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Abstract: Excitation identification for nonlinear structures is still a challenging problem due to the
convergence and accuracy in this process. In this study, a load estimation method is proposed with
orthogonal decomposition, the order for which can be fairly accurately determined by a regression.
In this process, the force time history is represented by the orthogonal basis and the coefficients of
the orthogonal decomposition are taken as unknowns and augmented to the state variable, which
can be identified recursively in state space. A general energy-conserving method is selected to a
step-by-step integration to guarantee the convergence of this integration. The proposed method
is first validated by numerical simulation studies of a truss structure considering its geometric
property. The identification results of the numerical studies demonstrate that the proposed excitation
identification method and the orthogonal decomposition order determination method work well for
nonlinear structures. The laboratory work of a 7-story frame is investigated to consider the geometric
nonlinearity in impact force identification. The results of experimental studies show that uncertainties
such as measurement noise and model error are included in the investigation of the accuracy and
robustness of the proposed force identification method, while the time history of external forces could
be identified with promising results.

Keywords: load identification; hysteresis nonlinearity; geometric nonlinearity; unscented Kalman
filter; Chebyshev polynomial

1. Introduction

Load estimation of severe environmental excitation, such as an earthquake or strong
wind, is of great significance in structural design, health monitoring, and condition assess-
ment. Under the practical condition, the external forces of structures cannot be directly
measured with force transducers due to the limited number of sensors or an inaccessible
force position [1]. Therefore, inverse dynamic analysis is an alternative tool to estimate
an external force or excitation with structural response observation, which may be ill-
conditioned [2,3]. Currently, investigations on the dynamic load estimation are being
conducted more frequently, but it is still a difficult task for nonlinear structures due to
nonlinearity, performance of time-step integration method, and the measurement noise.

Numerous indirect force re-construction or force identification methods have been
developed for linear structures [4–9]. Force identification methods in time domain are
actively studied in state space with the time history of structural response as the measured
information which can be solved with iterative regularization methods, recursive estimation
or some other optimization methods [10–14]. Force identification can also be viewed as an
optimization problem the objective of which is to minimize the error between the measured
and the estimated structural responses.
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Compared to the force identification method arranged in one unknown vector solved
with regularization method in state space [15], it has been argued that state variables
estimated in state space recursively can identify the external force with far fewer unknowns
in each time step as introduced in references [16–19]. The extended Kalman filter (EKF)
has been developed as an effective estimation tool to identify the state variable, including
the structural response, parameters, and external excitation [17,18]. This filter can also be
applied and combined with least-square estimation to identify the structural parameter and
external load recursively with an adaptive factor [20,21]. To improve accuracy of the non-
linear structural estimation, the unscented Kalman filter (UKF) was proposed with fewer
deterministic samplings than the particle filters or other ensemble Kalman filters [19,22–24],
which will improve computational efficiency. Compared to EKF, it is unnecessary to calcu-
late the Jacobian matrix in the identification process with UKF. Therefore, UKF is a suitable
tool to conduct a time-invariant constitutive parameter or nonlinear structural parameter
identification for nonlinear civil buildings.

In the studies of force identification, the unknown time history of external force or
ground motion can be augmented to a state variable [16–19]. UKF methods have been used
for the augmented state variable estimation combined with response or structural param-
eters. It should be noted that UKF is not suitable for the identification of a time-variant
parameter when the dynamic external force or ground motion is a time-variant series. The
force identification with a directly augmented state variable may not be as accurate as the
time-invariant structural parameter identification. The factor mentioned above could cause
large errors in the identification result, especially considering the time-variant statistical
characteristics of the external excitation. Chebyshev polynomial decomposition of the
time history was proposed [25]. The force time history is assumed to be represented by
the Chebyshev polynomials whose coefficients are arranged as a very large vector and
identified in state space with regularization methods, as reported in reference [25]. How-
ever, it is difficult to determine the order of the polynomial when there is little information
about an external excitation. Compared with the generally used Fourier decomposition,
the Chebyshev basis would cover a wide range in frequency for each single basis, which
could reduce the number of bases and the corresponding coefficients. Until now, only a
fraction of force identification methods for nonlinear structures have been concerned with
estimating the force identification or simultaneous identification problems for nonlinear
structures based on nonlinear recursive estimation tools.

In the force identification process, a dynamic analysis with a finite element model
of the structure is usually required to obtain numerical structural responses. The time
integration method is an efficient numerical tool for the response simulation of a large-scale
structural system and structural dyanmic testing [26–31]. The step-by-step integration
method can also be divided into two classes: explicit and implicit methods. For instance,
central differentiation method is a commonly used explicit integration method while it
is conditionally stable. Implicit step-by-step integration method is an alternative tool
to solve the equation of motion, which is unconditionally stable. It should be noted
that the stability performance mentioned above is related to linear, but not nonlinear
structures. The convergence performance of the implicit nonlinear dynamic analysis is
totally different and it is difficult to guarantee convergence for the nonlinear dynamic
analysis. Therefore, a forward and inverse dynamic analysis may be inaccurate or even
unstable due to the nonlinearities, including hysteresis and geometric nonlinearity which
exist in structures. Selecting a time integration method for the inverse dynamic analysis of
a nonlinear structural system will also influence the accuracy and stability of the analysis.
The energy-conserving integration method (ECIM), has been proposed [26–29], especially
for geometric nonlinearity, but, until now, it has never been concerned about the inverse
dynamic problem which renders the inverse analysis inaccurate.

In this paper, a force identification method is proposed for nonlinear structures. A
general version of ECIM was developed and applied to the inverse dynamic analysis when
considering structural nonlinearity. In the dynamic analysis of structures with geometric
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nonlinearity, the physical matrices of the structures are time variant, because the small
deformation hypothesis cannot work in this condition. Without the optimization methods
in this study, the convergence of the dynamic analysis would influence the inverse analysis
adversely. ECIM was selected to solve the problem in this study to ensure convergence of
the dynamic analysis. In the process of dynamic load identification, it is recognized that
there are a large number of unknowns in force time history which could have an adverse
effect on identification results. A Chebyshev polynomial decomposition method was
utilized for the external force identification of nonlinear structures. The order of Chebyshev
polynomials was determined using a practical method based on frequency analysis of the
structural response, from which a formulation was obtained with regression to determine
the decomposition order. Numerical simulation was conducted with a two-dimension
truss structure and a base isolated building. The load identification method has also been
validated by experimental studies of a seven-story plane frame, a series of quasi-static
tests of full-scale rubber isolation and hybrid simulation of a nonlinear isolated structure.
Structural uncertainties in materials, unexpected ground motion, and measurement noise
are considered to validate the robustness of the proposed method.

2. Equation of Motion and Its Solution Considering Structural Nonlinearity

The equation of motion of an N degree-of-freedom damped linear structural system
subjected to external excitation can be represented as

M
..
x + C

.
x + Kx = LF (1)

where M, C, and K are the mass, damping, and stiffness matrices of the structural system,
respectively. F is the vector of external excitation forces on the structure and L is the
mapping matrix for the input forces.

..
x,

.
x, and x are vectors of acceleration, velocity, and

displacement of the structural system, respectively. The Rayleigh damping model was used
in this study and assumed with Equation (2)

C = a1·M + a2·K (2)

where a1 and a2 are the Rayleigh damping coefficients.
When the structural system is nonlinear, the discrete equation of motion can be

represented with
M

..
xk + C

.
xk + Rk(x) = LFk (3)

where Rk(x) is the restoring force of the structure which is a nonlinear function of the
displacement and k represents the integration time step. When the structure is subjected to
seismic excitation, the equation of motion for nonlinear structure becomes

M
..
xk + C

.
xk + Rk(x) = −M

..
xg,k (4)

where
..
xg is the acceleration at ground level. The Newmark-β method can be used to solve

the response of linear system shown in Equation (1) with the following assumption:

.
xk+1 = 2

∆t (xk+1 − xk)−
.
xk

..
xk+1 = 2

∆t
( .
xk+1 −

.
xk
)
− ..

xk
(5)

where ∆t represents the time interval in the integration.
The Newmark-β method for a linear structural system can be extended to solve

Equations (3) and (4) representing a nonlinear system. The time-step solution with the
Newmark-β method was commonly used, however, it was found that the Newmark-β
method cannot guarantee stability in the case of geometric nonlinearity [26,27]. To improve
the accuracy and stability of the dynamic analysis, a new equation of motion in discrete
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form is provided in the middle of each time step instead of Equation (3) or Equation (4)
with the following assumption:

.
xk+1 =

.
xk + ∆tM−1[LFm −Cvm −Rm(x)] (6)

xk+1 = xk + ∆t
.
xk+1 +

.
xk

2
(7)

where Fm, vm, and Rm are the average external force, velocity, and resisting force between
the k and k + 1 time step with the definition as follows

..
xm =

..
xk+1+

..
xk

2
.
xm =

.
xk+1+

.
xk

2

xm =
xk+1+xk

2

Fm =
Fk+1+Fk

2

(8)

The new equation of motion in the mid-point between the time step of k and k + 1 for
the structure subjected to the external force becomes

M
..
xk,m + C

.
xk,m + Rk,m(x) = LFk,m (9)

M
..
xk,m + C

.
xk,m + Rk,m(x) = −M

..
xg,k,m (10)

Based on the assumption in Equation (5), the following equation can be obtained:

..
xm =

..
xk+1 +

..
xk

2
=

1
∆t
( .
xk+1 −

.
xk
)

(11)

Substitute Equation (11) into both sides of Equation (10) multiplied by the increment
of the displacement (xk+1 − xk)

T, and a new equation will be obtained as follows.

1
2

.
xT

k+1M
.
xk+1 − 1

2
.
xT

k M
.
xk + (xk+1 − xk)

TC(
.
xk+1+

.
xk

2 )
T

+(xk+1 − xk)
TRm(x) = −(xk+1 − xk)

TM
..
xg,m

(12)

Equation (12) makes the dynamic analysis relate to the energy of the structural system.
Equation (12) illustrates the energy transfer and dissipation in the system. Based on
Equation (12) it can be proved that with the assumptions shown in Equations (6) and (7),
both the equation of motion and the energy conserving of the system considering the work
of the input force or excitation will be satisfied. The ECIM was first proposed by Simo and
Tarnow [26] to improve the implicit mid-point integration method for nonlinear structures
with the characteristic that the term of Rn,m was calculated with a new version considering
the concept of energy conserving for the structural system. Beam and truss structures were
used as an example of ECIM for the dynamic analysis, [25,28] which is also applied in this
paper when geometric nonlinearity is considered. The general version of the method is
developed as Equation (12) which is applied to solve the equation of motion both for the
forward and inverse dynamic problem.

3. Force Identification in State Space
3.1. Joint Estimation in State Space

In the forward dynamic analysis, the state space equation of the nonlinear structural
system shown in Equation (3) can be expressed generally as Equation (13).

Xk = F(Xk−1, uk−1, wk−1) (13)
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where X denotes the state vector including Xk =
[
xk

.
xk
]
, u is the input of the system,

wk−1 is the system process noise vector, and F is a nonlinear function of state vector X. It is
noted that Equation (1) can also be expressed in state space as Equation (3). The discrete
observed function can be written as

yk = h(Xk, uk, vk) (14)

where v represents the observation noise assumed to follow a Gaussian white noise with
zero mean and a covariance matrix R. The identification process can be initialized with the
guess of X0 = E[X] and P0 = E[(X0 − X̂0)(X0 − X̂0)

T
] based on unscented Kalman filter or

other nonlinear estimators [22–24].
External excitations are always unknown for practical inverse problems. When the

external load is unknown, the state equation of nonlinear hysteresis structural system
cannot be solved with Equation (13). It is always difficult to directly identify the external
force of nonlinear structure with UKF since it may be nonstationary and time variant. It is
also impossible to build a relationship between ‘fk’ and ‘fk−1

′ of external excitation but the
excitation F can be decomposed on a determined standard orthogonal basis. Since the or-
thogonal basis is known, the history of excitation will be re-constructed as if the coefficients
of orthogonal basis can be identified. In this way, the external excitation identification
is transformed to the identification of the coefficients of orthogonal decomposition. The
excitation in Equation (1) can be decomposed as follows

F(t) ≈
Nm

∑
m=1

wmTm(t) (15)

in which wm is the weighing coefficient of polynomial Tm. High order components in
polynomials are ignored for the purpose of computational efficiency. Low frequency com-
ponents in excitation would be a major contribution to the structural response for civil
engineering structures. Tm is the mth term orthogonal polynomial. Nm is the number of the
term of input decomposition which is also derived from the order of the decomposition.
The orthogonal polynomial Tm and order of the decomposition Nm can affect the accuracy
of input approximation. The order of input decomposition Nm is closely related to the
input history length and concerned bandwidth of the external excitation in the frequency
domain. The orthogonal polynomial Ti

m can be determined with different kinds of decom-
position methods. In this paper the Chebyshev orthogonal polynomial is utilized for the
decomposition and can be written as follows.

T1 = 1√
π

T2 =
√

2
π (

2t
T
− 1)

Tn+1(t) = 2(
2t
T
− 1)Tn(t)− Tn−1(t) (n = 3, . . . , Nm − 1)

(16)

where Nm is the order of decomposition. Based on the Chebyshev polynomial standard
orthogonal polynomial decomposition, Equation (1) can be rewritten as follows:

M
..
x + C

.
x + R(x) ≈ L

Nf

∑
i=1

Nm

∑
m=1

wm
iTi

m (17)

where Nf is the number of the external excitation. The external excitation is approximated
by the Chebyshev polynomial. To re-construct the external force accurately, the order of
the Chebyshev polynomial should be determined and the polynomial parameter wm

i is
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required to be identified accurately. In the force identification problem, the state space
equation of the nonlinear structural system with unknown input can then be rewritten as[

Xk
Wk

]
=

[
F(Xk−1, Wk−1)

Wk−1

]
+

[
wk−1
ηk−1

]
(18)

where ηk−1 is a part of process noise. The coefficients of Chebyshev basis augmented in the
state variable can be identified by the UKF introduced in references [17,19,22–24]. When the
parameters of a nonlinear structural system must be identified, the unknown parameters
can be augmented to the state variable of the state space as shown in Equation (18). In this
paper, the accurate identification of the external force is the focus and the observability for
the force identification can relate to reference [17].

3.2. Determination of the Order for the Orthogonal Decomposition

Before the identification of the coefficients of the Chebyshev basis, the determination
of the Chebyshev polynomial order is of great importance. To discuss the order of the
Chebyshev polynomial, the first two, six, ten, fifteen and twenty terms of Chebyshev
polynomial for 3 s are first selected and shown in Figure 1. Here, it can be seen that the
characteristics of the Chebyshev polynomials, including peaks and valleys, are a little
similar to Fourier series, so this can be used to represent the periodic signal or the signal
consisting of periodic components. It is also helpful to conduct a frequency analysis of the
measured structural response which depends on the property of the external load.
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An example is first provided to demonstrate that the periodic signal can be represented
by the Chebyshev polynomials as follows. A one second sine wave with the frequency at
1 Hz is shown in Figure 2. To solve the coefficients for the re-construction of the signal,
Equation (15) can be rewritten as follows: T1

m
. . .

TNf m

W = TW = F (19)
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where T represents the determined Chebyshev polynomial basis
[
T1

m T2
m . . . TNf

m

]′
and W denotes the unknown vector of the Chebyshev polynomials. The coefficients vector
can be solved with the following bounds to this re-construction problem as

(T′T+λI)W = T′F (20)

where λ is the non-negative damping coefficient governing the participation of the least-
squares error in the solution. Solving Equation (20) is equivalent to minimizing the follow-
ing function

J(W, λ) = ‖TW− F‖2 + λ‖W‖2 (21)
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Figure 2. Re-construction of single frequency signals with Chebyshev polynomial. (a) Re-construction
with first five terms of Chebyshev polynomial. (b) Re-construction with first six terms of Chebyshev
polynomial. (c) Re-construction with first nine terms of Chebyshev polynomial. (d) Re-construction
with first ten terms of Chebyshev polynomial. (e) Re-construction with first forty terms of Chebyshev
polynomial.
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With the solution to Equation (21), the re-constructed signals are compared with the
original signals as shown in Figure 2. First, the single period sine wave is constructed with
the first five terms and six terms of Chebyshev polynomials. The re-construction results
are shown in Figure 2a,b, where a one-period sine wave can be represented by the first
sixth-term of Chebyshev polynomials accurately while the error is a little larger based on
the five-term re-construction. Then, the re-construction of another sine wave is conducted
the results of which are shown in Figure 2c,d. Here, we can see in the figure that ten terms
of polynomials perform better than the nine-term Chebyshev polynomial re-construction.
The conclusion is similar in that the bandwidth of the summation of the polynomials
should cover the bandwidth of the original signal. Lastly, the investigation of a sine wave
signal with 10 periods is conducted and decomposed by Chebyshev polynomials. The
re-construction results are shown in Figure 2e, which clearly shows that the signal can be
decomposed with 42-term Chebyshev polynomials accurately. The re-construction errors
of the sine waves for the results in Figure 2 are listed in Table 1. From the results shown
in Figure 2 and Table 1, it can be concluded that the order of Chebyshev polynomials is
only related to the number of the period for the single frequency signal and the required
number of order is nearly four times of the number of the period. It can also be deduced
that there is a relation between the number of periods in signal and the number of terms in
the Chebyshev polynomial decomposition. A brief conclusion can also be drawn that the
combined bandwidth of the polynomials should cover the bandwidth of the original signal.
In other words, the frequency of the higher order of Chebyshev polynomial decomposition
should at least exceed the concerned upper limit of the bandwidth of the signal. In this
way, the Fourier basis used for the decomposition compared to the polynomials will result
in a large number of unknowns to cover the bandwidth of the excitation signal. This is also
the reason the Chebyshev polynomial was selected to conduct the decomposition in this
study.

Table 1. Error of the Re-construction with different order Chebyshev polynomial.

Signal Order of the Chebyshev Polynomial Error (%)

One-period of sine wave
4 9.43
5 9.39
6 0.61

Two-period of sine wave

7 32.24
8 5.42
9 5.40
10 0.57

Ten-period of sine wave

37 1.99
40 0.11
41 0.11
42 0.03

Multi-frequency signal can also be decomposed with Chebyshev polynomials. The
highest order of the polynomial used in the decomposition can be approximately deter-
mined by the highest frequency of the signal, which is similar to decomposition of the
single frequency signal. The Chebyshev decomposition can be expanded to the random
signals. Generally, a random signal can be taken as the summation of the periodic signals
which can also be decomposed with Chebyshev polynomials. The order of the Cheby-
shev polynomial will depend on the highest frequency concerned and the length of the
signal. Another example is provided to demonstrate the decomposition of multi-frequency
signals. A four-second signal defined as a summation of sine waves F = 0.2 × sin(2πt)
+ 0.05 × sin(6πt) + 0.03 × sin(9πt) + 4. The frequency analysis based on fast Fourier trans-
form is shown in Figure 3. The frequency analysis result is shown in Figure 3a. The highest
frequency is 4.5 Hz and other two frequencies are approximately 2.93 Hz and 0.98 Hz.
Therefore, the order of the highest Chebyshev polynomial can be determined as α × 4.5 × 4.
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The value of α can be determined through the inverse study as shown in Equation (22) and
varies with the number of the periods ‘np’ in the signal. The formulation for α is shown as
follows.

α =


6 np = 1
4 np = 2, 3 . . . 8

3.37 np ≥ 9
(22)

where α is obtained with the general curve fitting method based on the first order ap-
proximation. With the determined highest order of Chebyshev polynomial, the signal
is re-constructed as shown in Figure 3b. The Chebyshev polynomial can accurately re-
reconstruct the original signal. The weighing coefficients of the Chebyshev decomposition
exist as long as the highest order of the polynomial can be stably determined. It is also
expected that the coefficients of the Chebyshev polynomial can be identified with a suitable
identification tool in the force identification problem. The random excitation is a special
kind of multi-frequency load which may be applied on structures. Although it is difficult
for the random signal to be represented by Chebyshev polynomials with only very few
terms, this paper will provide an approximation method to evaluate the crucial component
in the random excitation for the structure as introduced in the numerical study.
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4. Numerical Studies

In the numerical studies, structures with two typical nonlinearity will be investigated,
namely, a truss structure considering the geometric nonlinear properties and a base isolated
frame considering the nonlinear hysteretic property of the base isolation layer. The load
identification error is defined in this paper as

Error =
∥∥∥∥Ftrue − Fid

Ftrue

∥∥∥∥
2

(23)

where the subscript true represents the true load or ground motion, ‘id’ means the identifi-
cation time history. The identification can be performed iteratively for better accuracy and
the convergence criteria Tol in the iteration procedure is set as∥∥∥∥Wi+1 −Wi

Wi+1

∥∥∥∥
2
≤ Tol (24)

where i denotes the number of the iteration and Tol is taken as 10−3.
A two-dimensional 40 m long truss structure is shown in Figure 4. The structural

deformation is large, so the influence of a large deformation on internal force cannot be
ignored. This truss structure consists of 161 truss elements and 82 nodes, each of which has
two degrees of freedom. It is assumed that the two ends of each truss element are hinged
and the boundary condition of this long span truss structure also supported at two end
nodes with hinges. The length of chord members and the vertical web members is 1 m,
while the length of other web members is

√
2 m. Young’s modulus and the area of the truss

element are E = 2 × 105 Mpa and 100 mm2, respectively.
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In the forward dynamic analysis of the truss structure, the initial vertical velocity
of Nodes 39, 41, and 43 was set as 50 m/s and other initial responses of the structure
as zero. The damping ratio of each mode was set as zero to validate the stability of the
time integration method. The dynamic response analysis for the free vibration of the truss
structure was studied. In the dynamic analysis process, the physical matrices, including
mass matrix and stiffness matrix are time-variant matrices obtained based on finite element
technology considering the large deformation caused by the large initial velocity. The
structural response on Node 41 calculated with Newmark-β method is compared with the
result from the ECIM as shown in Figure 5. Here, Figure 5 illustrates that the response
solved by Newmark-β method diverges around 4.29 s while the response solved by ECIM
converges, although in the result before 4 s the two responses nearly overlap. The energy of
the system evaluated based on Equation (11) with different calculated structural responses
is compared in Figure 6. Here, it is revealed that the energy of the system solved by ECIM
is nearly a constant. The increasing energy is the reason for the divergence of the response
solved by Newmark-β. Therefore, it is possible to use ECIM as an alternative method for
the dynamic analysis of the forward and inverse problems.

In the numerical study of the force identification for this nonlinear truss structure, a
multi-frequency force was applied on the Node 39 which will be identified by the proposed
identification method with orthogonal decomposition. The applied force is expressed as
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F = sin(6πt) + sin(11πt) and the lasting time for the external force is taken as 3 s. To simulate
the effect of measurement uncertainty, Gaussian white noise was added to the uncorrupted
acceleration time history computed from the finite element model.
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Based on the frequency analysis of the structural response, the frequency of the
highest most concerned frequency with peak picking method is 5.35 Hz with the fast
Fourier transform. Under this condition the order of the Chebyshev polynomial is then
55, which is obtained with the approximation formulation of 3.37 × 5.35 × 3 ≈ 55. The
vertical acceleration of Nodes 20 to 30 was used as measured data. The external force
identification results are shown in Figure 7. It is demonstrated that the external load can be
accurately identified when using the proposed methods, even considering the geometric
nonlinearity. When 5% noise is factored into the measurement, the identification result
is also fairly accurate even though more fluctuations exist in the peak. Due to its special
requirements the error can also be mitigated by the higher order as is shown by the analysis
results in Table 1. The proposed practical order selection method can work well based on
the validation of this case.
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Figure 7. Identification of multi-frequency external force considering geometric nonlinearity. (a) Force
identification result without measurement noise. (b) Force identification result with 5% measurement
noise.

5. Laboratory Validation

Nonlinearity is considered in the experimental studies and validation. A 7-story
plan frame considering geometric nonlinearity was studied with rigid boundary condition
and the impact force on the top story identified. The vibration of a planar flexible seven-
story steel frame was investigated considering the geometric nonlinearity. This frame
was fabricated in the laboratory of the Hong Kong Polytechnic University [11] and the
impact force identified based on the method proposed in Section 3. The height of each
story is 300 mm and the length of the beam on each story is 500 mm. In this study, the
displacement-based fiber element was used to model the beam and column components
while geometric nonlinearity was factored in due to flexibility of the structure. During
the test, the frame retained elastic performance because the impact force was not that
large. Two lumped masses were placed on each story of the frame on the 1/4 length
and 3/4 length of the beam to simulate the mass effect of the floor slab, and the weight
of each lumped mass was around 3.95 kg. The ends of the columns in the first story
were welded to a thick steel base plate which was connected rigidly to the ground. The
planar frame was made of Q235 steel. The areas of the beam and column section are
49.98 mm × 8.92 mm and 49.89 mm × 4.85 mm, respectively. The primary parameters of
the model consist of modulus of elasticity (E = 206 GPa), Poisson ratio (υ = 0.31), initial yield
strength (f y = 235 MPa), post yield stiffness ratio (b = 0.02), and density (ρ = 7.85 g/cm3).
All the parameters above are taken as known parameters in the force identification process
and were obtained with material test data.
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In the experimental study, the external force of this structure was a horizontal impact
force on the plan of structure on the top floor with a force hammer. Acceleration responses
of the frame were recorded by DEWESoft software and NI data acquisition with a sampling
rate of 1000 Hz. The tested Young’ modulus of beam and column are 2.2 × 1011 N/m2 and
1.9 × 1011 N/m2, respectively. The horizontal acceleration responses recorded on the 1st,
3rd, 5th, 6th, and 7th stories were used to estimate the impact force based on ECIM. The
first 300 sampling data performs as a window for the impact force estimation. Due to the
large deformation caused by the impact force, the geometric property of the frame behavior
is considered by the time-variant physical matrices of the frame.

The comparison of the measured impact force by force transducer and the identified
force is shown in Figures 8 and 9 with/without a time window to modify the identification
results. When the time window is used, the time window is set as 0.1 s considering the
very short interaction time. It is noted that the impact force can be represented by triangle
signal or sine wave in previous studies which can determine the order of the decomposition
directly in this special case. The 7th order of Chebyshev polynomial was used in the
former case with a time window and 14th order used in latter identification case without a
time window. These two figures show that the peaks of the identified impact force time
are very close to the peak of the measured force, but the identification without a time
window contains some fluctuations. The identification error in the comparison may also
result from the direction of the impact force on the top story. The comparison of these
two results indicates that a time window can improve the identification accuracy and
reduce the number of unknowns in a state variable. The result also indicates that the
identification result is more accurate when considering the geometric nonlinearity of these
kinds of flexible frame, than the identification result that ignores the geometric nonlinearity
in reference [11].
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6. Conclusions

In this study a new force estimation method is proposed with orthogonal decomposi-
tion based on a UKF algorithm for geometric nonlinear structures. The practical method
ECIM was selected and used to determine the decomposition order, and was also proposed
to account for the regression error. The proposed method was verified with simulation and
experimental studies. The results show that, compared to the traditional step-by-step inte-
gration method, the ECIM can guarantee the convergence of the dynamic inverse analysis
process. With the frequency analysis of the measurement and the proposed load estimation
method, the decomposition order for external force is reasonable as the external force can
be identified accurately, even with the measurement noise. When geometric nonlinearity
is considered in flexible structures, the load estimation result is more accurate. The initial
value of orthogonal decomposition could also influence the identification result and this
problem will be solved in future work.
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