrumental technique used
to determine the components of essential oils—consists of a gas chromatograph (GC)
combined with a mass spectrometer (MS) to separate, identify, and quantify complex
mixtures of chemicals. In the field of quantitative GC-MS, which is widely used to analyze
floral volatiles, flower data can be extrapolated to the volatile composition of distilled
rose oil based on specific ion patterns. Furthermore, GC-MS spectral data can be analyzed
to create fingerprint templates, and a fingerprint image generation program can be used
to structure the complex instrumental data. Thus, it is ideal to analyze hundreds of
compounds with relatively low molecular weight [7]. For complex samples, peak overlap
is likely, due to the background, baseline offset, and some overlapped or embedded peaks,
even under ideal experimental conditions. Often, these problems lead to incorrect similarity
matches in the MS library, resulting in incorrect component identification. Consequently, the
primary objective of research in this area is to determine the constituents of the compounds
and resolve them.

Machine learning algorithms have been used to create kinetic and genome-scale
models for data-driven predictions and conclusions [8–10]. Existing models are used to
determine the features that are essential in a network using machine learning algorithms [9].
It is also possible to map metabolic models onto genomic, proteomic, and metabolomic data
using machine learning techniques, such as clustering [11] or support-vector machines [12].
Using multiview machine learning algorithms, different omics data and metabolic model
data can be combined, which may include separate machine learning algorithms that ana-
lyze each omics layer and aggregate them, utilizing methods developed through multilayer
network theory [13].

Rather than using human-engineered features, deep learning models use deep neural
networks and complex architectures to extract information directly from the raw features.
Deep learning is widely accepted as one of the most rapidly developing methodologies in
the scientific field [14]. Convolutional neural networks (CNNs) are widely applied in image
classification, ranging from natural image classification to computer-aided diagnosis [15,16],
but the generalization of CNNs is limited when applied to validation or testing datasets
because they require large training datasets. In practice, in silico generation has been
successfully used in computer vision for data enhancement even when the number of
biological samples is limited. The use of samples generated in silico has been combined with
observations made from real samples to artificially increase the number of observations.
In this study, we augmented real GC-MS data with newly generated samples, whose
distribution mimics the original data distribution in their original metabolite space. Data
modeling traditionally relies on deep-learning-based generative adversarial networks
(GANs) for the generation of photorealistic images, rather than the priors underlying
such data.

GANs were introduced as deep learning tools by Goodfellow et al. in 2014 [17]. A GAN
is a generative model that uses deep neural networks in an adversarial setting. Specifically,
a GAN uses adversarial methods to learn generative models of the data distribution. This
has become one of the hottest research areas in artificial intelligence, as one of the most
successful generative models in recent years. Since its initial proposal, the GAN has
attracted considerable attention owing to its exceptional performance. In addition to its
excellent performance as a generative model, the GAN integrates deeply into all facets of
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deep learning, opening up an array of new research directions and applications [18,19].
Generative adversarial networks, as a technique for augmenting data scarcity, provide
the ability to simulate existing images, so they are particularly promising for overcoming
data scarcity [20,21]. By constructing an adversarial network, the GAN trains a generator
and a discriminator. Conditional GANs (cGANs) are deep learning neural networks with
additional parameters that depend on the project requirements. In addition, labels are used
in the discriminator inputs so that the discriminator can correctly classify the input and
cannot be easily filled in by the generator [22].

In this study, a novel artificial intelligence model was developed to classify Taif rose
images based on their GC characteristics. Using this model, the oil and other latent charac-
teristics of roses can be predicted without requiring laboratory testing. However, achieving
this goal through traditional ANN models is difficult because of the relatively small dataset
available for the Taif rose images and their GC analysis. Therefore, this study employs a
state-of-the-art generative approach, namely, a conditional stacked GAN model (cSGAN).
StackGANs are generative adversarial networks (GAN variants) that use hierarchical stacks
of conditional GANs to generate images. As the name implies, StackGANs have two
stacked GANs for creating a network that can generate high-resolution images. Using this
approach, we evaluated 10 rose cultivars from different locations within the Taif region of
Saudi Arabia.

To the best of our knowledge, this is the first study to propose the use of a GAN to
learn the chemical component patterns of Taif rose flowers directly from the raw GC-MS
data. The key contributions of this study are as follows:

1. Development of a novel GC-MS fingerprint based on the need to expand the genetic
resources of oil-bearing roses for industrial cultivation in the Taif region (Saudi Arabia).

2. Providing agricultural researchers with a means of overcoming the problem of the
shortage of observations caused by limited access to biosampling techniques, pro-
hibitive costs, or ethical concerns. A more accurate data analysis may be possible by
integrating samples generated in silico with real observations.

3. Evaluating cSGANs as a method for generating a variety of realistic classes by ana-
lyzing the GC–MS fingerprints of rose oils derived from populations of cultivated R.
damascena capable of producing oils.

4. Analysis of the dataset provided for the development of a cluster model that quantifies
the diversity that needs to be incorporated into the proposed model.

The remainder of this paper is organized as follows: Section 2 describes related work,
Section 3 presents the materials and techniques used for obtaining data, and Section 4
describes the algorithm and methodologies used in the study. In Section 5, the results
obtained using the previous techniques are presented. An assessment of the model is
provided in Section 6, along with a discussion of the results. Finally, the conclusions of this
study are presented in Section 7.

2. Related Work

Research on GANs has primarily focused on unsupervised settings that utilize unla-
beled images. Conditional GANs [23] are able to generate images that are based on a set of
attributes. According to Schlegl et al. [23], attributes may be fed to both the generator and
the discriminator such that the generator can generate images based on these attributes.
An alternative approach, proposed by Odena et al. [21], utilizes auxiliary classifier GANs
(AC-GANs), in which the discriminator reconstructs side information as part of the classifi-
cation. This line of research focuses on supervised settings, which assume that all images
possess attribute tags, regardless of the approach employed.

GANs can render deep representations of real data by implementing a minimax
game process [17]. This technology can achieve state-of-the-art performance in various
applications, such as image synthesis, super-resolution, visual sequence prediction, and
semantic image painting. Thus, this emerging method has received increasing attention for
the detection of outliers. Using the same generative model, Schlegl et al. [23] investigated
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the posterior probabilities of the abnormal markers in medical images. Zenati et al. [24]
employed a network structure based on BiGAN [25] to jointly train the mapping from an
image to latent space. In contrast, Akcay et al. [26] presented a subnetwork containing
encoders, decoders, and encoders to reduce the computational complexity associated with
remapping latent vectors. Deecke et al. [27] initialized multiple latent vectors from various
locations in the latent space to solve the nonconvexity of the underlying optimization
problem. Nonetheless, they defined a GAN as a feature extractor or reconstructor, which
differs considerably from our approach. Additionally, we extend the GAN-based models
beyond a single generator model (SO-GAAL) to a model with multiple generators with
different objectives (MO-GAAL) to address the mode collapse issue.

Several studies have reported that AC-GANs are effective in classifying images.
Schlegl et al. [23] used AC-GANs to enhance a CNN liver lesion classifier using three
classes. It was found that a discriminator independent of an AC-GAN can be used to
classify images, resulting in a 2% reduction in classification accuracy. In contrast, their
CNN classifier was designed to accurately categorize the livers, whereas their AC-GAN
architecture was the same as that used by Soleimani et al. [28]. However, the literature has
demonstrated promising results from all-in-one architectures that combine both generation
and classification [9,29,30]. An AC-GAN variant has been proposed by Yang et al. [29] for
hyperspectral imaging, plant segmentation, and image classification. Furthermore, the
Wasserstein GAN has been applied with gradient clipping to classify a specific signal [31].
We have been motivated to determine how AC-GANs perform under controlled conditions
with similar hyperparameters in the same domain, as compared to standard CNNs. As
a result of exploring methods to overcome the limited size of datasets, AC-GANs were
further adapted for image classification.

With the recent advancements in agriculture and plant science, artificial images based
on GANs have become increasingly popular. GANs are primarily concerned with trans-
lating between two domains (A and B), where a domain refers to a collection of samples,
such as images, the distribution of which is implicitly determined by the GAN. Several
GAN approaches in the literature differ in the selection of domains A and B in the training
dataset, with images generated when applying the training method from domain B [32].
Conditional GANs (cGANs) can be used in agricultural applications to discover powerful
generators based on a set of inputs and outputs [33]. There is evidence that these networks
have achieved good results in various applications in the domain adaptation field [18,22,34].
However, they are rarely used in plant science. Plant data have already been successfully
used in cGANs to improve data for a few specific applications. To achieve this goal, Zhu
et al. [20] synthesized new real-looking images of plants using segmentation masks on
the input side of the cGAN. To acquire high-resolution images, Zhang et al. developed a
stacked generative adversarial network (SGAN) architecture [35] using GAN models. It was
difficult to generate high-resolution images from text descriptions, owing to the complexity
of the learning process. This difficulty was often caused by a wide range of variations
in the correspondence between natural languages and images. The StackGAN algorithm
can create high-resolution images of 256 × 256 pixels; however, it has been plagued by
problems such as unintelligible images and mode collapse because of unstable learning. A
conditional generation task becomes more problematic as the image resolution increases.

To the best of our knowledge, no previous study has been conducted on the utility
of agricultural data pairs in cSGANs, where the domains differ in the GC-MS data (e.g.,
retention time, molecular weight, and peak percentage), as in this study. Nevertheless,
our research is methodologically related to the analysis of facial aging, which involves
predicting faces several years into the future using cGANs [36]. Similarly, cGANs can help
maintain certain traits in plants, just as they are crucial for maintaining the characteristics
that determine an individual’s identity.
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3. Materials and Methods
3.1. Study Area

This study was conducted in Taif, Makkah Province, Saudi Arabia, on the western
slopes of the Al-Sarawat Mountains, at an elevation of 1879 m (6165 feet). In terms of
latitude and longitude, Taif is located at 21◦262′03” N and 40◦212′03” E, respectively.
The Taif region reaches a maximum temperature of 34 ◦C in summer and a minimum
temperature of 10 ◦C in winter. Approximately 25,500 hectares of agricultural land is
located in Taif, with rainfall occurring almost continuously throughout the year, with a
higher percentage in spring and late autumn. These farms are primarily located on the
Al-Shafa and Al-Hada plateaus (Figure 1).
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Figure 1. Geographical locations of the 10 Taif rose farms (Al-Hada (a) and Al-Shafa (b)) from which
the samples were collected.

3.2. Sampling

During the 2021 rose harvest season (early morning hours), rose flowers were col-
lected from 10 oil-bearing rose accessions as part of a traditional rose flower collection
practice. The flowers were immediately frozen in liquid nitrogen and stored at −80 ◦C for
further analysis.

3.3. GC-MS Analysis

Approximately 20 mg of rose essential oil was extracted from 100 g of the flower
sample and dissolved in 1 mL of N-hexane for four hours. For each sample, three repli-
cates were used. As described by Xiao et al. [37], essential oil samples were dissolved in
dichloromethane for GC-MS analysis. GC-MS analysis was performed using a Thermo
Scientific Trace GC Ultra/ISQ Single-Quadrupole MS with a TG-5MS fused-silica capillary
column (30 m, 0.251 mm, 0.1 mm film thickness) Markham, ON, CA. Owing to the sim-
plicity and rapidity of this method, it is possible to accurately identify the origin of rose
varieties. Table 1 lists the parameters used in this analysis.

After headspace injection, the volatile organic components in the rose samples were
detected quickly by heating them directly. By analyzing the gas-phase ion migration spectra
and fingerprint chromatograms, the instrument can determine the differences between
the volatile organic compounds in each sample. Based on the percentage of the relative
peak area, all identified components were quantified. The compounds were tentatively
identified based on a comparison of their relative retention times and mass spectra with
NIST and Wiley library data obtained from the GC-MS system [38]. An example of GC-MS
analysis that we received from the laboratory is provided in Figure 2 and Table 2.
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Table 1. Various parameters of GC–MS analysis used in this research.

Parameter Settings for Thermo Scientific, Trace GC Ultra/ISQ Single-Quadrupole MS

Analysis time 60 min.
Column type TG-5MS fused-silica capillary column

Ionization energy 70 eV
Carrier drift gas Helium (He)

Carrier gas flow rate 1 mL/min.
Initial MS temperature 40 ◦C/3 min 40 ◦C

Increasing rate of temperature 5 ◦C/min (hold 5 min)
The injector and MS final temperature 280 ◦C
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Figure 2. Representative sample of the GC-MS fingerprints generated by GC-MS analysis of the
studied rose oils.

Table 2. Example of GC–MS data of rose oil composition. RT = retention time, MW = molecular
weight, MF = molecular formula. Area% = the percentage of the component.

RT Mw MF Area% Compound Name

5.16 232 C14H16O 3 0.83 Ethyl- 2-[(benzyloxy)methyl]cycloprop-2-ene-1-carboxylate

6.46 210 C15H30 1.05 2,4,6,8-Tetramethyl-1-undecene

8.11 136 C10H16 18.43 á-Pinene

8.29 136 C9H12O 1.06 Spiro[cyclopropane-1,6′[3]-oxatricyclo [3.2.1.0(2,4)]octane]

9.41 120 C 9H12 4.09 1,8-Nonadiyne (CAS)

9.56 136 C10H16 0.48 Sabinene

10.02 108 C8H12 8.42 3-Cyclopentyl-1-propyne -6

10.13 100 C6H12O 0.23 Cyclopentanemethanol

10.68 136 C10H16 0.64 çTerpinene

10.95 134 C10H14 0.55 Benzene,1-ethyl-2,4-dimethyl (CAS)

11.07 136 C10H16 1.65 á-Phellandrene
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Table 2. Cont.

RT Mw MF Area% Compound Name

11.40 136 C10H16 0.26 Bicyclo-[3.1.1]-hept-2-ene,3,6,6-trimethyl (CAS)

11.71 136 C10H16 0.61 1,3,6-Octatriene,3,7-dimethyl-,(E)-(CAS)

12.00 136 C10H16 0.90 ç-Terpinene

12.88 136 C10H16 0.90 ç-Terpinene

13.41 154 C10H18O 9.88 Linalool

14.26 218 C9H15BrO 0.73 1á-Bromo-3Aà,4à,5,6,7,7Aà-Hexahydroindan-4-ol

17.30 154 C9H14O2 1.40 MethylBicyclo [3.1.0]hexane-6-acetate

4. The Proposed Model

Several annotated natural image datasets are available in the fields of deep learning
and computer vision for use with classifier models. These datasets can be used to iden-
tify roses based on their gas-phase ion migration spectra. It is evident that developing
large-scale professional image datasets and integrating numerous annotations would un-
doubtedly require a significant amount of manpower and materials, owing to privacy
restrictions, industry standards, and unintegrated information systems. Based on a small
set of marked and unlabeled data, semi-supervised classification generates a set of data
category labels by using a GAN discriminator network.

4.1. Description of the Model

As a deep learning framework, generative adversarial networks (GANs) involve
training two models simultaneously: a generative model G, and a discriminative model D.
G aims to capture the distribution of some target data (e.g., distributions of pixel intensity
in images). D aids G by examining the data generated by G and comparing the generated
data with the “real” data. According to Goodfellow et al. [17], a GAN is a pair of simple
neural networks; however, in practice, it can be any pair of generative–discriminative
networks [39].

In the original works [27,39], the GAN is analogized as a counterfeit money production
process, where S plays the role of a counterfeiter in training, whereas D (the bank) tries to
identify fake bills, and in doing so helps S develop its skills. Specifically, let x ∼ pdata be
featured by defining actual bills, while S(z) features S created from some noise distribution
z ∼ pz. In addition, let J be a quantitative metric that measures how real a bill is. Then,
D’s role is to lower J (S(z)) (the score of a fake bill) while increasing J (x) (the score of a
real bill) for more accurate identification. However, the goal of S, is to increase J (S(z))
(i.e., improve the quality of fake bills) by observing D’s differentiation process. In the
process of “busting fake bills” and “making better fake bills”, the model distribution pD
approaches pdata and eventually reaches an equilibrium, where D no longer excels over
chance (i.e., D(x) = D(S(z)) = 0.5). Consequently, G reaches its optimal point [40]
during counterfeiting.

4.2. Objective Function

GANs are unsupervised models based on game theory, proposed by Goodfellow et al.
in 2014. In this model, the generator S maps random noise onto the target domain with
a particular distribution (such as Gaussian or uniform), and the probability distribution
of the real data is then studied in order to generate samples S(z) that closely match the
real data distribution. To avoid the mode collapse problem when random noise is used, D
identifies whether the sample derives from the real dataset x or from the generated dataset
S(z). D(·) is a probability value that implies whether the dataset is real. Training a GAN
primarily involves training the discriminator D and generator S, where S(z) is trained to
reduce the likelihood of D making mistakes, whereas D is used to increase the precision
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level for distinguishing real from generated samples [17]. Hence, training S(z) and D is a
binary minimax game problem that is characterized by the following objective function:

J(D,S) = Ex∼pdata [logD(x)] +Ez∼pz [log(1−D(S(z)))] (1)

where x ∼ pdata implies that datum x follows some p data distribution, and z ∼ pz implies
that the random noise z follows the distribution pz.

When the generator trains a GAN, it attempts to generate progressively realistic
images so that a discriminator will not be able to distinguish between real and false images,
whereas D attempts to distinguish between real images and those generated by S. This is
similar to a two-player game in which the generator and the discriminator are steadily at
odds. Eventually, a dynamic equilibrium is reached between the two networks; the image
generated by S represents the real image, whereas the discriminator cannot distinguish
between them. As a result, network training is ultimately intended to maximize the
probability values of the S and D networks, which means that S and D should achieve
“Nash equilibrium”.

In order to stabilize the training of GANs, different objective functions have been
proposed, including f-divergence [41], least squares [42], Wasserstein distance [43], and
hinge loss [44]. The Wasserstein metric is feasibly the most favored for the measurement
of distances between real and generated samples, developing a new GAN framework
called the Wasserstein GAN (WGAN) [43]. A significant advantage of the WGAN over the
original GAN is its improved theoretical properties and learning stability, which facilitate
hyperparameter selection and debugging. Gulrajani et al. [45] improved the original
WGAN by penalizing the norm of the discriminator gradients with respect to the data
input rather than clipping the weight parameters of the discriminator.

It is often possible to parameterize networks D and G according to differentiable func-
tions that may include fully connected, convolutional, or recurrent networks. In the original
GAN [17], fully connected networks served as the building blocks, which were suited only
to low-resolution image datasets such as MNIST and CIFAR-10. Increasingly powerful
convolutional neural networks (CNNs) have been used to synthesize high-resolution
complex images, providing better image generation performance. Several GAN variants
have been proposed in the literature based on the vanilla GAN model [17] for various
applications [46–48].

By conditioning the GAN on auxiliary information, it can be modified to generate
images with desired attributes—as opposed to the original GAN, which has no control over
the data being generated. A conditional GAN (cGAN) is a type of artificial neural network
conditioned on a class label. In this study, we aim to predict future floral scent compounds
of Taif rose based on GC-MS fingerprints acquired during the distillation process using a
conditional GAN (cGAN) [33]. The chemical components of rose oil are referred to as the
visible phenotypes of plants at different locations. Using GC–MS fingerprint analysis of
10 Taif rose samples, we generated images of the future phytoconstituents in rose oil. Mirza
and Osindero [22] were among the first researchers to develop conditional GANs (cGANs).
Using z and y as inputs, the S represents random noise in the joint representation, and D

represents real samples and their labels. A cGAN has the following objective function:

J(D,S, y) = Ex∼pdata [logD(x|y)] +Ez∼pz [log(1−D(S(z|y)))] (2)

4.3. Network Design (Architecture)

Using user-generated multilabel predictions, Mirza and Osindero [22] developed a
class-conditional GAN that generated MNIST digits with class labels encoded as one-
hot vectors. The auxiliary classifier GAN (or AC-GAN) performs the cGAN function by
predicting class labels rather than taking them as inputs [21], leading to dispersion and
diversity in the ImageNet samples. Furthermore, the conditional variable y may include
images [20,33], bounding boxes, key points, or images with text descriptions. According
to Reed et al. [40], 64× 64 plausible images can be generated if textual descriptions are
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available. StackGANs were proposed by Zhang et al. [35], which produced images with
4X better resolution for text-to-image synthesis. Isola et al. [33] proposed Pix2Pix (https://
github.com/phillipi/pix2pix, accessed on 15 February 2023) for image-to-image translation
(i.e., translation of representations from the source to output images). To learn the mappings
between the input and output images, Pix2Pix requires a set of aligned image pairs as the
training data. The newly introduced image-conditional GAN has been widely applied in
image synthesis, face editing, image inpainting, and super-resolution [47,49,50]. Figure 3
summarizes the key parameters of the architecture used in this study.

4.3.1. The Generator

The generator network begins with two fully connected layers, whose number of
neurons is set to 1000 and 10,000, respectively. The main task of these two layers is to
convert the dimensional reduction sample input to the network into two higher dimensions
so that subsequent layers can use them to reproduce a new set of samples. The outputs of
the two fully connected layers are then passed to five convolutional nonlinearity tuples as
the number of kernels and the width of the convolutional layers vary among the layers.
This is made with the aim of enabling the kernel of these layers to discover different parts
of the patterns provided in the given samples—which, in turn, increases the possibility of
generating new samples with the same patterns. The final layer of the generator network
is a single convolutional layer, and the number and size of its kernels are set to match the
number and size of the frontmost convolutional layer to ensure that the generated input is
identical to the input.

4.3.2. The Discriminator

The discriminator network consists of a tuple of five, each comprising “convolutional
nonlinearity and max-pooling followed by three fully connected layers”. Recall that the
main goal of the discriminator network is to determine whether each input is genuine
or generated by the generative network. To achieve this goal, five tuples are used to
extract the salient features of the inputs, whereas the fully connected layers are used to
embed these features in the learning space before passing them on to the last layer, which
consists of two neurons representing the two possible cases: genuine, or generated by the
generative network.

The number of stacks refers to the number of generator and discriminator networks
used in this study, whereas the distribution of py refers to the probability distribution
with which a new sample is drawn from the dataset and fed into the model. The greatest
advantage of using a uniform distribution is that all the samples have the same chance of
being used. Furthermore, a Gaussian distribution with a mean of zero and a small standard
deviation is used to create random noise for the input. The choice of this distribution is
justified by the fact that almost all noise occurring in the real field follows this distribution.

The proposed model was implemented on a single machine running Ubuntu 22.04.1
Long-Term Support with an Intel® Core™ i9-10900X X-series processor (19.25M cache,
3.70 GHz), 64 GB, and a GeForce RTX 2060 graphics card. Python 3.10.7, with the Ten-
sorFlow and Keras libraries, was used as the programming environment, over which the
model was coded.

4.4. Validation

A cluster model was developed using the dataset provided to quantify the diversity
that must be implemented in the proposed model. Cross-entropy and minimax loss
functions were used to train the discriminator and generator networks, respectively. An
80:20 ratio was used to divide the datasets into two subsets: training and testing. Adaptive
moment estimation with β1 = 0.995 and β2 = 0.99 was used as an optimization algorithm,
while backpropagation was used as a learning scheme with a learning rate of 0.001 and
600 epochs.

https://github.com/phillipi/pix2pix
https://github.com/phillipi/pix2pix


Appl. Sci. 2023, 13, 3052 10 of 17

Appl. Sci. 2023, 12, x FOR PEER REVIEW 9 of 18 
 

4.3. Network Design (Architecture) 
Using user-generated multilabel predictions, Mirza and Osindero [22] developed a 

class-conditional GAN that generated MNIST digits with class labels encoded as one-hot 
vectors. The auxiliary classifier GAN (or AC-GAN) performs the cGAN function by pre-
dicting class labels rather than taking them as inputs [21], leading to dispersion and di-
versity in the ImageNet samples. Furthermore, the conditional variable 𝓎 may include 
images [20,33], bounding boxes, key points, or images with text descriptions. According 
to Reed et al. [40], 64 ൈ 64 plausible images can be generated if textual descriptions are 
available. StackGANs were proposed by Zhang et al. [35], which produced images with 
4X better resolution for text-to-image synthesis. Isola et al. [33] proposed Pix2Pix 
(https://github.com/phillipi/pix2pix, accessed on 15 February 2023) for image-to-image 
translation (i.e., translation of representations from the source to output images). To learn 
the mappings between the input and output images, Pix2Pix requires a set of aligned im-
age pairs as the training data. The newly introduced image-conditional GAN has been 
widely applied in image synthesis, face editing, image inpainting, and super-resolution 
[47,49,50]. Figure 3 summarizes the key parameters of the architecture used in this study. 

 
Figure 3. A schematic diagram of the proposed cSGAN model used in this study. Figure 3. A schematic diagram of the proposed cSGAN model used in this study.

5. Results

The first evaluation of the proposed model was conducted by measuring the suit-
ability of the proposed approach for generating new samples from a given dataset. In
this evaluation, the retention time (RT) was measured against the molecular weight (MW)
for different molecular formulae (MFs) in terms of area and then plotted as shown in
Figure 4. It can be seen that the different accessions of Taif rose have variable metabolomic
profiles. For example, those collected from location 3 show that most of the components
are concentrated below 400 MW and have a lower percentage area, whereas this is twice
the case for site 2. The most important point to consider when developing the model is to
provide sufficient layers to account for the different distributions in the dataset.
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To further quantify the diversity that must be implemented in the proposed model, a
cluster model was created for the provided dataset and used to assess the extent to which
the different aspects of the datasets matched. The results of this assessment, as shown in
Figure 5A,B, indicate that it is difficult to group all sites into three or four clusters. The
optimal number of clusters, as shown in the cluster gap analysis in Figure 5B, indicates that
an optimal value is achieved when each location is placed in its own cluster.

The accuracy of the proposed model was assessed by measuring losses as a function
of the number of epochs. From Figure 6, it can be observed that as the number of epochs
increased, the losses for both the generator and discriminator networks decreased during
the training and testing phases. This result demonstrates the ability of the proposed model
to perfectly handle a dataset.
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6. Discussion

Synthetic data generation poses the challenge of capturing the complex patterns of
real data. To determine the accuracy and quality of the synthetic data, a rigorous evaluation
method must be used, followed by a direct comparison of the synthetic data produced by
various generative models. It is noteworthy, however, that different evaluation strategies
and metrics result in different results for generative models with high heterogeneity and
complexity [51], particularly for high-dimensional data. In addition, the results of evalu-
ation may differ based on the application domain and may not be simply transferable to
other applications. In order to address this current target problem, a specific evaluation
framework must be developed.

Our study is primarily concerned with agricultural applications, for which no real
data exist. Therefore, we introduced an extended dataset including both generated and
real data to train the classifier. As a result, we can see how synthesized data can improve
the accuracy of the classifier, while at the same time retaining the features of real data.
Comparatively, other evaluation methods require the classifier to be trained exclusively on
real data and to be tested on synthetic data [52,53]. On the other hand, other researchers
used synthetic data to train their classifiers and then tested them on real data [54].

It should be noted that, in the present study, the same real data were employed to train
the generative models, and partially in an expanded dataset to train the classifier. However,
this allows us to address one of the biggest challenges in agriculture—namely, data scarcity,
where data are limited. Synthetic data are important because they can overcome the
data limitations arising from a variety of factors that lead to complications in the field.
However, it should be noted that these data are typically of lower quality than real data, as
confirmed by supervised classification accuracy [55]. Based on the available (limited) real
data, the amount of synthetic data required must be determined in order to ensure high
accuracy. This study proposes a generative model called the conditional stacked generative
adversarial network (cSGAN). It comprises a top-down stack of GANs that generate a set
of “plausible” lower-level representations based on higher-level representations. Similarly,
we introduced a set of representation discriminators, which are trained to distinguish
“fake” representations from “real” representations, similar to the image discriminator in
the original GAN model. The loss created by the representation discriminator drives the
intermediate representations of the SGAN to lie on the manifold of the representation
space of the bottom-up DNN. In this regard, the proposed GAN variant (i.e., StackGAN)
could improve classification accuracy compared to a vanilla GAN trained only on real
data [53]. Generative models encounter problems when a limited real data are considered,
resulting in the generation of inferior data. This is particularly problematic in agriculture,
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where only limited amounts of data are available. Consequently, generating and testing
data quality is difficult, as opposed to studies that use large datasets [53]. It is often used
for clustering, where data points are grouped based on their similarity, which allows the
detection of unknown correlations and patterns in the datasets. Clustering is a common
application of unsupervised learning (UL), as it involves grouping data points according to
their similarity, allowing the discovery of unknown correlations and patterns in the data.
Another important task of UL is dimensionality reduction, which aims to find efficient
low-dimensional representations of data while minimizing the resulting loss of information.
This is closely related to finding a cluster of data with similar features. A popular and
relatively simple clustering algorithm is the k-means method [56], for which a variety
of variations and extensions have been proposed. For example, the k-means algorithm
minimizes the average variance in the clusters.

It is worth mentioning that each model is run with a different number of iterations,
and the number of epochs is an influential parameter. When the model is run with fewer
iterations, the accuracy is low and the error is larger. As the number of iterations increases,
the model gradually converges such that there is no significant difference between 300
and 500 epochs [57]. In this context, it was determined that a maximum of 600 epochs is
sufficient. The number of neurons in the hidden layers is another parameter that affects
the accuracy of the models. A low value prevents the model from simulating correctly,
whereas a high value leads to overfitting. The loss was measured as a function of the
number of epochs in the proposed model to evaluate its accuracy. In both the training and
testing phases, the losses for both the generator and discriminator networks increased as
the number of epochs increased.

The graphs of the loss function show that, for both the generator and the discriminator,
the error in the test phase decreased as the modelling error in the training phase decreased.
Furthermore, the distance between the two lines in the graph decreased. Thus, the dropout
function was effective in preventing overfitting of the network. A well-chosen learning rate
was also ensured by examining the changes in the loss function value over epochs. From
this result, it can be concluded that the proposed model can perfectly process the dataset.

7. Conclusions

The primary aim of this study was to develop a general prediction model for Taif rose
populations using recently improved generative adversarial networks. According to the
findings of this study, the cSGAN model could produce artificial samples from 10 Taif rose
samples collected from various locations. GC-MS metabolite profiling of sparse Taif rose
populations generated by cGANs leads to improved downstream analyses such as detecting
marker metabolites, testing novel analysis algorithms, and assessing the robustness and
reliability of classifiers. This would lead to fewer plant experiments and lower costs. The
results of the present study indicate that the cGAN model has great potential and value. It
is only a short time since cGAN has existed; therefore, relevant theories and applications are
still in their infancy. Further research on cGAN is needed to consolidate its development,
and this work could hopefully provide information that researchers need in order to apply
cGAN to agricultural issues.
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