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Abstract: To build intelligent model learning in conventional architecture, the local data are required
to be transmitted toward the cloud server, which causes heavy backhaul congestion, leakage of
personalization, and insufficient use of network resources. To address these issues, federated learning
(FL) is introduced by offering a systematical framework that converges the distributed modeling
process between local participants and the parameter server. However, the challenging issues of
insufficient participant scheduling, aggregation policies, model offloading, and resource management
still remain within conventional FL architecture. In this survey article, the state-of-the-art solutions
for optimizing the orchestration in FL communications are presented, primarily querying the deep
reinforcement learning (DRL)-based autonomy approaches. The correlations between the DRL and
FL mechanisms are described within the optimized system architectures of selected literature ap-
proaches. The observable states, configurable actions, and target rewards are inquired into to illustrate
the applicability of DRL-assisted control toward self-organizing FL systems. Various deployment
strategies for Internet of Things applications are discussed. Furthermore, this article offers a review
of the challenges and future research perspectives for advancing practical performances. Advanced
solutions in these aspects will drive the applicability of converged DRL and FL for future autonomous
communication-efficient and privacy-aware learning.

Keywords: communication-efficient learning; deep reinforcement learning; federated learning;
massive Internet of Things; policy optimization; self-organizing networks

1. Introduction

5G and beyond cellular networks have experienced an advancement in their enabler
technologies and dense deployment, drawing major attention from time-sensitive Internet
of Things (IoT) applications with mission-critical Quality of Service (QoS) expectations.
IoT deployment is expected to reach 30.9 billion connected devices by 2025, generating
exponential data growth from different application source taxonomies, mission criticalities,
and privacy constraints [1]. The challenges are raised in real-world scenarios regard-
ing data privacy, automation of big data management, and latency-efficient connectivity.
In this context, the capability of data exposure in privacy-restricted sectors, e.g., Inter-
net of Healthcare Things, Internet of Vehicles (IoV), and Industrial IoT (IIoT), needs to
tackle privacy-preserving awareness following the General Data Protection Regulation
(GDPR) [2]. In massive IoT services with enormous volume, velocity, and variety of data
features, artificial intelligence (AI) algorithms are used to enhance operational efficiency,
make smart predictions, respond to instantaneous actions, and enhance service scalabil-
ity [3,4]. Additionally, AI aims to enable the practicability of empowering intelligent
management and orchestration for IoT communications within wired/wireless networks
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and software-defined networking (SDN) in various aspects such as, and not limited to,
resource allocation, offloading decision, routing optimization, caching placement, and
network function chaining policy [5–7].

In this section, the motivational statement of this article is given by mentioning
the main reference development of zero-touch network and service management (ZSM)
and edge intelligence (EI), which provide the high-applicability principles of closed-loop
network automation and collaborative computing architecture for intelligence on the edge.
The problem statement presents the existing challenges, such as data privacy, self-adaptive
resource placement, offloading decisions, high latency to convergence, and fronthaul
congestion, on ZSM and EI scenarios.

Furthermore, the goals of this paper are outlined to overcome the problem statement,
consisting of (1) deep reinforcement learning (DRL) for autonomous experience-aware
policy control and (2) federated learning (FL) for a privacy-enhanced collaborative AI
framework. The confluence of DRL autonomy and FL systems is given to motivate the
applicability of a complete zero-touch edge model deployment for massive AI-based IoT
applications and communication efficiencies.

1.1. Motivational Statement

To drive intelligent next-generation network management, ZSM and EI are notable
frameworks that appraise a complete self-organizing service lifecycle and competence of AI
execution in distributed areas. We consider ZSM and EI as the foremost objectives, which
later lead to the necessity of DRL-based FL approaches to (1) tackle several challenging
issues and (2) bring auxiliary autonomy and privacy-aware functional capabilities.

1.1.1. Zero-Touch Network and Service Management

Standard telecommunication entities suggest self-organizing networks (SON) with AI-
assisted automation control by releasing technical specifications, testbeds, and application
programming interfaces (APIs). Specifically, the 3rd Generation Partnership Project (3GPP)
presents an enabler for autonomous networks by presenting network data analytics function
to associate with service-based architecture and expose data gathering/analysis capability
for applying data-driven AI models in 5G applications [8].

From active phases of generic autonomic networking architecture (GANA) and ex-
periential networked intelligence (ENI) using closed-loop AI architecture for SON, the
European Telecommunications Standards Institute (ETSI) keeps emphasizing the ZSM
aspect to describe the use cases in network functions virtualization (NFV), edge comput-
ing (EC), autonomous policy configuration, and service automation [9–11]. The Internet
Engineering Task Force (IETF) has developed an autonomic networking integrated model
and approach (ANIMA) for enabling the applicability of self-functions in configuration,
optimization, protection, and healing [12]. ANIMA motivates AI-assisted approaches for
autonomic orchestration in networking infrastructure, control plane, and slice management.
Moreover, The International Telecommunication Union (ITU) organized a focus group on
machine learning (ML) for future networks, including 5G, to study and plan the execu-
tion and evaluation of data handling, APIs, system architecture, standard protocols, and
intelligence-level future network management [13].

To drive the adoption between 5G end-to-end (E2E) architecture and AI-enabled appli-
cability, next-generation mobile networks (NGMN) alliance has presented documentation
and capabilities on emerging use cases, requirements, and enabler specifications as an auto-
nomic networking framework [14]. Furthermore, deep learning (DL)-based network slicing
approaches are further referenced by NGMN documentation for assisting E2E procedures
of various 5G usage services, including enhanced mobile broadband, ultra-reliable and low-
latency communications, and massive machine-type communications [15]. Additionally, a
joint testbed federation between ITU, ETSI, and the Institute of Electrical and Electronics
Engineers (IEEE) is expected to be established for 5G and beyond networks with applied
AI models in the system architecture, interoperability, and reference APIs [16].



Appl. Sci. 2023, 13, 3083 3 of 30

1.1.2. Edge Intelligence

With the proliferation of IoT, data-driven AI solutions are applied for (1) handling the
enormous data features and heterogeneous IoT taxonomies, (2) analyzing the underlying
hidden patterns of structured, semi-structured, quasi-structured, and unstructured data,
and (3) making reliable decision outcome in terms of classifications, predictions, and
recommendations [17,18]. To make this solution sufficient in real-world applications, the
development process has to consider computational resource placement, leading to the
confluence of AI with adequate cloud computing and EC capacities, known as cloud
intelligence (CI) and EI, respectively [19]. Figure 1 illustrates the overview between CI and
EI, each of them consisting of three primary tiers: end devices (ED), edge, and cloud. In CI,
model training and inference are performed in central cloud servers, which raised various
challenging drawbacks while gathering the local data, including backhaul congestion, high
latency, privacy leakage, and insufficient bandwidth consumption.
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EC brings solutions for traditional cloud computing by allowing IoT nodes to offload
the tasks wholly/partially toward computing entities in close proximity, effectively al-
leviating the backbone congestion, lowering the computing delay, and saving local IoT
power utilization [20]. Based on different service deployments, EC servers are attached to
particular access points (APs) such as base stations, wireless APs, routers, etc. A micro-data
center (MDC) at the edge assists the applicability of EI, predominantly for smart cities. The
model can be trained and evaluated for clustered ED and services with specific local context
awareness by leveraging sufficient computing resources. With EC-enabled collaboration,
the advancement of communication, computation, control, and caching (4C) is jointly
optimized in edge networks [21,22]. EI tackles these issues by integrating DL and EC to
enable efficient edge learning in distributed networks [23–25].

From real-time communication perspectives, integrated DL requires a processing time
of critical upper-bound tolerable delay in the execution procedure between input, hidden,
and output layers. Within DL modeling, deep neural networks (DNN) are a prominent
class of several popular DL algorithms such as convolutional neural networks, artificial
neural networks, multi-layer perceptron, and recurrent neural networks, which necessitates
minimizing the abundance of execution time. With adequate support from EC, partial
DL model training and inference are executable in edge networks to support practical
collaborative learning systems [26].

1.2. Problem Statement

Within ZSM and EI architectures, problems are upraised that downgrade the privacy
regulations, practical requirements, and autonomy capabilities. The context of mandatory
problems is given in this subsection, which connects to the necessity of solutions from the
confluence of DRL and FL.

In the ZSM concept, the essential contribution consists of the enablement of a long-
term SON without manual modification or administration. Therefore, the systematic
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network architecture requires adequate computing entities and feature-gathering modules
to withstand AI control mechanisms. The programmable virtualization environment must
be initialized for observing the real-time states of the infrastructure plane, configuring the
policy autonomously, and modifying the flow rules proactively/reactively. The commu-
nication and computation resources need (1) to be well-allocated adaptively in different
congestion states, (2) to be reserved with priority-specified properties for non-mission-
critical/mission-critical services, (3) to benefit from an adjusted dynamic placement for
instantiating virtual network functions (VNFs), and (4) to experience load balancing to
avoid overloading/low-loading, which cause bottlenecks or extravagant placement [27].
Furthermore, in the ZSM perspective, binary/partial IoT task offloading requires intelli-
gent steering toward edge-cloud systems to minimize the total task execution times and
prevent the high contingency of task termination, particularly for computation-intensive
tasks in time-sensitive applications. By overcoming the limitations and activating the
self-managing capabilities of AI-driven ZSM, the network architecture can operate with
complete autonomy and be maintainable for facilitating DL model builders at ED-level
or edge-level by (1) organizing EC resources and DL selection for intelligent services,
(2) offering long-term resource placement for DL computation, and (3) orchestrating match-
ing policies for cloud-edge collaboration in model co-training/inference [27,28].

EI adheres to four primary phases along with different problem types such as
(1) edge caching for collecting data from the ED tier and storing it in the edge tier, which
causes the problems on what and where to cache, (2) edge training for using the cached
data and performing the model learning procedures, which brings several issues in terms
of training architecture and optimization of the model key performance indicator (KPI),
(3) edge inference for evaluating the trained model in the edge application architecture,
which faces challenging drawbacks in multi-service applicability and model designs, and
(4) edge offloading for making decisions on edge server selection and orchestrating the
computation policy [18,19]. In terms of model deployment, the main aspects for further
enhancements are upraised as follows:

• Data privacy: GDPR suggests the local data remain in local authentication or data
accessibility terms, which primarily restricts the sharing of privacy-sensitive infor-
mation to other nodes. In edge-level model training/inference, the training data are
gathered to the greatest extent for optimizing the learning parameters and constructing
an accurate final model in the edge tier. During the caching process, the raw data
from local ED are transferred across nodes and fully uploaded to the edge tier, which
completely burdens the fronthaul networks, causes communication overhead, and
violates privacy-preserving obligations.

• Self-adaptive resource placement: within IoT architecture, the local energy and comput-
ing capacities are constrained for model task completion, which requires edge-cloud
assistance with specified resource allocation (e.g., bandwidth, computing, and storage).
To contribute the intelligence for future ZSM, self-organizing VNFs and virtual ma-
chine (VM) placement solutions should be deployed for resource-aware computation
and scalable multi-service parallelism.

• Offloading decisions: to construct models whether in edge or cloud tiers, the of-
floading of high data volumes causes heavy congestion and consumes abounding
communication resources. Therefore, the local tasks must be minimized and offloaded
to servers with adequate capacities depending on each streaming timeslot.

• High latency to convergence: with loss optimization in DL (e.g., using gradient
descent), the model parameters are iterated through numerous steps until the con-
vergence point. With non-optimal computing capacities, high data drops, and non-
applicable model hyperparameters (e.g., from unfamiliar taxonomies and nonstandard
data), the convergence expectation can cause long delays. Therefore, the drawback
of non-collaborative architecture for model training causes the overall procedures
to reach over the upper-bound tolerable delay threshold and brings an unsatisfied
quality of experience.
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• Fronthaul congestion: by uploading raw original data into the training modules in
edge servers, the burden of fronthaul resources and increment of communication costs
bring great challenges for AI-based model deployment, particularly for future massive
intelligent IoT applications. The completion latency can be higher than the KPI of
real-time decision requirements.

1.3. Paper Contributions

With the above-mentioned motivational and problem statements, this paper queries
the state-of-the-art approaches, including FL framework and DRL agent, with promising
beneficial factors for self-managing collaborative AI model deployment in future intelligent
IoT applications. Several existing surveys have presented DRL for IoT, FL in edge networks,
CI/EI architectures, and ZSM perspective for 5G networks; however, the correlations
between DRL and FL for long-term and closed-loop orchestration are not fully considered
in a massive IoT environment. This article aims to contribute an in-depth review of using
DRL for optimizing (edge) FL model communications, which subsequently supports a
major section of preeminent objectives in ZSM and CI/EI. Table 1 presents the important
acronyms with descriptions used in the paper. The summary of our contributions is given
as follows:

• We discuss the key elements and execution flows of FL implementation in IoT scenarios.
Edge FL is also discussed to illustrate EC-assisted model updates for local IoT devices.
Furthermore, existing solutions to tackle data privacy, training, inference, compression,
edge aggregation, IoT participant selection, and resource optimization are outlined
to specify the competence of (edge) FL-based approaches. Federated optimization is
described in this paper for maintaining massive IoT taxonomies, data heterogeneity,
and the complexity of practical aggregation.

• We review the DRL components for IoT networks and the system architecture for
driving the DRL agent applicable in network virtualization. The observability, config-
urability, and computability of the network architecture for DRL implementation are
presented, which specify the set of states, actions, and immediate/long-term rewards
used by researchers to construct autonomous policy management between the agent
and IoT environment.

• We discuss DRL as an enabler approach for assisting FL algorithms in massive IoT
use cases. DRL-based FL policy optimization is coined by considering various aspects
such as resource optimization, model offloading decisions, model update scheduling,
and aggregation policies.

• We provide various scenarios of IoT application deployments using DRL and FL to
engage in each domain’s feature with different state observations, action adjustments,
and reward formulations. The heterogeneity of DRL- and FL-enabled IoT services,
including IIoT, smart automation, medical services, IoV, and environmental context
detection, is reviewed as a guideline for applying in real-world use cases.

• We point out the challenging issues and future research directions for enhancing the
applicability, adaptability, privacy, autonomy, and optimality of DRL-based FL in
massive IoT network architecture.

1.4. Paper Organizations

The rest of the paper is structured as follows (Figure 2). Section 2 outlines the pre-
liminary studies on FL and DRL. Section 3 discusses the correlations between DRL and
FL. Section 4 discusses the promising DRL-based enabler optimization approaches for an
efficient FL (eFL) framework in massive IoT. Section 5 provides a wide taxonomy of IoT
application deployment strategies using DRL/FL. The challenges and future perspectives
are highlighted in Section 6. Finally, Section 7 concludes our paper.
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Table 1. List of Important Acronyms.

Abbreviation Description

AI Artificial Intelligence
APIs Application Programming Interfaces
APs Access Points
CI Cloud Intelligence
DL Deep Learning

DNN Deep Neural Networks
DRL Deep Reinforcement Learning
E2E End-to-End
EC Edge Computing
ED End Devices
eFL Efficient Federated Learning
EI Edge Intelligence
FA Federated Analytics
FL Federated Learning

GDPR General Data Protection Regulation
GNN Graph Neural Network
IID Independent-and-Identically-Distributed
IIoT Industrial Internet of Things
IoT Internet of Things
IoV Internet of Vehicle
KPI Key Performance Indicator

MDC Micro-Data Center
ML Machine Learning

NFV Network Functions Virtualization
QoS Quality of Service
SDN Software-Defined Networking
SGD Stochastic Gradient Descent
SON Self-Organizing Networks
VM Virtual Machine

VNFs Virtual Network Functions
VNF-FGs Virtual Network Function Forwarding Graphs

ZSM Zero-Touch Network and Service Management
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2. Preliminary Studies on Federated Learning and Deep Reinforcement Learning
2.1. Federated Learning for Privacy-Preserving Assurance

Currently, IoT applications consist of privacy-sensitive information belonging to
exclusive users, organizations, or business companies, which necessitate obeying GDPR in
data gathering or third-party transmission in AI-based services. FL was first introduced in
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2016 by Google researchers [29–31] to emphasize the concept of distributing the models to
be trained by local data owners instead of uploading and storing raw data centrally. FL is a
privacy-preserving, collaborative, and resource-efficient learning framework to aggregate
multi-dimensional decentralized local models in a centralized global parameter server
for constructing a reliable learning model. Table 2 presents the contributions of existing
selected surveys on FL, which is drawing major attention from researchers, deployment
engineers, and organizations. There are six main phases to execute iteratively in FL
for the IoT environment, including (1) the architecture of collaborative learning system,
(2) global model distribution, (3) local model computation, (4) loss optimization, (5) model
transmission, and (6) global model aggregation [31,32].

Table 2. Contributions of Existing Selected Surveys on Federated Learning.

Domains Summary of Contributions Ref. Year

Background and classification of
practical FL scenarios

The definition, enabling
technologies, taxonomy,

application types, challenging
issues, and future directions of FL

[32] 2021

FL for resource-constrained IoT

Collaborative learning and
optimization approaches to

efficiently train the models in a
heterogeneous IoT environment

[33] 2022

FL for mobile edge networks/FL at
mobile edge networks

Providing FL approaches for
optimizing mobile edge networks,

reviewing frameworks for FL
execution, and discussing

implementation challenges

[34] 2020

Comprehensive learning on FL
The enabling technologies,

frameworks, protocols, application
scenarios, and challenges of FL

[35] 2020

FL topics and research domains

An in-depth study on FL
architectures/taxonomies, system

designs, on-site deployment
scenarios, and future
research directions

[36] 2021

Conventional FL procedures are modified and enhanced throughout various research
studies for optimizing the performance in communication perspectives within resource-
constrained IoT environments. The consideration of client prioritization, accuracy perfor-
mance, and specific data types, e.g., independent- and identically distributed (IID) and
non-IID, must be comprehensively emphasized with detailed specifications in network
controller and federated settings. Moreover, local model training/updates are not com-
pletely sufficient to execute without possible termination before fully interacting with the
edge server. System heterogeneity on local participants (e.g., interface or channel) requires
further handling schemes. Due to the resource constraints of local devices, deep models
cannot completely compute and upload for a satisfying accuracy objective. Therefore, to
improve the FL performance, an intelligent computational framework for edge applications
with multi-exit-based and greedy-approach-based algorithms is discussed by splitting the
main models into sub-models with various scale sizes to prioritize the local participants
that have inadequate computing capacities [17,37]. To formulate and handle the prob-
lems efficiently, latency-constrained and optimization models must correspond with the
observable features of training-time metrics, allocation, and scheduling procedures.

FL introduces a sufficient framework that strongly takes client personalization into
consideration, and it is highly efficient for multi-level IoT privacy environments. To fully
make this framework applicable, the implementation requires optimizing the resource
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allocation, improving the security, and increasing the robustness. A resource-optimized
FL for IoT was proposed in [38] by introducing a dispersed framework that aimed to
optimize the placement and allocation with the robustness of distributed learning models.
The minimization approach using an integer linear problem was implemented in this
system architecture. To specifically tackle the problems in fine-grained detail, a model
was split into two sub-problems, namely association and resource block allocation. The
association problem considered the adjustment of fixed resource blocks within devices, and
the resource block allocation problem tackled the association of fixed devices. Moreover,
a further improvement on adaptive FL in resource-constrained systems was presented
in [39] by tackling the challenging issues of model parameters from numerous edge nodes
with its non-IID data. The convergence of gradient descent was analyzed to cooperate
with a control scheme for adaptively managing the global aggregation in mission-critical
circumstances. The aim of [39] was to minimize the loss within resource-constrained
conditions by optimal tradeoffs between two primary resource types, namely in local
model update and global aggregation. In [40], an enhanced asynchronous FL technique
was proposed for alleviating the overhead communication latency and advancing the FL
performance through adjusted weight aggregation. The modification of DNN layers was
labeled as shallow and deep, which learned on general features of various tasks/datasets
and ad hoc features, respectively. Well-defined weights lead to fast convergence, less
latency per communication round, and accuracy improvement.

Furthermore, another use case to be addressed is for non-IID, which possibly degrades
the FL convergence expectation. By emphasizing each local model accuracy, user-based
service with non-IID data distribution can perform well. To illustrate the applicability in
this scenario, [41] proposed a multi-task FL for individual DNNs. The proposed scheme
modified the conventional FL by authorizing the participants to customize their DNNs
that fit the best for their non-IID data distribution. A new KPI of FL performance on user
model accuracy was given for extending the measurement quality. However, privacy-
enhanced collaborative architecture and model customization come with a tradeoff against
communication costs within FL training phase. To outcome these issues, [42] offered
robust and communication-efficient FL solutions in non-IID scenarios, which used a sparse
ternary compression framework. The proposed compression scheme modified the existing
compression method and handled two major problems: (1) the compression of downstream
and (2) caching updates for participant synchronization. In [43], an optimized FL with
DRL was proposed for handling the client selection in non-IID data by leveraging the
self-managing capability of the agent. The agent observed the state of the global model
weights from each device in a particular communication round. The actions aimed to
select a subset of clients for participating in the current training iteration by sampling
the top-batch size of optimal clients. The reward valuation considered the possibility of
accuracy increment. Based on FL and DRL convergence, the control policies can speed up
the convergence, self-maintain the update/aggregation, and intelligently select an optimal
participant batch following experience-driven and state-considered information in different
congestion statuses. The bias and loss can be well-optimized, particularly for non-IID.

2.1.1. Edge Federated Learning

Edge FL consists of edge aggregator orchestration to reduce the number of direct
round communication between local participants and server, which is significant for
communication-critical and computation-limited IoT clients. There are complementary
studies to be outlined in this subsection for analyzing the deployment applicability of edge
FL in massive IoT. Edge FL leverages the EC resources for enabling a converged beneficial
factor of FL and edge computation offloading [44–47]. A three-tier architecture between par-
ticipant, edge, and central FL allows the round communications of participant updates and
global aggregation to be client-edge and edge-cloud, respectively. To improve client-specific
service, each label can aggregate within the distributed edge server for understanding the
service efficiency and alleviating unimportant client–cloud communications. The layers of
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the defined model are separated for co-training between selected participants and edge
servers. The computation-intensive and lightweight layers are operated in edge entities
and local devices, respectively. Therefore, the upper-bound execution time of FL training
expectation is decreased and acceptable for practical use cases. Figure 3 shows the primary
procedures of edge FL, including (1) global model initialization from the parameter server,
which is executed in the edge cloud, (2) global model distribution, which is executed in the
client–edge tier, (3) local training and loss minimization, which are co-processed between
client and edge, (4) loss-optimized local model updates based on labels, (5) multi-model
edge aggregation at edge tier, (6) multi-model aggregated updates between edge and cloud,
and finally, (7) multi-class global models averaging for the next iteration.
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The primary objectives of edge FL are to reduce global communication cost/frequency
and reliability of FL performances. There are complementary studies that explored the
promising edge-assisted paradigm. In [48], the impact of global model transmission costs
was analyzed in the process of training a model with various bandwidth states and hyperpa-
rameter values (e.g., batch sizes and epoch numbers). The authors also provided guidelines
about parameter configuration to obtain better learning accuracy and less resource con-
sumption. Furthermore, in [49], the authors introduced edge-assisted FL by showing the
efficiencies of integrated design/delay valuation, offloading decisions, and elasticity in
different scenarios. The threshold-based offloading strategies were formulated to minimize
the tolerable delay under the edge-assisted framework. However, in a heterogeneous IoT
environment, the variety of device taxonomies can cause high-complexity offloading path
decisions. An experience-driven paradigm or state-detailed observation of the agent can be
applied to efficiently optimize the performance in numerous network conditions.

2.1.2. Federated Optimization

A converged concept of FL and federated analytics (FA) introduces federated opti-
mization. By aiming to protect the user’s personalization, this distributed scheme seeks to
ensure a collaborative statistical report or model learning from decentralized data without
raw sharing. By successfully deploying this paradigm, the efficiencies in backhaul commu-
nications, IoT data complexities, and differential privacy levels are delivered to the service
providers [50]. Each aspect is tackled individually before the convergence procedure. FA,
a statistical analysis, or data-science-based application requires collaborative querying
data from local users, executes the local computation on clients, and generates the output
aggregation on cloud tier. These executions give major benefits to data exploration and
analysis visualization for specific application strategies. Since FL focuses on constructing
deep models, FA can use it for serving data-science-based services.
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In a massive IoT environment, federated optimization must consider the robustness,
fairness, customization, and privacy level of multi-service prioritization. Secure com-
putation and transmission are significant objectives to obtain in FA and FL. Malicious
clients must be detected and secured from the participant selection process, which was
studied in [51]. The authors proposed a secure aggregation procedure that aimed to sup-
port numerous clients to achieve better communication and computation performances.
Furthermore, [52] presented a system design in high-level architecture in which multiple
applications were described, including next-word prediction, content suggestions, and item
ranking. The beneficial factors and implementation guidelines offer interesting knowledge
for further field expansion of research and development.

From a communication perspective, to fully support the applicability of federated
optimization, there are several modifications that need to be made in network architecture
from infrastructure to the application layer. The operations on quick data queries and
model building require zero-touch management to handle heavy-congestion states and
future massive IoT participants.

2.2. Deep Reinforcement Learning for Experience-Driven Autonomy

In this subsection, we provide a background review of DRL, which specifically refers
to the handling of long-term network performance and real-time agent interactivity in the
service deployment of IoT networks. This background presents the assisting capability of
DRL and leads to the key integration with FL for self-organizing capabilities.

Markov decision process models an optimization problem with four-tuple components,
namely {S, A, R, P}, which represents the set of states, actions, rewards, and transition
probability [53,54]. At a particular time t, state st represents the characteristic features of the
environment, which are observed for feeding the agent. Action at consists of the updating
parameters or configuration settings that the agent applies for purposes of improving the
state st condition. Within general DRL, at is selected by function approximator using DNN.
By modified DRL configuration (e.g., deep Q-networks), function approximators can be
split into two primary networks, namely online and target. The separation procedure
prevents an error of overoptimism. In the experience replays, denoted as et(st, at, rt, st+1),
the agent feeds (st, at, rt) for current loss optimization and st+1 for q-maximized action
approximation. Over numerous iterations of exploration and exploitation, the non-optimal
or near-optimal values are iteratively altered through the gradient process. Eventually, the
optimal agent policy will be obtained. In every defined step, the weights are exchanged
between online and target networks. To evaluate how well action at is applied in state
st, the agent used the reward function that was formulated by the specific performance
targets for the state–action pair. The transition probability indicates the estimation after
configuring at into st, then transits the environment into st+1. To classify the diversity of
DRL types, Figure 4 lists the differences between used/unused criteria (e.g., value, policy,
and model).
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The features and functions are varied depending on application scenarios and perfor-
mance objectives. The concept of a dynamic problem-solving algorithm, DRL, is used for
modeling an optimal self-learning agent by interacting throughout exploration, understand-
ing the possible maximum expected long-term rewards, and later exploitation. Optimal
policy π∗ is the policy-maximized long-term reward expectation. The value function can
be formulated by the expectation of increasing reward summation following the policy
π from state s. The standard optimal q-value function follows the Bellman equation and
epsilon ε indication [53].

Table 3 presents the selected existing surveys on DRL that have been applied in
communications and IoT applications. The review studies show how efficient DRL is in
optimizing and self-organizing network control and orchestration. In [55], a multi-agent
model-free DRL approach was proposed for assisting the framework of joint multi-channel
and traffic control in SDN-based IoT environments. The system models were defined to
show the optimization problems and DRL applicability. Within DRL specifications, the
agent observed the state features as follows: (1) weights for channel capacity, transmission,
and utilization, (2) channel/task numbers at a particular timeslot, (3) size of a particular task,
(4) signal-to-interference-and-noise ratio between channels, and (5) state information of a
particular timeslot’s channel. The agent applied the actions of task index determination and
the factorial of task numbers. A reward valuation was formulated by jointly considering
the delay, throughput, and packet loss. As a result, the performance of a (multi-agent)
DRL-based approach is highly efficient for experience-driven core network autonomy.

Table 3. Contributions of Existing Selected Surveys on Deep Reinforcement Learning.

Domains Summary of Contributions Ref. Year

Applications of DRL in
communications and networking

The overview, in-depth
components, analysis, taxonomies,

and comparisons of DRL
techniques for optimizing

communications and networking

[56] 2019

DRL for IoT applications

DRL algorithms for handling the
problems of communication,

computation, caching, control,
domain-oriented applications, and

privacy in IoT environment

[57] 2021

DRL in wireless IoT environment

The overview of wireless networks
and DRL, taxonomy of IoT

problem models, DRL-based
approaches in IoT, and challenging
issues of DRL in IoT networking

[58] 2021

Applicability of DRL for
resource management

DRL-based optimization
approaches for renewable energy,
network slicing, spectrum scarcity,
improving transmission rate, and

big data in 5G
heterogeneous networks

[59] 2019

3. Correlations between Federated Learning and Deep Reinforcement Learning

In this section, the correlations between the DRL agent and FL environment are
given by emphasizing the usage of DRL-assisted zero-touch management to optimize the
learning procedures in IoT networks. Figure 5 is given as an overall concept of modeling
the interaction interfaces between the DRL agent and FL environment, including the
key features from the main entities such as parameter server, edge aggregator, and local
participants. Different scenarios define different condition-aware states, actions, and reward
formulations. In DRL-based eFL, there are complementary studies that outline various
scenarios with defined state–action relativity and long-term orchestration goals from agent.
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In the simulation perspective, federated averaging uses an iterative process and selects
a random subset of participants for each iteration training step. Then, the initialization
function is executed to sample the server’s states. The server distributes the model to
selected participants, which later computes the model training locally. The aggregation
toward the new state is the output of adding between the initial state and the average of
total states from clients. To build federated averaging, the models, clients, and optimizers
are required to be known. In the testing phase, the data must be centralized and the
validation function must be declared. To evaluate the federated optimization, the develop-
ers/researchers must specify the settings in terms of cross-silo/cross-device, differential
privacy, or communication types [60–63]. The framework can be evaluated after finalizing
the identical hyperparameter setup, the number of selected clients, and communication
conditions. In this implementation flow, we can identify the correlation parts with the DRL
agent as follows:

• The initialization function of FL can be converged with DRL as state features within
the setup environment (e.g., capacities of edge aggregators);

• The actions can be merged with the selected values of participant subset within each
FL round communication;

• Reward is the evaluation of federated optimization. By fully integrating the functions
together, simulation is highly applicable and opens many key ideas for real-world
application scenarios.

DRL has the potential in managing dynamic resources and making smart decisions in
IoT environments. Once the application services have computation-intensive tasks to exe-
cute, EC is optimally suggested for dealing with adaptive virtual resource allocation [59,64].
Similarly, in FL model tasks, EC can serve as an enabler for resource efficiencies. The re-
source states (e.g., remaining capacities at the current timeslot) and FL model task sizes
can be observed as state features for configuring the allocation amount and edge node
offloading destination [65]. The reward can be formulated by the transmission latencies
between participant–edge–central and convergence points in the achieved round index. In
another aspect of a synchronous FL-IoT condition, high training delays can happen because
of a straggler effect. To tackle these issues, [66] introduced a promising architecture that is
capable of mapping the client operation with real-time states to a virtual entity and captur-
ing the features of devices for interacting with the agent. Furthermore, an asynchronous FL



Appl. Sci. 2023, 13, 3083 13 of 30

was proposed with actor–critic DRL-assisted device selection. The DRL components and
observable features in this FL environment are listed as follows:

• State: in the particular timeslot t, the environment samples a set of states including
transmission power, the device’s available resource for computation, model statuses,
and previously selected device statuses at timeslot t− 1;

• Action: in timeslot t, the agent indicates which device to select for participating in the
training process;

• Reward: to evaluate the state–action (device selection efficiency) in timeslot t, the
objectives of minimizing the energy utilization and maximizing the FL accuracy are
formulated as the reward evaluation metric.

In the process of implementing a DRL-based algorithm for device selection, the pa-
rameters of actor, critic, target actor, and target critic networks are required to execute
the model iteratively until optimal DNN parameters are defined. In each iteration, the
sampling experience replays of an FL environment setup are stored and input into different
networks until the final policy satisfies the expectation of the end goal. After selecting the
device, k-class(es) of devices are clustered based on the power levels and data contribution
sizes. By identifying specific classes of device performance stats, the convergence speed
and parallel processing threshold are significantly improved. The straggler effects of mas-
sive IoT scenarios are handled in this systematic framework. Local training and global
aggregation are executed afterward. Local updates from massive clients can be optimized
in the uploading process within a cellular system [67].

In [68], a resource-optimized and trust-aware DRL scheduling for optimal client
selection over FL-based IoT environment was studied. Monitoring modules were used
for detection and information abstraction between IoT devices and edge nodes. Moreover,
edge nodes can play an important role as a management entity of IoT nodes. A stochastic
optimization formulation was used as a primary statement to correspond with the DRL-
based selection algorithm. To execute a functioning agent, the states were collected from
IoT participant’s features, and the actions were adjusted to handle the different labels
of current-iteration resource/trust at that particular timeslot. The edge nodes were also
responsible for initializing the deep model with privacy-free data before declaring the
model structures/values. The DRL-based approach can later sample a subset of clients
to participate in the procedure. The efficiency of expected performance has relied on the
upper-bound execution delay, training latency, resource utilization, and trust levels. The
solution on [68] was deployed in a healthcare scenario on top of IoT infrastructure.

A DRL-based FL was further converged for efficient and intelligent orchestration in
EC-enabled IIoT applications. Due to the drawback of a centralized resource-allocation
scheme, [69] introduced an optimization approach to ideally observe and modify three state
spaces, namely (1) task offloading ratio, (2) bandwidth allocation ratio, and (3) transmission
power in FL-enabled IIoT environments. Action spaces covered a discrete vector of state
modification. The action index altered the configuration of systematic allocation values.
After applying the selection action index, the reward of the next-state feedback on the cost-
improvement values was determined, whether it turns out positive or negative. The aims
of the agent were to alleviate the communication cost, stabilize the energy consumption,
and optimize the FL performance.

The correlations of modeling FL environments to interact with a DRL agent introduce
efficient solutions in a variety of FL policy domains. The observable states of FL and the
reward-maximized action configuration of DRL are integrated to ensure the high possibility
of positive feedback in long-term self-organizing management.

4. Deep Reinforcement Learning-Based Efficient Federated Learning
Policy Optimization

In this section, the main contribution of the paper is given by presenting complemen-
tary studies on applying DRL for eFL policy optimization in various domains in terms of
resource, model offloading, update scheduling, and aggregation policies. Each outlined
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study is evaluated through the relativity of integrating the network architecture in an
interchangeable FL environment and its applicability in terms of DRL-based deployment
(state observability, action configurability, and reward computability). Table 4 summarizes
the selected works in this section.

Table 4. Summary of Selected Works in Section 4, including Primary Domain Taxonomies, Contribu-
tions, and Enabler Paradigms.

Proposed Domain Taxonomies Contributions Enabler Paradigms Ref. Year

4.1. Resource
Optimization

4.1.1. Virtual
Edge-Assisted

Framework

Leveraged FL paradigm for
predictive deep models to

optimize VNFs autoscaling in 5G
and beyond

VNFs, DL for (multi-step)
time series prediction, FL

with DNN
[70] 2021

GNN- and DRL-enabled
algorithm for efficient
VNF-FGs placement

VNF-FGs, DRL-based
provisioning, SDN- and

NFV-enabled IoT networks,
integer linear

programming, GNN

[71] 2022

Lower- and upper-level DRL
based on GNN for optimizing

resource-utilization-and-
reliability ratio of

service chains

Hierarchical DRL, GNN,
VNFs,

service chains
[72] 2022

Adaptive FL via dynamic
resource (radio and computation)

optimization framework

SGD-based FL, Lyapunov
stochastic optimization,
asymptotic optimality

[73] 2021

Optimizing computation
resources, transmission power,

and local model accuracy of
FL-based vehicular

EC applications

Vehicular EC, greedy,
non-linear programming,

Lagrangian dual, subgradient
projection, min-

max optimization

[74] 2021

4.1.2.
Experience-Driven

Allocation

DRL approach for optimizing
resource scheduling via

experienced network states

DRL, policy gradient, E2E
network models, VNFs [75] 2019

DRL-based computation resource
control for FL networks

Joint models (training, energy,
and loss), DRL-based

allocation (actor-critic), FL
[76] 2020

4.1.3.
Mobility-Aware

Allocation

DRL-based decision-making
process for optimizing resource

placement in EC
Deep Q-network, EC, SDN [77] 2019

DRL deployment for optimizing
client decisions over energy and

channels in FL networks

Deep Q-network,
mobility-aware system

models, FL
network architecture

[78] 2020

4.2. Model Offloading Decisions

Leveraged FL to assist fast- and
slow-timescale DRL training

procedure for efficient
computation offloading and

resource allocation

FL for privacy-preserving
DRL training, ultra-dense EC

framework, hybrid
offloading strategy

[79] 2021

Improved FL
communication/computation
efficiencies with masked DNN

models (non-shared global
model), which secure the model

offloading for central aggregation

Localized/structured sparse
DNN, personalized FL,

non-IID setting
[80] 2021
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Table 4. Cont.

Proposed Domain Taxonomies Contributions Enabler Paradigms Ref. Year

4.3. Update
Scheduling

4.3.1.
Energy-Aware

Scheduling

Double DRL-based scheduling for
optimizing CPU and memory

utilization in FL-enabled
IoT environment

Edge FL, double Deep
Q-learning, trust mechanism,

stochastic optimization
problem

[81] 2020

Efficient client scheduling for
optimizing communication costs

in FL-enabled wireless IoT

Lagrange multiplier method,
wireless IoT networks,

communication-prioritized FL
[82] 2022

4.3.2.
Attention-Weight

Selection

Advanced edge caching selection
and replacement via federated

DRL in D2D-assisted architecture

Edge caching,
attention-weighted federated
DRL, long-term mixed integer

linear programming

[83] 2021

Optimized asynchronous FL via
modified DRL-based algorithms

for client selection/clustering
in IIoT

Digital twin-empowered IIoT,
DRL-based selection

(actor-critic), asynchronous FL
[66] 2022

DRL-based client selection in FL
for optimized resources and

trust approaches

Federated (inter-edge)
transfer learning, EC,

DRL-based selection, trust
management, IoT

infrastructure

[68] 2022

4.4. Aggregation Policies

Efficient FL in
resource-constrained networks
via optimized client scheduling

and aggregation policies

Asynchronous FL, equal
weight, age-aware

aggregation,
significance-based scheduling,
frequency-based scheduling,

non-IID/IID

[84] 2021

Dynamic scheduling algorithm
for optimizing global loss in

heterogeneous FL

FL, heterogeneity-aware
problem, delay/energy

models, Lyapunov
optimization

[85] 2022

Collaborative multi-agent
architecture for controlling over

local training procedure

Federated reinforcement
learning, actor-critic proximal

policy, gradient function
[86] 2020

4.1. Resource Optimization
4.1.1. Virtualized Edge-Assisted Framework

To enable network virtualization and softwarization, the confluence of SDN, NFV, and
EC is expected to be pivotal. With the intelligence of AI-based mechanisms, the virtualized
edge-assisted architecture can be further improved for completing self-managing capa-
bilities. An efficient approach is expected to overcome network heterogeneity, different
congestion states, newly instantiated/modified network services, and satisfying QoS ex-
pectations. In FL environments, virtualized edge-assisted architecture can greatly assist the
edge aggregation process, co-training, and virtual computational resource placement in an
adaptive manner. VNF autoscaling can enhance multi-level IoT privacy with FL-assisted
virtual resource management. In [70], the authors leveraged the privacy-preserving and
distributed capabilities of the FL paradigm to generate a learning model that is client
specific and accurately predicts the autoscaling of VNFs in 5G-and-beyond networks.
Various DL models in both centralized and decentralized aspects were evaluated for the
prediction metrics regarding QoS- and cost-prioritized goals. The proposed scheme tackled
multi-domain services in both reactive and predictive methods for (multi-step) time series
forecasting. The performance comparison between collaborative FL distribution technique
and centralized approaches was given.
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SDN and NFV are well-known for enabling elastic and virtual network services,
which greatly help in adopting the next-generation FL architecture in massive IoT services.
Figure 6 illustrates the architecture of decoupled SDN planes with NFV-enabled edge
resources to distribute sliced DNNs for softwarized FL-based service controllers. FL
applications can be virtualized and instantiated as network services/functions within a set
of VNF forwarding graphs (VNF-FGs). This way introduces the elasticity of FL deployment
in the future by leveraging the flexibility of flow rule installations/modifications and VM
placement within VNFs. FL services can be modified by providers in real time with the
expected quality assurance. Figure 7 shows the interactions of DRL-based orchestration by
configuring the actions that control the resource properties on VNF instances. Multi-service
FLs are linked to efficient VNFs and VM resource pools in EC-enabled NFV infrastructure.
To deal with the heterogeneity of IoT taxonomies and services, [71] presented a graph
neural network (GNN) and DRL-assisted efficient VNF-FGs placement in SDN- and NFV-
enabled IoT environments, which provided a great lesson on the applicability of modifying
the FL-based IoT services to be optimized via a DRL-based algorithm. The states of
resource capacities and actions on link placement are correlated in NFV-enabled FL service
deployment. Furthermore, in [72], a hierarchical DRL that relied on the GNN algorithm was
extensively studied for improving resource management for efficient service chain control.
The lower- and upper-level DRL were designed for minimizing the resource utilization
and blockage probability, respectively. The collaboration between lower and upper levels
greatly assists the training execution and outputs a cost-efficient policy.
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In [73], an energy-efficient FL technique was studied at the wireless network edge by
aiming to optimize the communication (e.g., power and bandwidth) and computation (e.g.,
CPU capacities at the central server) resource usage. The weighted models ideally consider
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tradeoffs between energy, delay, and FL performance that are delivered in wireless networks.
Stochastic gradient descent (SGD)-based FL and Lyapunov stochastic optimization were
formulated in the system models to assist the developing phases of the adaptive FL-
enabled resource allocation technique. In this perspective, DRL-based control can be used
to observe the radio/computation states for reassignment and allocation in an experience-
driven orchestration.

An FL-enabled vehicular EC faces the same problems with client (vehicle) selection
and resource optimization. In [74], the authors addressed these issues and formulated an
optimization model considering geographical position and mobility to achieve sufficient
computation resources, transmission power, and accuracy. These features are the primary
characteristics of resource optimization in executing FL-based applications. The authors
comprehensively designed in-depth system models of autonomous vehicles, FL transitions,
computation, and communication models. The resource allocation algorithms are comple-
mented by Lagrange multipliers update. The solutions achieved remarkable performance
in optimizing the system costs and fairness. However, in this scenario, DRL-based selection
can assist with state-specific resource orchestration to tackle the tradeoffs and feedback in
an efficient weighted sum model.

4.1.2. Experience-Driven Allocation

FL struggles to aim for fast convergence speed, accuracy satisfaction, training delays,
and local energy utilization, which are important features in mission-critical and resource-
constrained IoT networks. Experience- and data-driven knowledge can greatly achieve
these features by reactively and proactively analyzing the future congestion states, task
execution times, and allocation properties. DRL has driven resource optimization in various
aspects, but one of the most resource-critical fields is that of network slicing applications.
Ref. [75] leveraged the data-driven DRL capability to offer efficient resource optimization
and service reliability in E2E network slicing. By intelligently applying the actions to adjust
the resource allocation properties in each slice, the agent can evaluate the performance
through the reward function and optimize the policy throughout exploration.

In [76], the authors jointly tackled the model learning and energy consumption by
well-formulating a resource allocation problem for FL applications. The learning model
primarily interacted with handling the communication overhead and computation re-
sources. The energy model considered the unit energy consumption of each selected client
for executing the model updates, and loss function described the model error estima-
tion following the selected algorithm types. The joint problem models were solved by
experience-driven actor–critic DRL, which learned the underlying pattern for a well-defined
weighted sum balancing policy. The DRL agent was merged at the FL parameter server.
Figure 8 shows the architecture of an experience-driven agent in a central FL server, which
(1) observes the states of communication/computation features from the clients, (2) applies
actions on federated settings and configures sufficient CPU-cycle amount for selected
clients, and (3) evaluates the feedback from the environment and stores the batches in
experience buffers.

The primary components of the proposed agent are described as follows.

• State: a set of experienced (historical) network bandwidth information was observed
as a primary feature, which is the most influential factor in FL model transmission
cost. Future allocation requires prior knowledge of available and used properties.

• Action: by determining the values on CPU-cycle frequency, the observed states are
altered after applying the new actions. The action selection is indicated through the
optimal policy function that is approximated by deep networks.

• Reward: the FL system at t-iteration was feedbacked by rt of state–action pair (st, at)
efficiency. The evaluation metric aims to measure the system costs and scores according
to the min–max possibilities.
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4.1.3. Mobility-Aware Allocation

Mobile devices/clients collaboratively contribute to the future multi-service FL applica-
tions, which cannot ignore the mobility-aware resource optimization; otherwise, the global
model can be degraded from model drops and insufficient local computation. Ref. [77]
proposed a DRL solution for achieving long-term objectives and learning from experiences
of resource allocation in multi-access EC systems. The scheme modeled the system archi-
tecture with local and offloading computation. The task transfer policy was obtained by
utilizing DRL-based actions on offloading decisions, allocated computation resources, and
task transfer decisions. Furthermore, in [78], the authors addressed challenging issues
on the energy cost for recharge, which lead to high network resource consumption in
FL environments. A mobility-aware deep-Q-networks-based approach was proposed to
allow clients to determine an optimal orchestration of energy and channels. By configuring
actions on the model owner transmission path, the agent can explore the optimality for the
setup architecture. Notable studies in DRL also mentioned double-deep-Q networks for
handling over-optimistic problems [87,88], and the target function can be better defined in
FL environments accordingly.

4.2. Model Offloading Decisions

Edge FL leverages EC capacities to assist local co-training, reduce client–cloud commu-
nication rounds, and offer edge aggregation. However, it comes with several challenging
drawbacks in terms of multi-service offloading schedules and resource placement. The
interaction of client–edge requires optimal aggregator selection in model label matching
for both model update offloading and averaged model downloading. A central FL server
with DRL-based decisions on offloading rules and aggregation policies is an optimal tech-
nique for ensuring adequately allocated edge resources and appropriate server selection in
different IoT network congestion states (Figure 9).
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In [79], the authors set up a system architecture on intelligent ultra-dense EC with
formulated system models on communication (cellular link, D2D link, service caching,
and task transmission) and computation offloading. An optimization problem on joint
offloading, resource allocation, and service placement was initiated to aim for the main
objective of minimizing task execution delays and resource consumption. Modified DRL
was used to deal with the problem formulation by labeling two timescale approaches,
namely fast and slow timescales. Fast-timescale DRL covered the handling scheme of
offloading decisions and resource orchestration. Slow-timescale DRL dealt with a service
caching scheme. To securely train these agents, the FL framework is later converged for
a personalized model builder. The primary components of the agent and ultra-dense EC
environment consist of:

• State: at the particular timeslot t, the setup environment samples state features as
follows: (1) available signal frequency (transmission channels), (2) weight matrices
of D2D and uplink transmission rates, (3) caching statuses between small-cell base
station and ED, (4) task queue, (5) available computational resource, (6) local resources,
and (7) required services;

• Action: to alter the environment conditions, the agent consists of three main vari-
ables for system modification, namely (1) application partitioning, (2) communication
resource allocations, and (3) policy for caching placement;

• Reward: to determine the consequence of applied action, the authors evaluate the
positive feedback or negative errors by formulating a correlation model to return the
joint task execution delay and resource consumption of the system.

Considering that IoT participants mostly face a resource-constrained status, improved
communication/computation efficiencies of on-device DNN training/optimization are
greatly beneficial in collaborative FL. The model offloading will be lessened and directed to
only essential co-training requirements. Ref. [80] offered masking techniques for efficient
FL by allowing participants to execute localized DNN with higher performances and
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achievable levels. The proposed scheme optimized the computation costs of gradient
execution and federated masking in the local tier. After the end participant optimizes the
masking process, the local model owner offloads the masked models to the central FL
server, which greatly strengthens the privacy details.

4.3. Update Scheduling
4.3.1. Energy-Aware Scheduling

In client scheduling, different objective statements and algorithm designs can be
stated, such as local/edge energy consumption, communication/computation costs, or
FL’s KPI (e.g., convergence speed and accuracy). Ref. [81] studied a double-DRL-based
energy-aware technique for FL client scheduling in an IoT environment. The authors
proposed a trust mechanism to observe the states of energy sources and consumption
rates. Double DRL aims to obtain the optimal scheduling policy by triggering state features
from local IoT clients, including trust variables and energy statuses. The agent applies
actions on assigning a central server for training, specifying the required energy units and
model transmission costs. The grading metrics consider the effectiveness of the possible
selection of trusted clients. By alleviating the malicious (non-trust) clients from the selection
probability, FL training is advanced with high-quality and secured contributions from local
data owners. In [82], an eFL within a wireless IoT environment was proposed by tackling
the communication efficiency metrics, which corresponded with vastly saving energy usage
from the high possibility of local model task termination. The main problems were split
into scheduling and allocation sub-problems. The Lagrange multiplier method was used to
handle the optimization problem. This proposed FL algorithm upgraded the adaptability
of power and bandwidth allocation.

4.3.2. Attention-Weight Selections

An attention-weight federated DRL was proposed for efficient collaborative edge
caching [83] by designing the overall procedures in three consecutive phases as follows:
(1) model broadcasting, (2) local training, and (3) averaging aggregation. The framework
models considered the association between ED and base stations, content popularity, user
preference, D2D sharing pattern, content communication, and delay. With these system
models, the interaction between each phase is reliable for edge caching services. Base
stations distributed the global model to selected participants. In that training iteration,
selected devices executed the DRL model following the declared global structure. After
finalizing the local execution, the aggregation phase was divided into two sub-phases
of evaluation indicators and aggregation weights. Based on values of average reward,
loss, and hit rate, the weights were adjusted to emphasize the high-impact factor on the
next-iteration global model aggregation. In the aspect of DRL components, the authors
mentioned the following: (1) state spaces of content popularity, D2D link, and caching
statues, (2) action spaces of cache list replacement via existing content inquiry and replaced
status, and (3) reward objective on maximizing the gains of D2D sharing and content fetch.
By critically deploying an attention-weight mechanism of FL models, the contributions
from local models are comprehensively advanced. In [66], an attention weight on utility
performances of IIoT participants in the selection approach was given to advance the FL
framework. Furthermore, in [68], the authors proposed an efficient selection approach by
weighing the significant factors of trust and execution delays.

4.4. Aggregation Policies

The aggregation process will be executed after the local models from selected par-
ticipants are offloaded and obtained in the FL parameter server within each iteration of
the communication round. By using DRL-based algorithms, device selection and update
scheduling are positively optimized as a primary contribution to the final learning perfor-
mance. Another aspect to improve the efficiency of FL is an adaptive aggregation policy
for massive IoT services. Each FL service in heterogeneous networks requires the label-
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ing of its criticality and satisfactory expectation to ensure a reliable and on-time model
construction. An advanced approach can be migrated from different improving factors
such as significance-aware modeling, edge-assisted global aggregation, and a DRL-based
control mechanism. Figure 10 presents an eFL procedure transition between clients, edge
aggregators, and parameter server throughout the initialization, global model distribution,
local model training, model update scheduling, and aggregation policies. DRL-based
approaches are greatly assured to be deployed in processes of controlling local training,
selecting clients, and adjusting the aggregation [84–86].
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In [84], a cooperative approach for scheduling and aggregation was proposed by
evaluating several policies in asynchronous FL. In terms of client scheduling, three sig-
nificant policies were studied, namely (1) a random policy in which the selection process
decides randomly and chooses a subset of qualified participants in the accessible batches,
(2) a significance-based algorithm in which a norm formulation of gradient update is
used to identify the most suitable client, and (3) a frequency-based algorithm in which
the relativity between each communication round is considered by tackling how often
the particular client contributes to the aggregation. Aggregation policies considered two
detailed approaches, namely (1) the equal weight method in which the weights rely on
data contribution and (2) an age-aware aggregation in which the primary weights are
based on the metric of the local update’s age. In [85], a dynamic scheduling algorithm,
termed as DISCO, was proposed by aiming for learning and energy-constrained metrics.
The evaluation between multiple policies has been discussed in depth, which leads to a
major contingency of applying a DRL agent in a formulated specific-reward assessment.
Each objective can be specified into the agent’s reward functions, where overall states
are considered.

An aggregation approach with an intelligent decision-making agent and self-organizing
capabilities will prioritize the mission-critical class in a real-time AI-enabled environment.
A weighted-sum model for specific objectives can be deployed as a reward function to
evaluate the rightful actions in particular network states.

5. Application Deployment Strategies

In this section, five primary application domains are discussed to give insightful
system architectures, processing flows, and significance parameters that recent studies
have proposed using DRL/FL-based approaches. Table 5 summarizes the selected works
by labeling the application domains and contribution perspectives.
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Table 5. Summary of Selected Works in Section 5, including DRL/FL-enabled Domains and Contributions.

DRL/FL-Enabled Domains Contributions Ref. Year

IIoT

An optimized asynchronous FL by intelligent DRL-based client
selection/clustering approaches to build models in newly

integrated digital twin with IIoT environment
[66] 2022

Dynamic resource allocation based on DRL for optimizing
problems on communication cost, energy consumption, and

execution latency of FL-enabled IIoT networks
[69] 2021

Improved IIoT client selection in eFL framework by evaluating data
quality through deep deterministic policy gradient algorithm [89] 2021

Smart Automation

Handling computation overhead and privacy-preserving scheme of
massive IoT participants in lightweight FL framework [90] 2021

Blockchain-enabled local training and privacy-preserving analytics
for FL-enabled real-time smart grid architecture [91] 2021

Medical Services

A comprehensive review on FL-enabled smart healthcare, which
includes DRL-based experience-driven resource management and

assessment metrics on data contributions
[92,93] 2021

A thorough study on efficiencies of reinforcement learning for
smart healthcare systems in tackling the future edge intelligence

(collaborative local-edge AI-based applications)
[94] 2020

IoV

Minimizing system costs of FL frameworks by using a greedy
algorithm to optimize the vehicular participant selection based on

the quality of data contributions
[74] 2021

DRL for experience-driven generation of IoV data training and
FL-based framework for secured IoV models [95] 2022

Environmental Context
Detection

Analysis of waste and natural disasters for contributing to the
beneficial factor of decentralized (FL) and centralized learning [96] 2020

5.1. Industrial Internet of Things

The exponential growth of IIoT development leads to heterogeneous device tax-
onomies and complexity in management entities. The control mechanism must take the
scalability, privacy, and elasticity into deployment schemes for ensuring a long-term sup-
port, reliable architecture, and multi-service efficiencies. IIoT in the new era requires
automation and robotic systems for intelligent manufacturing, analysis, and high produc-
tivity. To gain automation, AI is a well-fitted paradigm; however, it requires gathering
historical experiences and data-driven pattern processing. To secure the data of local
equipment or industrial organizations, eFL can be proposed and evaluated to develop
a collaborative learning model. In the phases of executing eFL framework, DRL-based
approaches make great contributions, such as autonomous data management, efficient
resource orchestration, and IIoT client selections.

In [66], an actor–critic DRL-based device selection for FL-enabled IIoT was proposed.
To make the DRL agent applicable, a setup environment must be well-defined with ob-
servability of resourceful features and specific characteristics. The authors modeled the
structure of a digital twin in IIoT, which consisted of two layers, namely physical and
digital twins. Virtual systems bring connectivity between IIoT and digital models. With
well-configured interfaces, the agent can obtain the states for figuring out the underlying
patterns and for making smart decisions in client selection within each FL communication
round. In [69], the authors initialized the environment and agents for all IIoT equipment in
the system architecture, and each piece of equipment consisted of task(s) for FL updates.
The proposed agent trained the data to evaluate the feedback scores and then updated
the significant weights before aggregation. Furthermore, DRL-assisted FL can be used for
ensuring the heterogeneity of IIoT data privacy and management [89].
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5.2. Smart Automation

To enable smart automation, data-driven analyses, predictions, and recommendations
are well-known outputs of the processing units. However, since IoT is currently being
deployed in numerous private-sector entities, the generated data consist of both privacy-
insensitive and privacy-sensitive distribution types. In large-scale resource-constrained IoT
architectures, a secure FL scheme can be used for assisting the latency/resource overhead
of computation and activating future intelligent automation applications. The framework
must ensure the personalization of local IoT data during the process of constructing deep
models for intelligent applications [90]. In [91], an advanced privacy-preserving compu-
tation scheme was proposed for smart grids following the FL processing phases. The
proposed system modeled home-area networks with smart IoT devices for the surrounding
data collection. The proposed algorithm used blockchain- and FL-based models to reduce
the computation heterogeneity and enhance the collaborative model accuracy.

5.3. Medical Services

FL-enabled systems primarily focus on constructing deep models, privacy-preserving
mechanisms, distributed learning architecture, and data partitioning. In healthcare systems,
an advanced confidential system requires extensive studies because of possible cross-
device/silo collaboration. The institutional clients or local medical devices collect highly
sensitive data, where a privacy-enhanced FL framework needs to be deployed. FL in
medical services requires complementary functions for resource-aware, incentive-aware,
and personalized FL [92]. Furthermore, add-on functions for autonomous and accurate
decision-making solutions should be extended with DRL [94]. Applications of DRL in IoT
networks have become an active topic for research and deployment in the new era and
beyond. In medical services, DRL greatly provides the applicability of prioritizing the ultra-
low latency service requirements, enabling remote applications, handling heavy congested
network states, and contributing intelligent core control. In [93], a converged approach
between FL and DRL was proposed for evaluating the weights of client contributions that
upgraded the deployment efficiency to a better level, particularly for smart healthcare
applications. The distributed edge FL requires ensuring the enhanced confidentiality of
practical healthcare systems and edge aggregation processes.

5.4. Internet of Vehicle

In intelligent transportation systems, real-time AI-based applications require optimiz-
ing every aspect for ensuring a model that has the capability to be mobility aware, engage
in safe driving, be risk free, and have high efficiency. From the FL perspective, the models
are constructed throughout numerous communication rounds; therefore, an optimization
approach for each phase (e.g., client selection, update scheduling, and clustered aggrega-
tion) is obligatory. In [74], the authors gathered the states of vehicle position and velocity
for weighting the updating participation. The problem statement was formulated with
the objective of enhancing the computation, communication strength, and accuracy of
collaborative FL models. The proposed scheme optimized vehicle selection based on its
local data quality, which is highly significant for improving the model’s performance and
reliability. Moreover, in [95], a confluence between DRL and FL was made to bring efficient
training data to the IoV environment and secure the state features of selected vehicles. The
scheme allowed secure information-sharing between unmanned vehicles.

5.5. Environmental Context Detection

Natural and environmental disasters require accurate/long-term prediction, immedi-
ate notifications, and action recommendations to provide multiple options for ensuring
people’s safety. In the FL-based scenario, [96] discussed the deployment of environmental
image datasets, namely natural disaster analysis and waste classification. The proposed
methods handled the unlabeled/unannotated training subset. A collaboration learning
between ED and a central server was activated in multi-environment use cases. The method-
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ology considered the feature extraction of the dataset, active learning, and FL framework.
Active learning assisted the labeling procedures (annotation/acquisition) of each data
owner. The algorithm was fed by inputting unlabeled images, and the model divided the
data into seeds/pools for training. The prediction output the selection processes. FL was
used for constructing the final global learning model by collaborating with both the server
and client sides.

6. Challenges and Future Perspectives

The complete DRL-based eFL or non-complete DRL/FL-assisted systems consist of
inevitable challenging aspects to handle to become a practical approach in real-world
deployment. The potential challenges and directions for future studies are presented in
this section as follows:

• Malicious participant detection: to prevent compromising participants’ privacy dur-
ing vertical/horizontal FL training, non-malicious participant selection is a critical
phase to accurately consider in an environment of heterogeneous IoT taxonomies.
Local co-training and co-sharing methods between participants for improving model
performances are vulnerable to numerous possible attacks. The global learning model
can be severely degraded by the false model parameters of malicious devices. A
detection method using DL models (e.g., long short-term memory) can be integrated
to securely execute predictive FL-enabled intelligence.

• Data contribution quality: data contribution may differ between each participant
based on sensing capabilities, hardware resources, or power levels. Data quality
management and clustering can be studied to optimally select clients based on how
valuably their input data influence the final model. However, it is significant to
improve the low-quality data and ensure maximal participation from clients. DL
models for data (e.g., images) recovery, visualization, or resolution enhancement can
be a cooperative method and a part of a reliable FL framework.

• Optimal learning performance: the convergence of the final learning model is time-
consuming for reaching a satisfying accuracy in some real-time/mission-critical ser-
vices, which leads to inapplicability for deployment. The upper bounds of expected
convergence latencies require to be predicted or proactively known for adaptively
optimizing the communication and computation resources in terms of model transmis-
sion and training rules in every communication round. A joint problem that considers
the minimization of (1) system costs, (2) convergence delays, and (3) model accuracy
is a prominent research direction.

• Multi-service optimization: FL in multi-service IoT systems demands critical slicing
and priority-aware orchestration schemes. The clustering mechanism outputs different
labels ranging from mission-critical to non-mission-critical FL applications, which can
be differed in terms of bandwidth/computational resource allocation, service prioriti-
zation, and aggregation scheduling. In the case of one particular client participating in
two or more different FL-based applications, the availability and scheduling policies
are interesting domains to research extensively.

• Privacy regulations: a privacy-enhanced contribution is the major role of FL ap-
proaches; however, with numerous communication rounds of model updates/
distribution between participants, edge aggregators, and parameter servers, sen-
sitive subsets of information can be unmasked. Differential privacy is well-known for
ensuring standard individual personalization on multiparty dataset aggregation [97].
Nonetheless, there are tradeoffs between improving each critical privacy and final learn-
ing performance. A multi-criteria decision-making model or weighted sum formulation
for balancing the privacy regulations and accuracy is considered a great challenge for
future improvement, particularly for a multi-service IoT environment [98–100]. A DRL-
based optimization approach has a high potential to evaluate the fairness of the system
and provide a long-term expected assessment.
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• Balancing mechanism for synchronous FL: from the asynchronous FL perspective,
there are in-depth studies for (1) enhancing the performance automation with higher
efficiency, (2) advancing the privacy/security, and (3) accelerating the convergence
speed within digital twin networks and blockchain-enabled approaches [101–105].
However, in each communication round of synchronous FL, the training latency takes
up to the slowest participant, which harshly degrades the overall performance and
remains doubtful for deployment. To accelerate the slowest selected participant, an
enhanced co-training approach with edge-assisted nodes or partial model training
per round can become supportive methods in the synchronous FL process. DRL-
based edge node selection can contribute to the FL processes by jointly observing the
states of the collective edge environment (e.g., remaining resources, queuing sizes,
and distance-based features) and evaluating the selection action based on expected
co-training delays.

• Network architecture for federated optimization: to operate federated optimization,
the network architecture in every layer (e.g., infrastructure, control, and application)
mandatorily needs to increase the complexity, intelligent systems, on-device capa-
bility, management entities of internet service providers, network operators, and
softwarization/virtualization-based structures [106,107]. The constraints on IoT re-
sources, connectivity, and stability should be taken into further consideration in future
studies. Furthermore, to take the privacy-preserving framework to an advanced
next level, (federated) machine unlearning can be considered by (1) not placing user
information into the privacy-agnostic procedures and (2) alleviating the impact of
participant’s data on the final model [108–110].

7. Conclusions

In this paper, we presented a survey of DRL-based eFL policy optimization and a
review of the potential issues regarding DRL/FL deployment. We first offered an intro-
duction with a motivational statement from ZSM and EI in future network automation
scenarios. Then, we described the preliminary studies on FL and DRL in IoT networks.
The correlation between FL and DRL was provided by outlining the interactivity between
the agent and the set-up FL environment. We also discussed the possible states, actions,
and reward functions. Afterward, we provided the DRL-based eFL approaches in different
optimization aspects, including resource management, model offloading decisions, update
scheduling, and aggregation policies. In terms of application scenarios, we summarized
the recent and notable studies that used DRL/FL-based schemes in well-known IoT appli-
cations, such as IIoT, smart automation, medical services, IoV, and environmental context
detection. Finally, we discussed potential challenges and future directions that could be
a high-impact research domains for enhancing the applicability of self-organizing FL in
practical real-world systems.
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