New Trends in the Control of Robots and Mechatronic Systems
1. Introduction
2. Special Issue Topics
Acknowledgments
Conflicts of Interest
References
- Wu, L.; Zhao, R.; Li, Y.; Chen, Y.-H. Optimal design of adaptive robust control for the delta robot with uncertainty: Fuzzy set-based approach. Appl. Sci. 2020, 10, 3472. [Google Scholar] [CrossRef]
- Zhao, X.; Shi, P.; Zheng, X. Fuzzy adaptive control design and discretization for a class of nonlinear uncertain systems. IEEE Trans. Cybern. 2016, 46, 1476–1483. [Google Scholar] [CrossRef] [PubMed]
- Ijspeert, A.J. Central pattern generators for locomotion control in animals and robots: A review. Neural Netw. 2008, 21, 642–653. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Chen, Y.; Yin, Z. Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 2016, 46, 620–629. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X. The welding tracking technology of an underwater welding robot based on sliding mode active disturbance rejection control. Assem. Autom. 2022, 42, 891–900. [Google Scholar] [CrossRef]
- Bruzzone, L.; Fanghella, P. Fractional-order control of a micrometric linear axis. J. Control Sci. Eng. 2013, 2013, 947428. [Google Scholar] [CrossRef] [Green Version]
- Jakovljevic, B.B.; Sekara, T.B.; Rapaic, M.R.; Jelicic, Z.D. On the distributed order PID controller. Int. J. Electron. Commun. 2017, 79, 94–101. [Google Scholar] [CrossRef]
- Bruzzone, L.; Fanghella, P. Comparison of PDD1/2 and PDµ position controls of a second order linear system. In Proceedings of the IASTED International Conference on Modelling, Identification and Control, MIC 2014, Innsbruck, Austria, 17–19 February 2014; pp. 182–188. [Google Scholar] [CrossRef]
- Chen, G.; Lu, Y.; Yang, X.; Hu, H. Reinforcement Learning control for the swimming motions of a beaver-like, single-legged robot based on biological inspiration. Rob. Auton. Syst. 2022, 154, 104116. [Google Scholar] [CrossRef]
- Wang, N.; Gao, Y.; Zhang, X. Data-driven performance-prescribed Reinforcement Learning control of an unmanned surface vehicle. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 5456–5467. [Google Scholar] [CrossRef]
- Lee, C.-T.; Chang, J.-Y. A Workspace-analysis-based genetic algorithm for solving inverse kinematics of a multi-fingered anthropomorphic hand. Appl. Sci. 2021, 11, 2668. [Google Scholar] [CrossRef]
- Diveev, A.; Sofronova, E.; Konstantinov, S. Approaches to numerical solution of optimal control problem using evolutionary computations. Appl. Sci. 2021, 11, 7096. [Google Scholar] [CrossRef]
- Lin, C.-J.; Jeng, S.Y.; Lin, H.-Y.; Yu, C.-Y. Design and verification of an interval type-2 fuzzy neural network based on improved particle swarm optimization. Appl. Sci. 2020, 10, 3041. [Google Scholar] [CrossRef]
- Rossi, G.B.; Crenna, F. A first-order probabilistic logic with application to measurement representations. Measurement 2016, 79, 251–259. [Google Scholar] [CrossRef]
- Wang, Z.; Ou, Y. Learning human strategies for tuning cavity filters with continuous Reinforcement Learning. Appl. Sci. 2022, 12, 2409. [Google Scholar] [CrossRef]
- Shu, M.; Zheng, X.; Li, F.; Wang, K.; Li, Q. Numerical simulation of time-optimal path planning for autonomous underwater vehicles using a Markov decision process method. Appl. Sci. 2022, 12, 3064. [Google Scholar] [CrossRef]
- Uchihori, H.; Cavanini, L.; Tasaki, M.; Majecki, P.; Yashiro, Y.; Grimble, M.J.; Yamamoto, I.; van der Molen, G.M.; Morinaga, A.; Eguchi, K. Linear Parameter-Varying model predictive control of AUV for docking scenarios. Appl. Sci. 2021, 11, 4368. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, S.; Wang, X. Distributed control for coordinated tracking of fixed-wing Unmanned Aerial Vehicles under model uncertainty and disturbances. Appl. Sci. 2021, 11, 9830. [Google Scholar] [CrossRef]
- Sánchez-Rojas, J.A.; Arias-Aguilar, J.A.; Takemura, H.; Petrilli-Barceló, A.E. Staircase detection, characterization and approach Pipeline for Search and Rescue Robots. Appl. Sci. 2021, 11, 10736. [Google Scholar] [CrossRef]
- Sengupta, I.; Gupta, S.; Deb, D.; Ozana, S. Dynamic stability of an electric monowheel system using LQG-based adaptive control. Appl. Sci. 2021, 11, 9766. [Google Scholar] [CrossRef]
- Kim, J.; Jon, U.; Lee, H. State-constrained sub-optimal tracking controller for Continuous-Time Linear Time-Invariant (CT-LTI) systems and its application for DC motor servo systems. Appl. Sci. 2020, 10, 5724. [Google Scholar] [CrossRef]
- Bruzzone, L.; Baggetta, M.; Fanghella, P. Fractional-Order PII1/2DD1/2 control: Theoretical aspects and application to a mechatronic axis. Appl. Sci. 2021, 11, 3631. [Google Scholar] [CrossRef]
- Gupta, S.; Singh, A.P.; Deb, D.; Ozana, S. Kalman filter and variants for estimation in 2DOF serial flexible link and joint using Fractional Order PID controller. Appl. Sci. 2021, 11, 6693. [Google Scholar] [CrossRef]
- Wang, J.; Lee, M.C.; Kim, J.H.; Kim, H.H. Fast Fractional-Order terminal sliding mode control for seven-axis robot manipulator. Appl. Sci. 2020, 10, 7757. [Google Scholar] [CrossRef]
- He, Q.; Fan, S.; Chen, N.; Tan, R.; Chen, F.; Fan, D. Analysis of inductive displacement sensors with large range and nanoscale resolution. Appl. Sci. 2021, 11, 10134. [Google Scholar] [CrossRef]
- Pacheco Quiñones, D.; Paterna, M.; De Benedictis, C. Automatic electromechanical perturbator for postural control analysis based on model predictive control. Appl. Sci. 2021, 11, 4090. [Google Scholar] [CrossRef]
- Grande, D.; Harris, C.A.; Thomas, G.; Anderlini, E. Data-driven stability assessment of multilayer long short-term memory networks. Appl. Sci. 2021, 11, 1829. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruzzone, L. New Trends in the Control of Robots and Mechatronic Systems. Appl. Sci. 2023, 13, 3112. https://doi.org/10.3390/app13053112
Bruzzone L. New Trends in the Control of Robots and Mechatronic Systems. Applied Sciences. 2023; 13(5):3112. https://doi.org/10.3390/app13053112
Chicago/Turabian StyleBruzzone, Luca. 2023. "New Trends in the Control of Robots and Mechatronic Systems" Applied Sciences 13, no. 5: 3112. https://doi.org/10.3390/app13053112
APA StyleBruzzone, L. (2023). New Trends in the Control of Robots and Mechatronic Systems. Applied Sciences, 13(5), 3112. https://doi.org/10.3390/app13053112